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expression analysis of the U-box
E3 ubiquitin ligase gene family
related to salt tolerance in
sorghum (Sorghum bicolor L.)

Jianghui Cui1,2†, Genzeng Ren1,2†, Yuzhe Bai1,2, Yukun Gao1,2,
Puyuan Yang1,2 and Jinhua Chang1,2*

1College of Agronomy, Hebei Agricultural University, Baoding, China, 2North China Key Laboratory for
Germplasm Resources of Education Ministry, Baoding, China
Plant U-box (PUB) E3 ubiquitin ligases play essential roles in many biological

processes and stress responses, but little is known about their functions in

sorghum (Sorghum bicolor L.). In the present study, 59 SbPUB genes were

identified in the sorghum genome. Based on the phylogenetic analysis, the 59

SbPUB genes were clustered into five groups, which were also supported by the

conserved motifs and structures of these genes. SbPUB genes were found to be

unevenly distributed on the 10 chromosomes of sorghum. Most PUB genes (16)

were found on chromosome 4, but there were no PUB genes on chromosome 5.

Analysis of cis-acting elements showed that SbPUB genes were involved in many

important biological processes, particularly in response to salt stress. From

proteomic and transcriptomic data, we found that several SbPUB genes had

diverse expressions under different salt treatments. To verify the expression of

SbPUBs, qRT-PCR analyses also were conducted under salt stress, and the result

was consistent with the expression analysis. Furthermore, 12 SbPUB genes were

found to contain MYB-related elements, which are important regulators of

flavonoid biosynthesis. These results, which were consistent with our previous

multi-omics analysis of sorghum salt stress, laid a solid foundation for further

mechanistic study of salt tolerance in sorghum. Our study showed that PUB

genes play a crucial role in regulating salt stress, and might serve as promising

targets for the breeding of salt-tolerant sorghum in the future.

KEYWORDS

ubiquitin ligases, U-box, sorghum, salt tolerance, gene family
Abbreviations: ABA, abscisic acid; FPKM, Fragments per kilobase of exon per million fragments mapped;

GZ, the sorghum cultivar Gaoliangzhe; HECT, Homologous to E6-associated protein Carboxyl Terminus;

HN16, the sorghum cultivar Henong16; KEGG, Kyoto Encyclopedia of Genes and Genomes; MEME,

Multiple Em for Motif Elicitation; MW, molecular weight; PPI, the protein-protein interaction; PUB, Plant U-

box; qRT-PCR, Quantitative RealTime PCR; RING, Really Interesting New Gene; UB, ubiquitin; WGD,

Whole-genome duplication.
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Introduction

The ubiquitin/26S proteasome (UPS) pathway, which degrades

ubiquitinated target proteins, mainly includes the E1 ubiquitin (UB)

activating enzyme, E2 UB binding enzyme, and E3 UB ligase; these

proteins are involved in a wide variety of cellular processes

(Vierstra, 2003; Vierstra, 2009). UPS regulates a diverse array of

plant growth and development processes, as well as the degradation

of short-lived proteins (Wang and Deng, 2011). E3 ligases are

considered to be necessary for ubiquitin activation and transfer, and

play a key role in protein ubiquitination(Yee and Goring, 2009;

Trujillo, 2018). Based on the mechanism of action and the presence

of conserved domains, E3 ubiquitin ligases can be classified into two

main types, multi-subunit types and single subunit types, which are

composed of Homologous to E6-associated protein Carboxyl

Terminus (HECT), Really Interesting New Gene (RING) finger

and U-box domains (Buetow and Huang, 2016; Yang et al., 2021).

The ubiquitin ligases promote the covalent binding of ubiquitin to

target proteins in eukaryotes, resulting in the addition of a single

protein or protein complex to the ubiquitin reaction (Berndsen and

Wolberger, 2014; Wang et al., 2022). The U-box domain consists of

about 75 amino acids, and many plant U-box (PUB) proteins play a

crucial role in the development and physiological processes, such as

plant hormone responses, seed germination, and responses to biotic

and abiotic stresses (Ohi et al., 2003; Zeng et al., 2006; Mao

et al., 2022).

Environmental stress has adverse effects on plant growth and

development (Cramer et al., 2011). Excessive salinity in the soil had

a harmful impact on plant growth and productivity leading to large

reductions in grain yield (Shrivastava and Kumar, 2015; Dadrwal

et al., 2020). Under salt stress, a large number of signal pathways in

higher plants may be activated to regulate the expression of different

types of genes and to produce a variety of defense proteins and

protective molecules (Zhu, 2002; Shomali and Aliniaeifard, 2020).

Therefore, the identification and functional analysis of salt stress-

related genes are important for crop improvement. At present,

many PUB proteins are associated with salt tolerance in several

important crops. For example, AtPUB18, AtPUB19, and AtPUB44

have been found to have negative regulatory effects on seed

germination under salt stress and abscisic acid (ABA) treatment

in Arabidopsis (Bergler and Hoth, 2011; Salt et al., 2011).

Overexpression of AtPUB22 and AtPUB23 resulted in

hypersensitivity to salt stress and drought stress; further, mutants

of these two genes had enhanced drought tolerance, indicating that

these PUB proteins play a negative regulatory role in response to

abiotic stresses (Cho et al., 2008). OsPUB15 mutants in rice had

defects in seed growth, but overexpression of OsPUB15 produced

plants with higher salt tolerance than the wild type (Park et al.,

2011). Wheat TaPUB26 was shown to negatively regulate salt stress

in transgenic Brachypodium distachyon . Additionally,

overexpression of TaPUB26 enhanced the accumulation of

reactive oxygen species and could affect the cytoplasmic Na+/K +

balance (Wu et al., 2020). TaPUB1 positively regulated salt stress

tolerance in wheat and tobacco. Overexpression of TaPUB1 up-

regulated the expression of genes related to ion channels, increasing
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net root Na+ efflux but decreasing net K+ efflux and H+ influx, thus

maintaining a lower ratio of Na+/K+ cytosolic solute (Zhang et al.,

2017b; Wang et al., 2020). During seed germination and post-

germination growth stages, overexpression of the GmPUB8 gene led

to the hypersensitivity of soybean to salt and drought stress (Wang

et al., 2016). In the Antarctic moss Pohlia nutans, the growth of

gametophyte was more sensitive to salinity and ABA with

heterogeneous overexpression of PnSAG1, which was thought to

play a negative role in plant responses to ABA and salt stress (Wang

et al., 2019).

Sorghum (Sorghum bicolor L.) is the fifth most important crop

in the world; it originated in Africa and is the most widely utilized

C4 model crop (Mullet et al., 2014; Enyew et al., 2022; Espitia-

Hernández et al., 2022). In addition, sorghum is one of the most

important food crops worldwide, especially in developing countries

and areas with more drought and salinity (Zhao et al., 2019; Tasie

and Gebreyes, 2020). Compared with other cereals gains, sorghum

can better adapt to a variety of environments and can be cultivated

under more adverse conditions (Borrell et al., 2006). Sorghum is a

model system for studying crop salt response because of its inherent

tolerance to salt stress. Based on the analysis of multi-omics data, it

was determined that flavonoid biological pathways play a vital role

in the salt tolerance of sorghum (Ren et al., 2022). Moreover,

ubiquitin-mediated proteolysis was found among the top Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathways of

sorghum salt tolerance. To date, PUB proteins are related to salt

tolerance in many plants, but have been rarely studied in sorghum

(Wang et al., 2016; Trujillo, 2018; Mao et al., 2022). In this study, we

identified PUB genes genome-wide and analyzed their gene

structure and evolution. Using transcriptomic and proteomic data

for sorghum, we demonstrated that several SbPUBs showed

different expression responses to salt stress. In addition, we found

that the MYB-related elements, which are important regulators of

flavonoid biosynthesis (Falcone Ferreyra et al., 2012; Zhai et al.,

2016), were widely distributed in the SbPUBs. This study provides a

theoretical basis for analyzing the role of PUB genes in the salt

tolerance of sorghum.
Materials and methods

Genome identification of U-box gene
family members in sorghum

In order to identify potential members of the PUB gene family,

the genome sequences of sorghum (Sorghum_bicolor_NCBIv3)

were first downloaded from the Ensembl Plants database (Yates

et al., 2022). Then, the seed file of the U-box domain (PF04564) was

used to search the candidate PUB genes in the sorghum protein

database using the software HMMER (v3.3.2) (Mistry et al., 2013).

All candidate SbPUB proteins, which were obtained from the result

of HMM search, were further submitted to the SMART website

(http://smart.embl-heidelberg.de/) to determine the completeness

of the U-box conserved domain. The tool Compute pI/Mw on the

ExPasy website (https://web.expasy.org/compute_pi/) was used to
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obtain the molecular weight (MW) and isoelectric point (pI)

(Gasteiger, 2005).
Phylogenetic analysis of SbPUB proteins

The software ClustalX (v2.1) was used to performmultiple sequence

alignment (Larkin et al., 2007). Subsequently, the phylogenetic tree was

constructed by the MEGA (v7.0) tool using the Neighbor-joining

method with a bootstrap of 1000 replications (Kumar et al., 2018).

The Neighbor-Joining (NJ) method, which uses an agglomerative

process and is both fast and accurate, is the most commonly used

distance-based method for phylogenetic analysis (Saitou and Nei, 1987).

The alignments were edited by the GeneDoc (v2.7) sequence editor

(Nicholas and Nicholas, 1996). The Evolview tool (https://

evolgenius.info//evolview-v2/) was used to edit the phylogenetic tree

of SbPUB proteins (Zhang et al., 2012). To explore the diversity, PUB

proteins of rice and Arabidopsis thaliana were retrieved from previous

studies in the National Center for Biotechnology Information (NCBI)

database (Wiborg et al., 2008; Zeng et al., 2008).
Structural characteristics, motif, and cis-
acting elements analysis

To detect the conserved motifs of SbPUB proteins, Multiple Em

for Motif Elicitation (MEME v5.2.0) (Bailey et al., 2009) was used

with the maximum number of motifs set as 10 (Bailey et al., 2009).

And the intron-exon gene structures were displayed using TBtools

with the gff3 files of the sorghum genome (Chen et al., 2020). The

upstream 2 kb region of each SbPUB gene was defined as a putative

promoter sequence, which was extracted and submitted to the

PlantCARE database to predict the cis-regulatory elements with

the default parameters (Lescot et al., 2002).
Chromosomal and subcellular
location, synteny analysis, and
selective pressure estimation

The homologous gene pairs of SbPUBs were identified by blast

software with an all-vs-all blast strategy. Then, the synteny regions

were identified using MCScanX with the result of the all-vs-all blast

(Wang et al., 2012). We plotted the circos picture to show the

distribution of synteny gens pairs (Krzywinski et al., 2009). In order

to predict the protein-protein interactions (PPIs), the STRING

database was used for the candidate proteins (Szklarczyk et al.,

2021). We utilized the Protein Data Bank and SWISS-MODEL to

investigate the three-dimensional (3D) structures of the target

proteins via comparative modeling (Waterhouse et al., 2018;

Bittrich et al., 2022). Additionally, we employed PyMOL to

visualize the protein 3D structures (DeLano, 2004). The

chromosomal location analysis was conducted by Mapchart

(v2.32) (Voorrips, 2002). The subcellular localization of sorghum

U-box protein was predicted using the online software WolfPSORT

(https://wolfpsort.hgc.jp/).
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Expression analysis of SbPUB genes

To study the expression patterns of SbPUB genes, proteomic

data of two sorghum cultivars Henong16 (HN) and Gaoliangzhe

(GZ) under different salt treatments time (0h, 24h, 48h, and 72h)

were obtained through the ProteomeXchange Consortium (http://

proteomecentral.proteomexchange.org) (Accession number

PXD032125). Hierarchical clustering of the expression profiles

was performed on the log-transformed fold change expression

values for the identified protein spots using Proteome Discoverer

1.4 software as previously described (Orsburn, 2021). In addition,

the RNA-seq data generated and analyzed in a previous study were

used for this study (Accession Number: GSE145748) (Sun et al.,

2020). The abundance of transcriptional data was expressed as

fragments per kilobase of exon per million fragments mapped

(FPKM). The heatmap of SbPUB genes was constructed by the

package ggplot2 in R.
Plant materials and treatments

The sorghum seeds of salt-sensitive HN16 and salt-tolerant GZ

genotypes were selected for this study. The seeds were disinfected

with 75% ethanol and then rinsed clean with deionized water.

Subsequently, the sowing seeds were made in plastic containers with

vermiculite. Three-day-old seedlings were transferred to

hydroponic boxes and grown in an artificial climate chamber.

When sorghum seedlings grow to three-leaf stages (about 15

days), they are transferred to a salt environment (0.6% NaCl) or

the nutrient solution (control condition). Whole plant tissue

samples were collected at 0, 24, 48, and 72 h of treatment, snap-

frozen in liquid nitrogen, and stored at -80°C until RNA extraction.

Experimental repeat runs for three biological and three technical

replicates were included in the analysis.
RNA isolation, reverser transcription, and
quantitative real-time PCR analysis

Total RNAs were extracted from the salt stress-treated samples

using the Omini Plant RNA Kit (CWBIO, Beijing, China). RNA was

reverse transcribed into cDNA using a SuperRT cDNA Synthesis

Kit (CWBIO, Beijing, China). Then, the cDNA was diluted 1:20

with ddH2O to be used as a template for quantitative real-time PCR

(qRT-PCR). Then, qRT-PCR was performed using an

AugeGreen™ qPCR Master Mix (US EVERBRIGHT, Suzhou,

China) and samples were run in a LightCycler 96 System (Roche,

CA, United States) using the following protocol: predenaturation at

95°C for 2 min; 45 cycles of denaturation at 95°C for 15 s and

renaturation at 60°C for 60 s; and extension at 72°C for 30 s. The b-
actin gene (X79378) was used as an internal reference gene. The

primer pairs for qRT-PCR were summarized in Table S5. The

relative expression levels were calculated using the 2-DDCt method,

and three biological replicates and three technical replicates were

performed for each sample.
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Results

Identification of SbPUB gene
family members

In this study, 59 PUB genes were identified in the entire sorghum

genome and then were designated as SbPUB 1-59 based on their

chromosomal location. To characterize these SbPUB genes, the length

of the open reading frame and the protein sequence, theoretical

isoelectric point (pI), protein molecular weight (MW), and

subcellular and chromosomal locations were analyzed (Table S1).

The length of SbPUBs ranged from 1,068 bp (SbPUB43) to 29,965 bp

(SbPUB57), and the average length was 4,224 bp. Among the 59

SbPUB genes, the longest sorghum U-box protein was SbPUB13,

containing 1,404 amino acids, and the shortest (SbPUB42) contained

275 amino acids. TheMW ranged from 30.87 kDa to 150.37 kDa, with

an average of 69.89 kDa. The pI value ranged from 4.99 (SbPUB2) to

8.82 (SbPUB55). The subcellular locations of SbPUBs were predicted

by WolfPSORT; we found that most PUB proteins (56) were located

on the endoplasmic reticulum (21), nucleus (19), and plasma

membrane (16), except for two located in mitochondria and one

located in the cytoplasm (Table S1). Among SbPUBs, the transcription

direction of 29 genes was the same as the sorghum genome sequence,

and the other 30 were in the opposite direction.
Phylogenetic analysis and classification of
SbPUB gene family members

To investigate the evolutionary history of PUB genes in

sorghum, we constructed a phylogenetic tree using MEGA (v7.0)
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with the neighbor-joining (NJ) method. The topology of the

phylogenetic tree could be divided into five groups (Figure 1A).

Group I was the largest with 18 genes, followed by Groups II and V

with 17 genes and 12 genes, respectively, while Groups III and IV

were the smallest with six genes each (Table S1).

To further investigate the relationships of the SbPUB genes in

the phylogenetic tree, the conserved motifs were evaluated using the

programMEME. Ten motifs were identified and estimated in the 59

SbPUB genes. Among them, Motif 1, Motif 2, Motif 5, and Motif 8

were found in most genes of the five groups, indicating that they are

highly conserved in SbPUB proteins (Figure 1B)., Motif 1, Motif 2,

and Motif 5 were determined to be conserved U-box sequences,

which could be necessary to maintain the U-box structure and

support their ubiquitin linkage activity. Motif 8 was part of the

ARM conserved domain, which was the most common type in the

U-box family. Furthermore, the genes in the same group within the

phylogenetic tree exhibited similar conserved motifs, which

indicated that they might have similar functions. For example,

nearly all genes (10 out of 11) of Group V had 7 motifs (Motifs 1, 2,

4, 5, 6, 7, and 9).

To better understand the composition and function of the

SbPUB genes, gene structure analysis was performed with the

conserved sequences and exon/intron positions. We found that

the number of exons varied from 1 to 18 in SbPUBs, which

indicates that the sorghum PUB genes have complex RNA

splicing processes. Genes in the same group had similar exon/

intron structures (Figure 1C). The 18 genes in Group I all

contained one to three exons, with an average of two, which was

the least among the five groups. Group V had the most exons with

an average of ten exons. The gene structure and conserved motif

analyses were consistent with the SbPUB phylogenetic tree, which
B CA

FIGURE 1

The phylogenetics, conserved motifs, and gene structure analysis of SbPUB proteins. (A) The Neighbor-Joining (NJ) phylogenetic tree of 59
sorghum PUB genes. Different colors of the branches represent five groups with marking in Latin letters. (B) The conserved motifs analysis of PUB
genes in sorghum. Ten different motifs were predicted by MEME software, with the scale bar at the bottom. (C) The gene structure analysis of
SbPUB genes using the tool of GSDS, including intron (grey lines), UTR (green rectangles), and exon (orange rectangles).
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provided strong evidence for the accuracy of the classifications in

the phylogenetic tree.

In addition, to further investigate the evolution of the PUB

family, 185 PUB proteins (59 from sorghum, 73 from rice, and 53

from A. thaliana) (Table S2) were used to generate a phylogenetic

tree (Figure 2). Based on the resulting phylogenetic tree, these PUB

proteins could be divided into five subgroups. Group I contained

the largest number of PUB genes of 62, while Group III had the least

number of PUB genes of 12. In general, the PUB genes of sorghum

and rice were more closely related to each other than those of A.

thaliana, which is consistent with previous results. These results

further support the accuracy of the SbPUB phylogenetic analysis in

this study.
Chromosomal location and homologous
gene analysis of SbPUB genes

The chromosomal distribution of SbPUBs in the genome was

identified by extracting chromosomal data and mapping with

MapChart (Voorrips, 2002). As a result, 59 SbPUB genes were

mapped unevenly and nonrandomly onto 9 chromosomes, and no

SbPUB gene was mapped onto chromosome 5 (Figure 3A).

Chromosome 4 had the most SbPUB genes of 16, followed by

chromosomes 1 and 10 with 8 genes. Each of chromosomes 3, 6,

and 7 contained 5 to 7 SbPUB genes. Three or four PUB genes were

mapped onto chromosomes 2, 8, and 9. Gene duplication events are

significant for gene family expansion. Here, the duplication events

of the PUB genes in the sorghum genome were analyzed using
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MCScanX software. We found that 30 genes were derived from

dispersed duplication blocks: 31 genes were assigned to whole-

genome duplication (WGD) and segmental duplication. In

addition, there were five genes belonging to tandem duplication

blocks, and 2 genes were derived from proximal duplication, while

only one gene was assigned to the singleton category. Therefore, the

dispersed, WGD and segmental duplication events (approximately

86.5%) may have resulted in the expansions of the PUB gene family

in sorghum. It is thought that most duplicated genes will be silenced

over time, but there are still a few maintained by purifying selection.

A total of 11 homologous gene pairs were identified in the sorghum

PUB gene family, which contained 18 homologous genes. Two

homologous gene pairs were detected between chromosomes 4 and

chromosomes 10 (Figure 3B). Further, the collinear relationship

among sorghum, rice, and A. thaliana was identified (Figure 3C).

There were 43 orthologous gene pairs between SbPUBs and

OsPUBs, of which 3 OsPUBs had two orthologous copies in

sorghum. These findings suggest that these orthologous genes

might share similar functions in these species. In addition, we

found four orthologous gene pairs between SbPUBs and AtPUBs,

which was far less than those found for sorghum and rice,

suggesting that SbPUB genes have a closer relationship

with OsPUBs.
Cis-acting elements prediction of
SbPUB genes

Cis-acting elements offer important clues for the prediction of

gene functions. Transcription factors cloud affect the expression

levels of target genes by binding to the cis-acting elements of target

genes during specific biological processes. To further investigate the

function of the SbPUB genes, we predicted the cis-acting elements of

the putative promoter regions of the SbPUB genes using the Plant-

CARE database. As a result, 84 cis-acting elements were identified

(Table S3), which were mainly associated with stress, hormones,

and plant growth and development. In our study, 58 PUB genes had

cis-elements related to light response, hormone response, and stress,

while 53 PUB genes had cis-elements related to plant growth and

development. Several diverse cis-acting elements were observed in

the promoter region of SbPUBs, indicating that the PUB gene family

of sorghum may participate in a variety of biological processes. In

particular, for these SbPUB genes, there were many types of stress-

related cis-elements, such as MYC, MYB, plant AP-2-like, STRE,

LTR, andW box. To determine the functions of SbPUB genes in salt

tolerance, we selected 12 interesting cis-acting elements, which were

mainly associated with stress or stress-related hormones, for further

analysis. These cis-acting elements were found in all SbPUB

genes (Figure 4).
Expression analysis of SbPUB genes under
salt stress

Several studies have found that the PUB gene family is involved

in salt tolerance. To explore the functions of the PUB gene family in
FIGURE 2

Phylogenetic tree analysis of the PUB gene family of sorghum, rice, and
Arabidopsis. The multiple sequence alignment of the full-length
sequences of these PUB proteins was performed by CluastalX, and the
phylogenetic tree was constructed using the software MEGA 7 with the
NJ method. All 185 PUB proteins were clustered into five subgroups,
designated as Group I -V clades with different colors marked.
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sorghum, we detected the expression levels of SbPUBs based on the

salt-tolerant proteomic data for two sorghum cultivars obtained in

our previous study. Based on the proteomic results, 18 differentially

expressed PUB family genes, belonging to different subfamilies,

were identified (Figure 5A, Table S4). Among those genes, there

were 6 genes were significantly down-regulated after 24 h, and 10

genes were significantly down-regulate after 48 h in HN16. On the

contrary, these genes were significantly up-regulated after 48 h in

GZ. For example, SbPUB13, SbPUB21 and SbPUB28 were down-

regulated after 24 h in HN16 but up-regulated after 48 h in GZ.

However, SbPUB40 and SbPUB48 were up-regulated after 48 h in

HN16 and were not significantly differential expressed in GZ under

the salt stress. SbPUB genes could be up-regulated under salt treated

conditions in GZ, suggesting that these SbPUB genes play important

roles under salt tolerance.

To better understand the expression of the SbPUB genes

under salt stress, the expression levels of these genes were

quantified by fragments per kilobase of transcript per million

fragments mapped (FPKM) values from RNA-seq data (Table

S4), and a heatmap was drawn according to the log2 (FPKM)

values (Sun et al., 2020). The results showed that 27 SbPUB genes

were differentially expressed in the salt-tolerant line M-81E (M)

and salt-sensitive line Roma (R) (Figure 5B). For example,

SbPUB32 and SbPUB38 were down-regulated in the salt-

sensitive sorghum but were up-regulated in the salt-tolerant

line under the salt stress. SbPUB9 was down-regulated in salt-

sensitive sorghum but the differences were minimal in the salt-
Frontiers in Plant Science 06
tolerant line. As a result, these PUB genes with different

expression of proteomic and transcriptional data could play a

critical role in response to the salt stresses of sorghum.

Furthermore, the PPIs were visualized using these PUB genes

with the STRING database (Figure S1A). The confidence score of

these functional proteins is chosen to be 0.4, which means that the

connections between the nodes and lines have a high degree of

credibility. We found that there were extensive connections between

these PUBs and other proteins. For instance, Sb03g006120.1 is a

HECT-type E3 ubiquitin transferase, which plays an important role

in ubiquitin-dependent protein catabolic processes (Lorenz, 2018).

Both of Sb01g030340.1 and Sb01g048260.1 were ubiquitin related

proteins, which showed that PUB has extensive links with other

ubiquitin genes and plays a crucial role in the process of ubiquitin.

We utilized the SWISS-MODEL tool to generate a comparative

homology model of SbPUB42 with template 2c2l.1.A (SMTL ID),

which had a Global Model Quality Estimate (GMQE) score of 0.71

(Figure S1B). Upon further analysis of the Protein Data Bank

(PDB), we discovered that the Crystal structure of the CHIP U-

box E3 ubiquitin ligase (PDB: 2OXQ) closely resembled the

predicted structure of SbPUB42. This was evidenced by the

presence of common structural features, including a central a-
helix (a1), a C-terminal helix (a2), a small antiparallel b-sheet (b1
and b2), and two distinct loops (loop1 and loop2), as shown in

Figure S1C. Notably, these same features were also observed in the

GmPUB13 protein found in soybean (Lin et al., 2021). By

visualizing the 3D structure of SbPUB, we can gain insights into
B C

A

FIGURE 3

The location and synteny of SbPUB genes in the sorghum genome. (A) The distribution pattern of PUBs in 10 sorghum chromosomes. (B) The
distribution pattern synteny analysis of SbPUB genes. The red lines represent the synteny gene pairs of PUB gene families in sorghum. (C) Collinearity
analysis between sorghum, rice, and A thaliana. The gray lines represent the co-collinearity of all genes between different species, and the red lines
represent the collinearity between different members of the PUB gene family.
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the underlying sequence patterns, functional characteristics, and

binding sites, as well as the potential interactions with other

target proteins.
qRT-PCR verification of selected SbPUB
genes under salt stresses

To validate the expression levels of SbPUBs, we have selected 17

genes for qRT-PCR experiments (Figure 5C). The results showed

that all of these SbPUB genes were expressed differently after salt

treatment. The expression level of SbPUB3, SbPUB4, SbPUB6,

SbPUB13, SbPUB18, SbPUB32, SbPUB47, SbPUB49, SbPUB50,

SbPUB52, and SbPUB58 were highly increased during the 48 h

salt exposure in the salt-sensitive HN16, and SbPUB16, SbPUB33,

SbPUB40, SbPUB41, SbPUB42, and SbsPUB48 were highly

increased in the salt-tolerant GZ. Moreover, SbPUB33 and

SbPUB42 expressions were increased significantly within 48 h in

both samples and decreased after 48 h. Similar results were found

for SbPUB40 and SbPUB50, which had opposite expression patterns

before 24 h but performed consistently after 24 h in two cultivars,

suggesting that these PUB genes respond to salt treatment actively.

SbPUB16, SbPUB41, and SbPUB48 showed down-regulated before

24 h in salt-tolerant GZ, but always up-regulated before 48 h in salt-

sensitive NH. Although there were some differences in expression at
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the initial stage (mainly before 24 h), almost all of these SbPUBs

showed a significant reduction in expression after 48 h of salt

treatment. The results of qRT-PCR were consistent with the

expression trends in the proteomic and transcriptomic analyses.
Discussion

Genome-wide and phylogenetic analysis of
SbPUB genes in sorghum

The U-box gene encodes a conserved U-box motif of about 70

amino acids and is a member of the ubiquitin ligase family, which

regulates the ubiquitination of substrates (Yang et al., 2021). U-box

genes are widely distributed in plants and participate in many

biological processes, including responses to biotic and abiotic

stresses (Berndsen and Wolberger, 2014; Mao et al., 2022). At

present, PUB genes have been found to play an important role in

response to salt tolerance in many plant species, such as wheat, A.

thaliana, tomato, and soybean (Wang et al., 2016; Wang et al., 2020;

Wu et al., 2020). Sorghum is one of the most important cereal crops

worldwide and contains many health-promoting substances (Awika,

2017; Xu et al., 2021). However, analysis of PUB genes in sorghum

was minimal until now. In this study, 59 genes were identified as

members of the PUB gene family in sorghum, which was similar to

tomato (62) and A. thaliana (64) (Heise et al., 2002; Sharma and

Taganna, 2020). We found that all 59 PUB proteins contained the U-

box domain, and a large number of amino acids in the SbPUB

domain were highly conserved, which could play an important role in

stabilizing the U-box domain (Figure S2). For example, arginine (R),

isoleucine(I), proline (P), cysteine (C), arginine (R), threonine (T),

tryptophan (W), and serine (S) were conserved; R could affect the

formation of ionic bonds, and C, T, W, and S could form hydrogen

bonds. Meanwhile, I may promote root development, thereby

affecting the salt tolerance of plants (Yu et al., 2013).

In our study, SbPUB genes were classified into five groups based

on both phylogenetic and structural analyses. Interestingly, motif

analysis was consistent with the phylogenetic tree, and SbPUB genes

with similar structures were found to cluster in the same groups

(Figure 2). We found that most SbPUBs contained some other

domains, such as ARM, Pkinase, WD40, USP, and TPR. We

discovered that most SbPUB genes in Groups 2 and 4 (17 out of

23) contained an ARM repeat at the C-terminus, which could

enable PPIs to regulate physiological activities in cells (Samuel et al.,

2006; Tewari et al., 2010). SbPUB13 in Group 3 contained two

WD40 repeats, which might participate in transcriptional

regulation and signaling (Villamil et al., 2013; Jain and Pandey,

2018). In addition, six SbPUB genes in Group 5 had the USP,

Pkinase, and TRR domains, indicating that these proteins are

involved in signal transduction via phosphorylation and play an

important role in PPIs (Fiedler et al., 1993; Zhou et al., 2021).

Similar findings were made in other crop PUB studies, suggesting

that the functional diversity of PUBs could be associated with the

different motifs(Mengarelli and Zanor, 2021; Wang et al., 2021).

Moreover, SbPUB, AtPUB, and OsPUB proteins were categorized

into five groups based on phylogenetic analysis, which was similar to
FIGURE 4

The cis-acting elements analysis of the putative promoter of 59
SbPUB genes. The distribution pattern of 12 elements of the putative
promoter of the PUB gene family in sorghum, which function was
related to salt stress. The color scale at the bottom represents these
cis-acting elements, especially MYB-related elements, which were
considered to involve in flavonoid biosynthetic genes regulation.
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the study of rice PUB genes (Zeng et al., 2008).We found that the PUB

genes of sorghum and rice were clustered into one subclade,

suggesting that sorghum and rice are more closely related to each

other than to Arabidopsis. In addition, there were 43 orthologous gene

pairs between SbPUBs and OsPUBs, which was far more than that

between SbPUBs and AtPUBs (Figure 3C). These results suggest that

SbPUBs may have similar functions to orthologous OsPUBs, which

will be helpful for further studies in sorghum because more PUB

studies have been conducted in rice (Zeng et al., 2008).
Frontiers in Plant Science 08
Prediction of SbPUB function based on cis-
acting elements and expression analysis

Analysis of cis-acting elements of putative promoters suggested that

the PUB gene family plays an important role in stress-related

mechanisms, hormonal regulation, growth, and development. Previous

studies have revealed that PUB genes could regulate salt tolerance in

plants. For example, overexpression of TaPUB15 in Arabidopsis and rice

increased their salt tolerance, and the PUB gene was considered as a
B C

A

FIGURE 5

The expression analysis of the SbPUB gene family under salt stress. (A)The heatmap of the expression level of SbPUBs in two sorghum cultivars
under different salt stresses. The expression patterns of these 18 SbPUB genes were based on the expression value of the proteomic data, the other
SbPUB genes were not detected. (B) Expression pattern of SbPUB genes under salt stress in the transcriptomics data of the salt-tolerant line M-81E
(M) and salt-sensitive line Roma (R). The FPKM values were obtained from RNA-seq and normalized by log2, and the color code represents the
transformation value of log2(FPKM). Bright green represents low expression and dark red represents high expression. (C) RT-qPCR detection of DEG
expression levels. Moreover, seventeen differentially expressed genes selected from the proteomic data were detected by RT-qPCR to verify the
expression of the U-box gene under salt stress at 0h, 24h, 48h, and 72h.
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positive regulator of salt stress (Li et al., 2021). TaPUB15 transgenic

plants maintained a lower sodium/potassium ratio under salt stress than

wild-type plants, which might be due to the deep root development and

strong branching ability of the transgenic plants. Further, TaPUB1 was

found to be a positive regulator of salt stress and drought stress in wheat,

as well as the positive regulator of Cd2+ stress tolerance (Zhang et al.,

2017a; Wang et al., 2020; Zhang et al., 2021). Our results revealed that

several PUB genes (SbPUB2, SbPUB4, SbPUB26, SbPUB41, SbPUB52,

SbPUB56, SbPUB58) had high expressions under salt stresses in

proteomic and transcriptomics data, which indicated that SbPUBs

might have key functions in responding to salt stress in sorghum. In

this study, we found several elements involved in stress-related processes,

such asMBS, ARE, andMYB. In our previous study, flavonoid biological

pathways were shown to have important physiological functions in the

salt stress of sorghum. The MYB-binding site is an important element

involved in flavonoid biosynthesis (Zhang et al., 2018). Flavonoids are a

large class of polyphenol secondary metabolites, which serve a variety of

functions in plant development and defense, including resistance to

pathogens, insects, and environmental stress(Cominelli et al., 2005;

Falcone Ferreyra et al., 2012; Liu et al., 2021). MYB-recognition

elements could regulate a large number of flavonoid biosynthesis genes

inmany plants and play a crucial role in activating target gene promoters

in vivo (Prouse and Campbell, 2012). Moreover, E3 ligase was found to

play a vital role in regulating flavonoid biosynthesis inArabidopsis, which

provided a basis for exploring ubiquitin and flavonoid in sorghum (Patra

et al., 2013). In this study, we discovered 12 SbPUB genes contained

MYB-related elements, suggesting that these SbPUB genes might

participate in resistance under salt stress and play a major role in

flavonoid biosynthesis (Figure 4). To verify these SbPUB genes, we

also conducted qRT-PCR experiments according the up- and

downregulation of gene expression in the transcriptomic and

proteomic analyses (Figures 5A, B). The strong agreement observed

between the outcomes of qRT-PCR, transcriptome, and proteomic

analyses provides compelling evidence that the SbPUB genes have a

crucial function in sorghum’s response to salt stress.
Conclusion

Environmental factors, such as drought and salinization, have

severely limited agricultural productivity all over the world. Sorghum

is one of themost salt-tolerant crops, and it is important to understand

its salt-tolerance mechanism for crop breeding. In this study, 59 PUB

members were identified in the sorghum genome and were unevenly

distributed on 9 sorghum chromosomes. Based on phylogenetic tree

analysis, SbPUBs were divided into five groups. The conserved motif

and gene structure analyses provided strong evidence to support the

classifications. Cis-acting element analysis indicated that PUB genes

might participate in diverse biological processes, especially in response

to salt stress. Flavonoid biosynthesis was the major pathway of

sorghum salt tolerance in our previous study, while MYB-binding

elements are important regulators of flavonoid biosynthetic genes in

plants. We found 12 SbPUB genes contained the MYB-related

elements, which also exhibited diverse levels of expression in the

proteomic analysis. Further, qRT-PCR revealed that these genes were

associated with salt stress in sorghum. These results indicate that
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SbPUB could be an important regulator in the salt tolerance of

sorghum. Our study determined that MYB elements in several PUB

genes could play a vital role in flavonoid biosynthesis under salt stress,

which will aid the breeding of salt-tolerant sorghum in the future.
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