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Digital whole-community
phenotyping: tracking
morphological and physiological
responses of plant communities
to environmental changes
in the field

Vincent Zieschank1 and Robert R. Junker1,2*

1Evolutionary Ecology of Plants, Department of Biology, Philipps-University Marburg,
Marburg, Germany, 2Department of Environment and Biodiversity, University of Salzburg,
Salzburg, Austria
Plant traits are informative for ecosystem functions and processes and help to

derive general rules and predictions about responses to environmental gradients,

global change and perturbations. Ecological field studies often use ‘low-

throughput’ methods to assess plant phenotypes and integrate species-

specific traits to community-wide indices. In contrast, agricultural greenhouse

or lab-based studies often employ ‘high-throughput phenotyping’ to assess plant

individuals tracking their growth or fertilizer and water demand. In ecological

field studies, remote sensingmakes use of freely movable devices like satellites or

unmanned aerial vehicles (UAVs) which provide large-scale spatial and temporal

data. Adopting such methods for community ecology on a smaller scale may

provide novel insights on the phenotypic properties of plant communities and fill

the gap between traditional field measurements and airborne remote sensing.

However, the trade-off between spatial resolution, temporal resolution and

scope of the respective study requires highly specific setups so that the

measurements fit the scientific question. We introduce small-scale, high-

resolution digital automated phenotyping as a novel source of quantitative trait

data in ecological field studies that provides complementary multi-faceted data

of plant communities. We customized an automated plant phenotyping system

for its mobile application in the field for ‘digital whole-community phenotyping’

(DWCP), capturing the 3-dimensional structure and multispectral information of

plant communities. We demonstrated the potential of DWCP by recording plant

community responses to experimental land-use treatments over two years.

DWCP captured changes in morphological and physiological community

properties in response to mowing and fertilizer treatments and thus reliably

informed about changes in land-use. In contrast, manually measured

community-weighted mean traits and species composition remained largely

unaffected and were not informative about these treatments. DWCP proved to
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be an efficient method for characterizing plant communities, complements

other methods in trait-based ecology, provides indicators of ecosystem states,

and may help to forecast tipping points in plant communities often associated

with irreversible changes in ecosystems.
KEYWORDS

digital phenotyping, grassland, land-use, morphology, physiology, plant community,
PlantEye F500, trait-based ecology
Introduction

Trait-based ecology has emerged as a tool to derive general rules

and predictions about functional changes in communities in

response to environmental gradients, global change components

and other perturbations such as species loss or invasions (Lavorel

and Garnier, 2002; Funk et al., 2017; de Bello et al., 2021).

Quantitative measurements of traits complementing species

inventories thus provide the linkage to ecosystem functions and

processes (Dıáz et al., 2007; Laliberté and Legendre, 2010; Cadotte

et al., 2013). For instance, the distribution and variability of traits in

grassland communities was related to primary productivity (Mason

and de Bello, 2013; Turnbull et al., 2013; Liu et al., 2015), ecosystem

stability (Turnbull et al., 2013), and the diversity of organisms in

higher trophic levels that interact with the plants (Junker et al.,

2015). One major advantage of trait-based assessments of plant

diversity is the transferability and thus generalization of findings to

other plant communities that may be composed of a different set of

species: communities experiencing the same environmental

conditions have been shown to converge in species traits despite

differences in taxonomic composition (Fukami et al., 2005),

indicating that functional traits are of key importance in

community ecology and reveal mechanisms complementary to

t a xonomi c a l i n f o rma t i on i n commun i t y a s s emb l y

(HilleRisLambers et al., 2012; Meiners et al., 2015).

Direct field measurements of plant traits using caliper rules,

scales, office scanners, and handheld spectrometers is the traditional

and maybe most common and direct way of assessing the functional

composition and diversity of local plant communities (Pérez-

Harguindeguy et al., 2016; Kuppler et al., 2017; Junker et al.,

2019; de Bello et al., 2021; Escudero et al., 2021). These

measurements are specific to the location and the phenotyped

species and precisely measure selected traits of individual plants.

As these approaches are associated with a high workload, feasible

sampling schemes often cannot include all species present in a

community (de Bello et al., 2021). In recent years, data bases such as

the Plant Trait Database TRY (Kattge et al., 2020) have been

established to enable future studies that are built on a broader

data foundation or can cover much larger scopes. These data bases

led to unprecedented insights into the ecology and evolution of

plants across taxonomic boundaries (Diaz et al., 2016) and to

numerous macroecological studies revealing plant responses to

large-scale biotic or abiotic gradients (e.g. Kuppler et al., 2020).
02
While theoretically providing individual trait measurements

supplemented by information on local adaptations and

intraspecific variability, in most cases the data extracted from

TRY is used at the level of species mean trait values.

Whereas manual, i.e. ‘low-throughput’, phenotyping methods

dominate ecological field studies, in agricultural research and

applications ‘high-throughput phenotyping’ became standard

(Dhondt et al., 2013; Rosenqvist et al., 2019). A variety of

approaches are available to acquire phenotypic raw data such as

cameras for RGB color recording, multispectral units for reflectance

measuring in the visible, infrared, or near-infrared spectrum, lasers

that measure distance for 3D imaging and thermal sensors, among

others (White et al., 2012; Barbedo, 2019). The application of such

devices is often limited because either individual plants need to be

transported to a stationary scanner (plant-to-sensor) or scanners

are installed in greenhouses or outdoor facilities where they move

over a defined set of plants (sensor-to-plant) (Busemeyer et al.,

2013; Fiorani and Schurr, 2013; Demidchik et al., 2020). Thus, for

an application in field-based ecology plant scanners are required

that are mobile and therefore applicable under field conditions,

independent of a stationary infrastructure.

In ecological field studies, remote sensing makes use of freely

movable devices like satellites or unmanned aerial vehicles (UAVs).

They provide large-scale spatial and temporal data at a resolution

that allows for the classification of land-cover types or the

prediction of different aspects of diversity (Zhu and Woodcock,

2014; Wachendorf et al., 2018; Cavender-Bares et al., 2020; Sun

et al., 2021). Additionally, they are used in ecosystem monitoring to

create habitat maps or capture characteristics of plant communities

(Cruzan et al., 2016; Blackburn et al., 2021). At present there are

many different types of sensors to be used with satellites and UAVs

to record different aspects of plant diversity, cover, and status

(Barbedo, 2019), and the possibilities for three-dimensional

measurements also increased in recent years (Lepczyk et al.,

2021). Adopting such methods for community ecology on a

smaller scale may provide novel insights and a more complete

view on the phenotypic properties of plant communities and may

fill the gap between traditional field measurements and airborne

remote sensing. Newly emerged ground-based phenomics

p l a t f o rm s l i k e ‘Ph e n omob i l e ’ o r ‘F i e l d E x p l o r e r ’

(plantphenomics.org.au) for plant trait phenotyping are most

commonly used by crop scientists to record growth and

physiological traits of major crops and link them to specific
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genotypes (Qiu et al., 2019). While those might also be adaptable for

ecological field studies, the trade-off between spatial resolution,

temporal resolution and scope of the respective study requires

highly specific setups so that the measurements fit the scientific

question (Gehan and Kellogg, 2017; D'Urban Jackson et al., 2020).

We introduce small-scale, high-resolution digital automated

phenotyping of plant communities as a novel source of

quantitative trait data in ecological field studies that provides

complementary multi-faceted data while reducing the workload

compared to classic trait measurements. In this study we used an

automated plant phenotyping system (PlantEye F500, Phenospex,

Heerlen, The Netherlands) to collect high-resolution multispectral

information on plant communities in the field while simultaneously

also capturing the 3-dimensional structure of the vegetation. This

method will be referred to as ‘digital whole-community

phenotyping’ (DWCP) in the following.

We customized a MicroScan device (Phenospex, Heerlen, The

Netherlands) equipped with the scanner PlantEye F500 in such way

that it is fully mobile, can be mounted in the field without

limitations, and runs on a mobile battery. This system generates

3D point clouds complemented with multispectral information, and

allowed us to track short-term responses of plant communities to

experimental land-use changes in a common garden. The common

garden contained grass sods originating from three regions of the

Biodiversity Exploratories, a long-term research platform in

Germany to study the effects of land use on biodiversity and

ecosystem processes (Fischer et al., 2010). In the common garden

in Marburg, we subjected each of the sods to one of four land-use

treatments of differing intensity. We scanned each sod of the

common garden multiple times over two growing seasons (n = 11

sampling events) recording a time-series of morphological and

physiological changes in the plant communities. We extracted a

total of 14 parameters from each scan: nine morphological

parameters derived from the 3D point cloud and five

physiological variables derived from multispectral information.
Frontiers in Plant Science 03
To compare the results of DWCP with classical methods, we

additionally manually measured quantitative vegetative traits of

plant species on all sods. Using random forest analysis and data

from digital and manual phenotyping as well as vegetation analyses,

we classified each sod in each sampling event to its provenance and

its experimental land-use treatment. Our results demonstrate the

potential of automated plant phenotyping systems in assessing

morphological and physiological traits and responses to

environmental factors of whole plant communities in the field.
Methods

Digital whole-community phenotyping

We used the automated plant phenotyping system PlantEye F500

(Phenospex, Heerlen, The Netherlands) to gather multispectral and

structural information about plant communities. The PlantEye is

equipped with an active sensor that projects a laser line with a

wavelength of 940nm vertically onto the vegetation and records the

reflection of the laser and the reflectance in Red, Green, Blue, and

Near-Infrared with an integrated tilted camera (Kjaer and Ottosen,

2015). All 2D height profiles that were captured by moving the

scanner over the plants, driven by an electric motor on a linear

spindle axis, are then batched to generate a 3D point cloud. Each data

point contains information on the 3D position in a coordinate system

(X, Y, Z coordinates) as well as the reflection of red, green, blue, and

near-infrared wavelengths (red = 620-645 nm, green = 530-540 nm,

blue = 460-485 nm, near-infrared = 820-850 nm). Point clouds were

processed with the built-in software HortControl (Phenospex,

Heerlen, The Netherlands) that provides morphological and

physiological parameters (Table 1). The software also visualizes the

3D point clouds allowing for a quick assessment of scans and the

spatial distribution of structural and physiological parameters within

the scans (Figures 1A–D). The PlantEye is independent from light
TABLE 1 Parameters from digital whole-community phenotyping calculated by the software HortControl (for further information see: https://
phenospex.helpdocs.com/plant-parameters/planteye-parameters).

Name Description Functional
importance

Small
values

High
values

Potential
range

Mean
value

95% Cl References

Digital
biomass
[cm³]

standing biomass; height*3D
leaf area

proxy for plant
productivity

low biomass high
biomass

0 - ∞ 31,459,627 30,752,299
-
32,166,955

Quétier et al.
(2007); Guo
(2007)

Height [mm] average plant height of the
community; range from soil to
the average top 10% of plants

proxy for plant
productivity,
nutrient
availability,
competition for
light and growth
strategy

lower
(maximum)
plant height

larger
(maximum)
plant height

0 - ∞ 296.256 289.705 -
302.808

Falster and
Westoby
(2003); Quétier
et al. (2007);
Moles et al.
(2009)

Height max
[mm]

highest scanned point of the
community; range from soil to
highest point of plants

0 - ∞ 538.317 532.661 -
543.973

Leaf area
[cm²]

3D leaf area; digital leaf area
corrected for leaf inclination

proxy for heat
load, water
retention and
gas exchange

small total
leaf area

large total
leaf area

0 – ∞ 107,655.70 106,669.4 -
108,642.0

Stubbs and
Wilson (2004)

(Continued)
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TABLE 1 Continued

Name Description Functional
importance

Small
values

High
values

Potential
range

Mean
value

95% Cl References

Leaf area
index [cm²/
cm²]

leaf area per unit sector size;
(Leaf Area)/(sector size)

related to
photosynthetic
activity,
respiration and
rainfall
interception

community
of low
structural
complexity

community
of high
structural
complexity

0 – ∞ 0.652 0.645 -
0.658

Fang et al.
(2019); Knops
and Reinhart
(2000)

Leaf area
projected
[cm²]

2D leaf area; amount of sector
size covered by leaves

proxy for plant
development,
growth and
competition

sparse plant
foliage

large area
covered by
leaves

0 - sector
size

53,832.12 53,080.02 -
54,584.22

Lati et al.
(2011)

Leaf angle
[°]

average angle of leaves; average
angle of the leaf surfaces to the
perpendicular

proxy for light
capture and
water retention,
indicator for
plants’ strategies
in dealing with
abiotic factors

0° = vertical
leaf

90° =
horizontal
leaf

0 - 90° 32.928 32.703 -
33.153

Craine et al.
(2001); Stubbs
and Wilson
(2004)

Leaf
inclination
[cm²/cm²]

expresses how erected leaves are
in average; (Total Leaf Area)/
(Projected Leaf Area)

value of 1 =
horizontal
leaf

higher
values =
more
vertical leaf

1 – ∞ 1.880 1.868 -
1.891

Light
penetration
depth [mm]

deepest point the laser can
reach through the canopy;
distance between the averaged
bottom 20% and top 10% of
vertical laser depth

measure for
vegetation
density and thus
proxy for
resource
availability and
above-ground
competition

low
vegetation
density

high
vegetation
density

0 – ∞ 192.251 187.447 -
197.055

Wilson and
Tilman (1993);
Quétier et al.
(2007)

NDVI
(Normalized
Digital
Vegetation
Index) [unit-
less]

ratio of reflected red light to
near-infrared light; (NIR –

RED)/(NIR + RED)

proxy for
vegetation type
and productivity,
proxy for growth
parameters like
leaf area index
and biomass

-1 – 0 = dead plants or non-
plant objects, 0.1 – 0.2 = bare
soil, 0.2 – 0.5 = unhealthy/
sparse vegetation, > 0.5 =
healthy/dense vegetation

-1 - 1 0.497 0.493 -
0.501

Myneni and
Williams
(1994); Senay
and Elliott
(2000);
Thenkabail
et al. (2000);
Kaur et al.
(2015)

NPCI
(Normalized
Pigments
Chlorophyll
ratio Index)
[unit-less]

ratio of red and blue channel;
(RED − BLUE)/(RED + BLUE)

associated to the
chlorophyll
content of a
plant and thus
proxy for the
plants’
physiological
state

lower red
reflectance ≙
higher
chlorophyll
content
(0.15-0.25 =
green
vegetation)

higher red
reflectance ≙
lower
chlorophyll
content
(>0.25 =
stressed
vegetation)

-1 - 1 0.152 0.150 -
0.155

Peñuelas et al.
(1994); Bannari
et al. (2007)

PSRI (Plant
Senescence
Reflectance
Index) [unit-
less]

ratio of red & green to near-
infrared channel; (RED −

GREEN)/(NIR)

associated to the
carotenoid/
chlorophyll
content and thus
proxy for leaf
senescence

higher
chlorophyll
content (-0.1
to -0.2 =
green
vegetation)

lower
chlorophyll
content (>
0.2 =
senescent
vegetation)

-1 - 1 0.133 0.130 -
0.137

Merzlyak et al.
(1999); Ren
et al. (2017)

Greenness/
Green leaf
index [unit-
less]

shows the relation of the
reflectance in the green channel
to the red & blue channel;
(2*G-R-B)/(R+G+B)

proxy for
combined effects
of leaf
physiology and
canopy structure

more green
vegetation

less green
vegetation

-1 - 1 0.240 0.237 -
0.243

Keenan et al.
(2014)

Hue [°] the visible color dependent on
the wavelength of light being
reflected; expression of color
taking into account all three
measured colors (RGB) but
independently from saturation
and brightness value

proxy for the
level of
photosynthetic
pigments and
nutrient
concentration in
plant leaves

green vegetation ~120° (0°-
60°=red, 60°-120°=yellow,
120°-180°=green, 180°-240°
=cyan, 240°-300°=blue, 300°-
360°=magenta)

0° - 360° 93.653 92.987 -
94.319

Adams et al.
(1998); Widjaja
Putra and Soni
(2017)
F
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conditions and sufficiently rain- and dustproof for outdoor use. The

software processing the scans corrected the intensity of the reflected

light for the distance between the vegetation and the sensor using the

3D data. In this study, each scan covered an area of 450 mm width

and 300 mm length and 700 mm in height. Each scan had a

resolution of <1 mm/pixel, comprising between 155,947 and

425,210 (mean ± sd = 263,692 ± 44,779.07) data points per scan.

For mobile usage, the PlantEye can be mounted onto a mobile

frame (MicroScan, Phenospex, Heerlen, The Netherlands) that we

customized for use in the field (Figures 2A, B). We replaced the rear

vertical bar with a lightweight carbon tripod (Rollei C6i, RCP

Handels-GmbH & Co. KG, Germany), allowing for a much easier

positioning on uneven ground while also minimizing the impact on

the vegetation. The second vertical bar is replaced by a more robust

and lightweight aluminum square tube. Such a tube also stabilizes

the horizontal bar that contains the linear spindle axis, providing a

better distribution of the weight of the scanner. A solid and

waterproof housing contains the electronic control unit, where

the horizontal speed of the scanner can be adjusted and scans can

be started. An external portable battery was used as outdoor power

supply (Polaroid PS600, Polaroid International B.V., 1013 AP

Amsterdam, The Netherlands). The final re-built frame had a

height of 126.7 cm, a length of 122 cm and a width of 50.7 cm at

the stands (Figure 2A). A start and stop barcode, 3D printed with

customized adjustable brackets to clip them to the square tubes,

indicate the start and the end of the scanning area and also served as

reference points to define the above-ground height (Figure 2A).
Frontiers in Plant Science 05
Plant communities

To test the potential of digital phenotyping in plant and

community ecology, we used plant communities arranged in a

common garden established in the Botanical Garden of the

University of Marburg, Germany. It was established in April to

May 2020 and contains 156 sods. The grass sods originate from the

three long-term research sites of the Biodiversity Exploratories

(DFG Priority Programme 1374) located in the Biosphere Reserve

Schwäbische Alb (ALB) in south-west Germany, the National Park

Hainich (HAI) and its surroundings in the center and the Biosphere

Reserve Schorfheide-Chorin (SCH) in the northeast of Germany

(for further detail about the design see Fischer et al., 2010). We

collected 13 sods from each region, which were selected to best

represent a land-use gradient from all three regions and were then

split into four parts of 50 x 50 cm. Each part was subsequently

randomly assigned to one of four experimental land-use treatments.

Sods that received the same treatment were arranged in one of three

treatment blocks resulting in overall twelve blocks (further details

about the set up can be found in the additional file).

Treatments differed in mowing frequency and application of

fertilizer in a full factorial design: ‘00’ (= mowing once per year),

‘0M’ (= mowing twice per year), ‘F0’ (= mowing once per year and

fertilizing once per year) and ‘FM’ (= mowing twice per year and

fertilizing once per year). Land-use treatments started in mid-July

2020 where all sods were mown and sods assigned to ‘Fertilizer’ and

‘Mowing & Fertilizer’ treatments were fertilized. Mowing was
A B

C D

FIGURE 1

Visualization of the 3D point cloud of a single scan from digital whole-community phenotyping (DWCP) with the built-in software HortControl
(Phenospex, Heerlen, The Netherlands). Each point within the cloud contains information on the position (X, Y, Z coordinates) as well as the
reflection of red (620-645 nm), green (530-540 nm), blue (460-485 nm) and near-infrared (820-850 nm) wavelengths. Based on this information,
RGB color (A), NDVI (B), greenness (C) and hue [°] (D) can be visualized (more options available in HortControl). The distribution of data is shown in
the histograms (A–C) or in the color wheel where hues are arranged in a circle (D). The sod originates from plot AEG 09 from the Exploratory
Schwäbische Alb and the scan has been made in July 2020 (scan event 1, CW 26).
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performed using an electric grass cutter (Cordless Grass Shear

DUM604RFX, Makita Werkzeug GmbH, Ratingen, Germany),

which was used to cut the vegetation to about 2cm in height. The

second mowing of sods assigned to ‘Mowing’ and ‘Mowing &

Fertilizer’ treatments took place at the beginning of September

2020. In 2021, sods assigned to ‘Mowing’ and ‘Mowing & Fertilizer’

treatments were mown at the end of May and the fertilizing of sods

assigned to the respective treatments was done right after. The

second mowing in 2021 of all sods in the common garden took

place in September. Per sod assigned to a fertilizer treatment, we

applied 10.3 g fertilizer granulate (Yara Bela Sulfan, YARA GmbH

& Co. KG, Dülmen, Germany), which corresponds to 99 kg N ha-1

year-1.
Scanning and manual trait measurements

Over the course of 2020 and 2021, we scanned each plant

community in the common garden eleven times (n = 11 scan events;

2020: 1) 23.-24.06, 2) 05.-06.08, 3) 26.-27.08, 4) 02.-03.09, 5) 22.-

23.09, 6) 02.-03.11; 2021: 7) 26.-27.04, 8) 08.-09.06, 9) 07.-08.07, 10)

09.-10.08, 11) 08.-09.09) using the customized PlantEye scanner.

For the scans we used the following software settings in

HortControl: pot height = 0, start barcode Z = 170, stop barcode

Z = 420, stop barcode y = 300, unit length = 300, length offset = 0,

unit width = 450, width offset = -225, height start barcode = 150,

height stop barcode = 400. The start barcode was positioned 15 cm

above ground to minimize shadow casting on the vegetation and to

increase the proportion of the vegetation covered by the plant

scanner. The stop barcode was positioned 40 cm above ground to
Frontiers in Plant Science 06
avoid shadow casting of vegetation on the barcode, which would

lead to detection problems by the plant scanner. Scanning started

five weeks after the common garden was established and was

performed in a randomized order that differed in each of the

scanning events in order to prevent a spatial and temporal bias in

the data. Scan data were complemented with data on the taxonomic

composition of the sods as well as with manual measurements of

plant traits. Therefore, vegetation surveys were conducted in June/

July 2020 and 2021 where all vascular plant species were identified

and their cover was estimated with a resolution of 1%. In 2020 we

recorded trait values for all plant species that covered >5% in a sod,

including plant height [cm], leaf length [cm] and width [cm], leaf

dry weight [g] and specific leaf area [mm2 mg-1] following the

protocol of Junker et al. (Junker and Larue-Kontić, 2018; Junker et

al., 2020). Plant height was measured in the field to the nearest

1 mm using a folding rule. We collected up to five leaves from one to

three individuals per species and sod to determine the respective

leaf area by scanning the leaf using an office scanner (Perfection

2400 Photo scanner, Seiko Epson Corporation, Nagano, Japan).

Leaf area was calculated from the digital leaf scans by dividing the

number of pixels per leaf by the number of pixels of a reference

square centimeter as obtained from the GNU Image Manipulation

Program (GIMP), version 2.10.20 (The GIMP Development Team

2020, retrieved from https://www.gimp.org). After scanning, leaves

were dried for at least two days at 60°C and weighted on a precision

scale (Kern ABS80-4N, KERN & SOHN GmbH, Balingen.

Germany). The specific leaf area (SLA) was then calculated by

dividing leaf area by leaf dry weight. Additionally, total plant

biomass of each grass sod was dried separately after mowing for

at least four days at 60°C, then subsequently weighted (Sartorius L
BA

FIGURE 2

Customized mobile frame allowing the use of the PlantEye plant scanner in the field. (A) Construction plan of the customized plant scanner: A1)
plant scanner, B1) horizontal bar, B2) mounting of the tripod, B3) carbon tripod, B4) length-adjustable legs, B5) vertical bar, B6) rotatable foot, C1)
electric linear spindle axis, C2) slide, C3) motor, D1) motor power connection, D2) housing for electronic control unit, D3) port for computer
connection, D4) start button, D5) speed control, D6) power cable connection, D7) scanner connection cables, E1) adjustable stop barcode bracket,
E2) stop barcode, E3) start barcode, E4) adjustable start barcode bracket. Dimensions of the assembled frame: height = 126.7 cm, length = 122 cm
and a width = 50.7 cm. (B) Photograph of the customized plant scanner for digital whole-community phenotyping in the field.
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610-D, Sartorius AG, Göttingen, Germany) for a direct measure of

dry weight biomass [g].
Statistical analyses

All statistical analyses were conducted in R (R Core Team,

2022). To test the validity of PlantEye parameters, we compared the

digital biomass resulting from digital whole-community

phenotyping with the biomass weighted after removing it from

the sods shortly after the scans.

To test the explanatory power of DWCP, the plant species

composition and the community weighted means (CWM) of

manual trait measurements, we ran multiple classifications using

“random forest”, a machine learning algorithm that assigns samples,

in this case the 156 sods in the common garden, to predefined groups:

provenance (3 Exploratories), land use treatments (4 experimental

land-use treatments), mowing (Y/N) and fertilizer (Y/N) in multiple

iterations and estimates the importance of each parameter to achieve

the best possible classification (Breiman, 2001). We used three sets of

explanatory variables to predict provenance, treatment, mowing and

fertilizing: 1) 14 parameters from DWCP (parameters provided by

HortControl) with scan events as subsets. 2) plant species list with

estimated cover for 2020 and 2021. 3) community weighted mean

(CWM) of leaf length, leaf width, leaf dry mass, leaf area and specific

leaf area, calculated with the R package FD (Laliberté and Legendre,

2010) with species-specific trait values and the species abundances

from 2020 and 2021, respectively. All random forest classifications

were run with the R package randomForest (Liaw and Wiener, 2002)

with mtry = 4 variables randomly sampled at each split of a decision
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tree and ntree = 10,000 trees to grow for all classifications. We used

accuracy values calculated from randomForest confusion matrices

with the R package caret (Kuhn, 2022, version 6.0-86) to quantify

classification performance. With the function ‘importance’ of the R

package randomForest, we extracted variable importance to identify

the top five variables that improved classification (Cutler et al., 2007).

Note that many other PlantEye parameters differed among

treatments as well (Table 2).
Results and discussion

In total we analyzed n = 1679 digital whole-community

phenotyping (DWCP) scans of n = 156 sods containing n = 167

plant species using the customized PlantEye scanner in summer

2020 and 2021. The mean values of the non-invasively measured

community-wide parameters obtained by DWCP seem to give a

valid representation of the actual plant community as indicated by

the highly significant positive relationship between the weighted

plant biomass removed from sods and the digital biomass extracted

from scans (quadratic polynomial regression, p < 2.2e-16, adjusted

R2 = 0.59, see Additional Figure 3), supporting results from scans of

plant individuals (Laxman et al., 2018). The non-linearity of the

relationship in the whole-community scanning approach and the

wider scattering with increasing total biomass can primarily be

explained by two factors. First, the laser is not able to penetrate

foliage, which leads to a higher error for denser vegetation. Second,

digital biomass is calculated using height and 3D leaf area (see

Table 1) and thus also sensitive to large overlap of plants within

a scan.
TABLE 2 ANOVA and t-test results of differences between Exploratories (sod origin), land-use treatments, mowing treatment (Y/N) and fertilizer
treatment (Y/N) for all 14 parameters from digital whole-community phenotyping.

Sod origin Land-use treatment Mowing treatment Fertilizer treatment

F2,152 p-value F3,148 p-value t150 p-value t152 p-value

Digital biomass 21.25 <0.001 221.3 <0.001 23.436 <0.001 -7.8332 <0.001

Height 16.12 <0.001 338.7 <0.001 30.265 <0.001 -3.2082 0.002

Height max 26.16 <0.001 383.4 <0.001 34.098 <0.001 -1.7917 0.07517

Leaf area 10.64 <0.001 6.531 <0.001 3.0027 <0.001 -9.4282 <0.001

Leaf area index 10.63 <0.001 6.524 <0.001 3.0032 <0.001 -9.4243 <0.001

Leaf area projected 12.09 <0.001 7.792 <0.001 2.644 <0.001 -8.8662 <0.001

Leaf angle 10.87 <0.001 11.62 <0.001 3.4463 <0.001 -3.413 <0.001

Leaf inclination 10.38 <0.001 11.19 <0.001 -3.3461 <0.001 3.2513 <0.001

Light penetration depth 17.14 <0.001 228.9 <0.001 25.659 <0.001 -0.80226 0.4237

NDVI 4.174 0.017 228.9 <0.001 6.2647 <0.001 -10.067 <0.001

NPCI 22.41 <0.001 104.5 <0.001 -7.9648 <0.001 10.813 <0.001

PSRI 2.287 0.105 42.18 <0.001 -7.2645 <0.001 9.9185 <0.001

Greenness 4.659 0.011 15.37 <0.001 5.4095 <0.001 9.9185 <0.001

Hue 16.9 <0.001 66.11 <0.001 8.6115 <0.001 -9.0425 <0.001
fr
Bold values indicate significance.
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We used the machine learning algorithm random forest to

assign sods to either sod origin (three regions of the Biodiversity

Exploratories), experimental land-use treatment (four treatments),

mowing treatment (mown once or twice), or fertilizer treatment

(with or without fertilizer addition). Note that the probability of a

correct classification by chance differs between these analyses due to

different numbers of categories. Classifications were performed

based on the 14 parameters representing a mean value of each

parameter across the whole plant community returned by the

software HortControl. These mean values of morphological and

physiological parameters can therefore be seen as an analog to

community weighted means of manually measured traits. For a

comparison of information content about changes in our plant

communities, species composition and community weighted means

(CWMs) of plant species’ traits were also used as explanatory

variables for classification. Since CWMs were calculated from

trait values recorded once in 2020 and species’ abundance of 2020

and 2021, respectively, they are only affected by changes in species

composition and abundance, not by intraspecific trait-variation

across years. While this certainly is a valid approach depending

on the research question, here it also facilitates comparability

between methods since DWCP cannot directly detect intraspecific

changes in response to treatments.

Accuracy of classification of sods to their origin (three regions

of the Biodiversity Exploratories) by DWCP was highest shortly

after the establishment of the common garden but strongly

decreased in the following weeks and was on average lower

throughout the rest of 2020 and the whole season of 2021
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(Figure 3A). In contrast, species composition was strongly

indicative for sod origin, resulting in a high classification accuracy

in both 2020 and 2021 (Figure 3B). A classification based on CWMs

of plant species’ traits in the sods was also successful in both years

but with a reduced accuracy in 2021 (Figure 3B). The three regions

of the Biodiversity Exploratories differ in plant species composition

(Socher et al., 2013), prevalent soil types, climatic conditions and

land-use history but cover a similar range of land-use intensities

(Fischer et al., 2010; Klaus et al., 2013; Gilhaus et al., 2017). The fast

decrease in accuracy of classification based on DWCP indicates that

plant communities show fast responses in morphological and

physiological properties to land-use treatments (see below)

independent of land-use history, soil type and species

composition. We could also observe changes in the relative

abundance of plant species within communities, which resulted in

temporal variability of CWMs within plots. In contrast, changes in

plant species composition usually emerge only a few years after

land-use changes (Read et al., 2018; Komatsu et al., 2019) and thus

remained largely stable in our experiment. Accordingly, CWMs of

species-specific traits reflect the species composition and thus also

slowly responded to land-use changes. The relatively high accuracy

in classification by DWCP shortly after the establishment of the

common garden may reflect the climatic and edaphic differences in

the three regions of origin that may result in differences in

vegetation height, digital biomass, hue and NDVI (Figures 4A–E).

In fact, it has been shown that climate and edaphic conditions affect

plant productivity (Burke et al., 1998; Lobell et al., 2002; Hsu et al.,

2012). Likewise, remote sensing studies demonstrated changes in
BA

FIGURE 3

(A) Accuracy of random forest classifications (ntree = 10,000; mtry = 4) of plant communities (= sods) to sod origin (circle, 3 Exploratories),
treatments (square, 4 experimental land-use treatments*), mowing (triangle, Y/N) and fertilizer (rhombus, Y/N) over the course of 2020 and 2021
with data from digital whole-community phenotyping. Time points of common garden establishment and mowing and fertilizer application events
are indicated along the x-axis, treatments affected by these events are indicated below illustrations. (B) Accuracy of random forest classifications
with data from vegetation analysis and community weighted means (CWMs) of traits. As vegetation analyses have been performed only once per
year, only changes in accuracy between two years are displayed. *’00’= mowing once per year; ‘0M’= mowing twice per year; ‘F0’= mowing once
per year and fertilizing once per year; ‘FM’= mowing twice per year and fertilizing once per year.
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NDVI (Tucker and Sellers, 1986; Paruelo et al., 1997) and hue

(Dreesen et al., 2013) based on these factors. Additionally, the high

accuracy of classification to sod origin based on DWCP may also be

explained by the different arrival times of sods at the common

garden. Sods from the three regions were transported to the

common garden between April and May 2020 and thus the sods

from different regions recovered for a different period of time (11

weeks for sods from Schwäbische Alb, 8 weeks for the sods from

Hainich, 5 weeks for the sods from Schorfheide-Chorin) from

transportation prior to the first scan, which may have resulted in

differences in vegetation parameters as well.

Accuracies of classifications of sods to the four land-use

treatments right after the establishment of the common garden
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were low for DWCP as well as species composition and CWMs of

traits since the land-use treatments had not yet been conducted

(Figures 3A, B). High peaks in accuracy directly following land-use

treatments reveal a clear signal of these treatments detected by

DWCP. By the end of the second year the accuracy of classification

of sods to the land-use treatments by DWCP parameters has

increased considerably, also in scans not directly following the

land-use treatments (Figure 3A). As stated above, species

composition of plant communities can be resistant to land-use

change for some years (Read et al., 2018; Komatsu et al., 2019),

which is also reflected in the still low, though slightly higher,

classification accuracy of treatments from species composition

and trait CWMs in 2021. (Figure 3B). In contrast to DWCP that
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FIGURE 4

Differences between sod origin [(A–E) 3 Exploratories: ALB = Schwäbische Alb, HAI = Hainich, SCH = Schorfheide-Chorin], land-use treatments
[(F–J) 0 = mowing once per year, 0M = mowing twice per year, F0 = mowing once and fertilizing once per year, FM = mowing twice and fertilizing
once per year], mowing [(K–O) Y/N] and fertilizer [(P–T) Y/N] in five variables with the highest variable importance for classification in a descending
order. For each dependent variable, results of the scan event that received the highest accuracy are shown (scan events 1, 8, 8 and 9, respectively).
Boxplots display the distribution of the variables and also show the median, lower and upper quartiles, and outliers. The violin plot outlines depict
density distribution of data. All supporting ANOVAs (A–J) and t-tests (K–T) were highly significant (for detailed ANOVA and t-test results see
Table 2).
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allows assessments in high frequencies, vegetation analysis was

performed only once per year and trait measurements only once

per species. Thus, differences in classification accuracy may also be

attributed to differences in the temporal resolution of data

collection revealing a clear advantage of DWCP compared to

classical methods. In addition, DWCP measures various

morphological and physiological parameters, thus providing a

multifaceted view on plant communities that are indicative for

different land-use treatments (Figure 4). In remote sensing studies it

has been shown that multiple indices outperform single indices in

assessing the properties of plant communities (Filella et al., 1995;

Hollberg and Schellberg, 2017), which is confirmed by our results.

Land-use treatments mostly affected vegetation height, light

penetration depth and digital biomass (Figures 4F–I), reflecting

the strong changes in standing biomass by mowing or fertilizer

addition that promotes plant growth and above-ground biomass

(Quétier et al., 2007). Note that the parameter ‘maximum height’ is

associated with some limitations as it is limited by the maximum

height the scanner is able to capture, but discriminates mown from

unmown plots with a high accuracy. NPCI as a proxy for the

proportion of total photosynthetic pigments to chlorophyll

(Peñuelas et al., 1994; Bannari et al., 2007; Hollberg and

Schellberg, 2017) was also indicative for land-use treatments

(Figure 4J). Higher nitrogen availability after fertilizer addition

leads to higher chlorophyll concentrations in leaves and

consequently to lower NPCI values (Kantety et al., 1996;

Schlemmer et al., 2013). In contrast, mowing exposes previously

shaded plant parts with lower chlorophyll concentrations (Madison,

1962; Wang et al., 2018) and thus leads to higher NPCI

values (Figure 4J).

Classification of sods separately to mowing and fertilizer

treatments shortly after the establishment of the common garden

and prior to the application of the treatments was, as expected, not

successful for DWCP, species composition, and CWMs of plant

traits (Figures 3A, B). In both years, the accuracy of classification

with DWCP peaked shortly after the respective treatment was

conducted, except for the DWCP measurements after the first

mowing treatment in 2020 where all sods have been mown.

Mowing clearly resulted in structural differences in the plant

communities like vegetation height, digital biomass and light

penetration depth (Figures 4K–N). Strong differences in hue

between mown and unmown sods (Figure 4O) can be explained

by the exposure of previously shaded plant parts with lower

chlorophyll concentrations (Madison, 1962; Guertal and Evans,

2006; Wang et al., 2018) and by increased leaf senescence

subsequently leading to chlorophyll loss at the cut surface

(Howieson, 2001). Therefore, mown sods shifted from green to

more yellow colors (Figure 4O). In fact, all 14 parameters differed

significantly between mown and unmown plant communities (see

Table 2). Fertilizer treatment was mainly indicated by physiological

parameters (Figures 4P–T). Fertilizer leads to a higher nitrogen and

chlorophyll content in leaves which is measured by both NPCI and

PSRI (España-Boquera et al., 2006; Bannari et al., 2007; Dong et al.,

2012). NPCI is negatively related to chlorophyll content and thus

unfertilized sods had higher values than fertilized sods (Figure 4P).

PSRI increases with degree of senescence due to the resulting loss of
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chlorophyll and accumulation of carotenoids in leaves (Merzlyak

et al., 1999). N fertilizer reduces leaf senescence and promotes

higher chlorophyll levels (Wolfe et al., 1988; Dong et al., 2012), both

leading to lower PSRI values in fertilized plants (Figure 4Q). Hue

was slightly higher in fertilized sods (Figure 4S), indicating overall

stronger, more intense green color of plants after the application of

fertilizer, most likely caused by a higher chlorophyll concentration

(Adams et al., 1998; Widjaja Putra and Soni, 2017). The higher 2D

and 3D leaf area of fertilized sods (Figures 4R–T) may be caused by

an increase in vegetation density as well as cover density (Quétier

et al., 2007) and increased leaf areas (Evans, 1983) after fertilizer

treatments. Indeed, all parameters but maximum height and light

penetration depth were significantly different in fertilized compared

to unfertilized plots (see Table 2). In the first season (2020) after the

establishment of the common garden, classification of mowing

treatments was more accurate than classification of fertilizer

treatments. In the second season (2021), accuracies for both

treatments were similarly high (Figure 3A), suggesting that the

effects of fertilizer treatments that accumulate in plant communities

are permanently visible only after a second application.

Classification accuracies of sods to mowing or fertilizer treatment

based on species composition and CWMs of traits increased slightly

from 2020 to 2021 but remained lower than classification by DWCP

(Figures 3A, B). As mentioned above, plant community

composition can be resilient to land-use changes for a period of

time (Read et al., 2018; Komatsu et al., 2019) albeit clear differences

in species composition due to long-term differences in land-use

(Socher et al., 2013). Therefore, short-term responses in vegetation

properties as detected by DWCP and measurable in a high temporal

resolution may be an indicator for future shifts in species

composition and ecosystem properties.
Future directions

Our data show that digital whole-community phenotyping

(DWCP) detects plant community responses to changes in abiotic

parameters much earlier than these changes become evident in

changes in plant traits, species composition or abundance. Plant

traits have been shown to be valuable indicators for ecosystem states

(Quétier et al., 2007; Vandewalle et al., 2010) and for tipping points

often associated with irreversible changes in ecosystems (Dakos

et al., 2019). Likewise, remote sensing data have been utilized to

identify grassland land-use intensity focusing on spectral

information of pixels (Gómez Giménez et al., 2017). DWCP may

bridge the gap between trait measurements in the field and remote

sensing and provides a fast and precise method to infer land-use

intensity from a combination of morphological and physiological

data. Furthermore, the ability to detect community-wide responses

to changes in land-use intensity in advance to alterations of species

composition and irreversible changes in ecosystems may allow

sufficient time to take countermeasures to conserve grasslands.

Future software developments may further increase the

potential of DWCP in quantifying community or plant species

traits and also as proxies for plant species diversity in communities.

The software HortControl, designed to analyze the scans of plant
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individuals, integrates a whole community and returns community

weighted means of the parameters listed in Table 1. Using raw data

from digital phenotyping devices, machine learning algorithms

succeeded in the segmentation of plant individuals, meaning that

morphological structures are recognized in point clouds

(Ghahremani et al., 2021; Turgut et al., 2022). In dense grassland

plots, this task may be more challenging as individual plants may

overlap with other plants and plant parts are not that well separated

as in scans of individual plants. Nonetheless, the seven-dimensional

raw data (x, y, z position of each point in the point cloud and the

red, green, blue, and near-infrared channel) represent a playground

for future developments for their analyses and provide the potential

for deeper insights into the properties of plant communities.
Conclusion

Digital whole-community phenotyping turned out to be an

efficient method to measure morphological and physiological

characteristics of plant communities and thus complements other

trait-based approaches and may bridge the gap to remote sensing.

Our data suggest that community-wide responses to abiotic

parameters are independent on plant species composition and

diversity and therefore DWCP represents the next level of

generalization attributed to trait-based approaches. Future scans

in other ecosystems are, however, required for an assessment of the

similarities and differences in plant community responses to land-

use changes or other abiotic influences. We conclude that bringing

digital plant phenotyping from the lab or greenhouse into the field

will reveal detailed insights into the morphological, physiological

and functional responses of plant communities in a relevant

ecological context.
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