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“Canopy fingerprints” for
characterizing three-
dimensional point cloud
data of soybean canopies

Therin J. Young1†, Talukder Z. Jubery2†, Clayton N. Carley3,
Matthew Carroll3, Soumik Sarkar1,2, Asheesh K. Singh3,
Arti Singh3* and Baskar Ganapathysubramanian1,2*

1Department of Mechanical Engineering, Iowa State University, Ames, IA, United States, 2Translational
AI Center, Iowa State University, Ames, IA, United States, 3Department of Agronomy, Iowa State
University, Ames, IA, United States
Advances in imaging hardware allow high throughput capture of the detailed

three-dimensional (3D) structure of plant canopies. The point cloud data is

typically post-processed to extract coarse-scale geometric features (like volume,

surface area, height, etc.) for downstream analysis. We extend feature extraction

from 3D point cloud data to various additional features, which we denote as

‘canopy fingerprints’. This is motivated by the successful application of the

fingerprint concept for molecular fingerprints in chemistry applications and

acoustic fingerprints in sound engineering applications. We developed an end-

to-end pipeline to generate canopy fingerprints of a three-dimensional point

cloud of soybean [Glycine max (L.) Merr.] canopies grown in hill plots captured by

a terrestrial laser scanner (TLS). The pipeline includes noise removal, registration,

and plot extraction, followed by the canopy fingerprint generation. The canopy

fingerprints are generated by splitting the data into multiple sub-canopy scale

components and extracting sub-canopy scale geometric features. The

generated canopy fingerprints are interpretable and can assist in identifying

patterns in a database of canopies, querying similar canopies, or identifying

canopies with a certain shape. The framework can be extended to other

modalities (for instance, hyperspectral point clouds) and tuned to find the

most informative fingerprint representation for downstream tasks. These

canopy fingerprints can aid in the utilization of canopy traits at previously

unutilized scales, and therefore have applications in plant breeding and

resilient crop production.
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1 Introduction

Soybean [Glycine max (L.) Merr.] canopy characteristics

indicate crop growth, development, and health among other

characteristics. Canopy traits have traditionally focused on 2-

dimensional (2D) features, which is useful in certain instances,

for example, canopy coverage (Purcell, 2000), which has frequently

been collected with drone high throughput phenotyping (Guo et al.,

2021). With the advent of high-throughput crop and plant

phenotyping (Araus and Cairns, 2014; Yang et al., 2020; Guo

et al., 2021; Jubery et al., 2021; Singh A. K. et al, 2021; Singh D.

P. et al., 2021), plant scientists have been able to conduct large scale

and time-series investigations on canopy coverage. Additionally,

researchers have shown automated or semi-automated extraction of

canopy traits; for example, canopy features, including height, shape,

color, and texture, can be used for plant stress and disease

assessment, estimating total biomass, leaf chlorophyll, and leaf

nitrogen (Shiraiwa and Sinclair, 1993; Hunt et al., 2005; Pydipati

et al, 2006; Jubery et al., 2016; Bai et al., 2018; Parmley et al., 2019;

Parmley et al., 2019). Canopy morphology features, such as shape

and size, impact light interception ability, which directly factors into

the potential yield equation (Metz et al, 1984; Koester et al., 2014).

Canopy characteristics, including height, shape, size, and color, can

vary among developmental stages, genotypes, and environments

(Virdi et al., 2021). Quantifying the canopy plasticity of a genotype

due to changing environmental conditions and variability or

similarity among genotypes is valuable for plant breeding

applications (Sadras and Slafer, 2012). However, a major hurdle

towards effective and full utilization of canopy features is the

relatively slow pace of advancement of three-dimensional (3D)

canopy features, which provide a “real-world” set of information.

Historically, digital cameras, hyperspectral cameras, and LIDAR

have been used to take images and create point clouds of plants

(Walter et al., 2019; Herrero-Huerta et al., 2020; Chiozza et al.,

2021a; Chang et al., 2022) which are then used to characterize plant

traits, leading to a composite plant canopy. Often, methods such as

structure from motion or tomographic reconstruction methods are

needed to render the 3D point clouds for these traits (Vandenberghe

et al, 2018; Storey, 2020). Widely utilized characterization

approaches are based on hand-crafted geometric measures, such

as plant height, length, breadth, height, area, and volume. Although

these geometric features are simple to interpret, they often do not

comprehensively represent the spatial variability, for instance,

between sample heights and the intricacy of the canopies. Several

studies used latent feature representation methods, such as Principal

component analysis (PCA) and Neural Network (NN), to

characterize the canopy (Gage et al., 2019; Ubbens et al., 2020).

Although these features can be used to capture the inherent

complexity of the canopies, they are challenging to comprehend

since they are difficult to relate to real geometry with low

interpretability. There is interest in developing more detailed yet

interpretable phenotypic traits for characterizing the crop canopy.

Interpretable features are crucial to develop field-testable hypotheses

for plant scientists. Most interpretable approaches concentrate on

composite characteristics and do not account for individual trait
Frontiers in Plant Science 02
variations. An example approach that offers a middle ground

between these two extremes is the elliptical Fourier transformation

utilized to describe the complicated geometry of canopy structures

(Jubery et al., 2016). However, the use of 3D point clouds can be

more exhaustive and informative, motivating researchers to develop

holistic phenotyping pipelines (end to end) as well as explore

applications of the usage of information from these data. For

example, 3D canopy generation has been successfully shown in

wheat, Triticum aestivum (Paulus et al., 2013; Paulus et al., 2014),

rice, Oryza sativa (Burgess et al., 2017; Zhu et al., 2018), and other

crops (Vandenberghe et al, 2018). These are exciting developments;

however, there is still information lacunae on the creation of

informative multiscale traits from 3D point cloud data. In this

context, non-agricultural disciplines have reported a concept of

fingerprinting using point cloud data (Koutsoukas et al., 2014;

Spannaus et al., 2021; Wang et al., 2021), but this is lacking in

crop production and broader agriculture.

Fingerprinting is a technique for the multiscale characterization of

an object by computing a set of unique local characteristics or patterns.

Fingerprinting successfully generates unique representations for

complex objects in chemistry, geometry, and acoustics (Cano et al.,

2005; Capecchi et al, 2020). It was successfully used for the retrieval,

recognition, and matching tasks within large molecular and 3D shape

databases (Fontaine et al., 2007). Fingerprinting facilitates the

representation of a complicated, memory-intensive 3D point cloud

as a hierarchically computed, low-dimensional vector. This vector

captures both the geometric and topological characteristics of 3D

shapes. Computational approaches to computing fingerprinting for

3D objects are broadly based on spectral and non-spectral methods.

Spectral approaches utilize the eigenvectors and eigenvalues, referred

to as the spectrum, of the Laplace-Beltrami (LB) operator applied to

3D shapes (Reuter et al., 2005). The spectrum is independent of the

object’s representation, including the parameterization method and

spatial position. Other techniques were developed from LB, for

example, Shape-DNA and Global Point Signature (Wu et al, 2022).

Probabilistic fingerprinting (Mitra et al., 2006) is a non-spectral

fingerprinting technique. It is suitable for determining partial

matching between 3D objects. Here, the objects were separated into

overlapping patches, unique descriptors were generated for each

patch, the descriptors were hashed, and a random subset of the

hashed descriptors with a predetermined vector size was chosen as

the probabilistic fingerprint. Similar min-hashing techniques (random

subset selections) were used to get structural similarity in larger data

based on chemistry (Probst, 2018). Hashing aids in the compression of

the fingerprinting representation, but this cannot be decoded and is

less interpretable. There are application examples of the fingerprinting

concept; for example, a phenotypic fingerprint of a soybean canopy

was proposed to represent the temporal variation of coarse-scale

geometric features, including canopy height and plant length (Zhu

et al., 2020b), and it was employed to capture temporal dynamics,

identify genotypes with comparable growth signatures, etc. Further,

canopy fingerprints enabled large-scale evaluation of the

environmental constraints and disturbances that shape the 3D

structure of forest canopies (Jucker, 2022). However, thus far, there

is no work to define and develop crop canopy fingerprints capturing
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multi-scale geometric features that could be evaluated and applied in

the future in crop modeling, and genomic prediction (Jarquin et al,

2016; Shook et al, 2021a; Shook et al., 2021b), or breeding decisions.

Fingerprints are distinctly unique from traditional canopy architecture

as they encompass the entire global canopy, while architecture traits

are a composite of limited individual traits assessed together.

The major contribution of this work is to develop an end-to-end

non-spectral interpretable fingerprint generation pipeline for 3D

point cloud data of field-grown row crops (Figure 1). The pipeline

includes point cloud noise removal, registration, plot extraction,

and fingerprint generation. We illustrate this approach using a

large-scale field experiment through a diversity panel of soybeans.

Specifically, we report the construction of canopy fingerprints in

soybean using geometric and topological features of the 3D point

cloud obtained by a Terrestrial laser scanner (TLS). This is

accomplished with an end-to-end pipeline to generate canopy

fingerprints of a three-dimensional point cloud of soybean, which

is simple to use for feature extraction and utilization in a myriad of

applications, including modeling, genomic prediction, ideotype

breeding, and cultivar development. For example, the

development of unique canopy fingerprints could enable faster

and more efficient screening of genetic material for identifying

canopy relationships with yield traits (Liu et al, 2016), biotic stress

traits such as disease and insects (Pangga et al, 2011), how various

canopy levels impact planting density, light interception, and

photosynthesis (Feng et al., 2016), enable novel meta-GWAS

(Shook et al., 2021a) or improve how crop modeling could

predict the ideal canopy fingerprint (Rötter et al., 2015), or

fingerprint ideotype, which could then be screened across core

collections (Glaszmann et al., 2010) to narrow the pool of

experimental genotypes in silico prior to in vivo evaluation.
2 Materials and methods

2.1 Laser scanner

The TLS used in this study was Trimble TX5 (Trimble Inc.,

Sunnyvale, CA, USA) (Figure 1A). It is a small and light device

(240 mm x 200 mm x 100 mm in size and 5 kg in weight) that can
Frontiers in Plant Science 03
perform measurements at speeds of 1 million points per second.

The scanner collects data at a high angular resolution of 0.011

degrees, corresponding to a point spacing of 2 mm at a 10 m

scanning range. The scanner emits a 3mm diameter and 905 nm

wavelength laser beam and measures the distance between the

scanner and the target using the phase-shift principle (Amann

et al., 2001). The emitted laser beam is modulated at several

frequencies, and the phase shift of all the returned modulations is

assessed to increase the accuracy of the distance measurements

while storing the intensity of the returned beam. The scanner covers

a 360-degree x 300-degree field of view: 360 degrees on the vertical

axis is achieved by rotating the scanner head, and a rotating mirror

achieves 300 degrees on the horizontal axis. The scanner allows the

acquisition of point clouds of 7.1 up to 710.7 million points (MP).

The number of points corresponds to the resolution of the

measurement. Additionally, the scanner has a built-in camera to

capture RGB color values (up to 70 megapixels) and maps them to

the corresponding point clouds.
2.2 Location, plant materials, and
data collection

The experiment was done in a field frequently used for

evaluating soybean iron deficiency chlorosis at Iowa State

University’s Agricultural Engineering/Agronomy Research Farm,

IA, USA, at a latitude of 42.010 and a longitude of -93.735. Four

hundred sixty-four soybean cultivars were included in this study.

These accessions come from 35 countries and have crop maturities

ranging from MG 0 to IV (Mourtzinis and Conley, 2017), along

with variable seed weights and stem termination types. In May

2018, the cultivars were hand-planted in hill plots, three seeds per

hill with 0.76 m spacing between each hill. Each plot consisted of a

single hill replicated three times in the field, with each replication

blocked together. No plants were thinned. Preparing a noise-free

field is crucial for achieving accurate plant data. To minimize any

interference from weeds, we conducted regular weeding at intervals

throughout our study. Laser scanning was performed on all plots on

the 9th and 10th of August. These scans were conducted 71 and 72

days after planting, and all plants had reached at least the
B CA

FIGURE 1

(A) Scanning platform: the scanner was mounted on a tripod in an inverted position with an extended bar and counterweight. (B) Placement of
colored reference markers along the blocks. (C) Schematic of the scanning positions, block size, and canopy count per block.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1141153
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Young et al. 10.3389/fpls.2023.1141153
reproductive R3 stage (Fehr et al., 1971) and were entirely opaque

from the side, with no leaves visible from the opposite side.

The approximate size of the scanned field was 0.144 hectares

(0.355 acres). During scanning, the field was divided into twenty-

five 7.6 m x 7.6 m blocks, each containing 100 plots. The scanner

was mounted on an 8 kg heavy-duty elevated tripod (Johnson Level,

USA) at 2.1 m. For this height, the scanner can see the ground

around the base of the farthest canopy within a block. This resulted

in the typical scanner to ground distances between 2.1 to 11 m

within the block. The device’s scanning resolution was set at 0.5

(angular resolution 0.016 degree), and the expected point distance

was 0.6 mm at 2.1 m and 3.1 mm at 11 m from the scanner.

To compensate for the scanner’s field of view restriction of 150

degrees relative to the nadir, or lowest point under the observation

lens, the scanner was mounted upside down using a 1.2 m-long bar,

as illustrated in Figure 1A. This configuration allowed us to scan plots

close to the tripod and position the scanner at the edge of each block.

Scanning data was captured from four corners for each of the blocks:

southwest (SW), southeast (SE), northeast (NE), and northwest

(NW). The horizontal rotation limit of the laser scanner was set to

180 degrees, allowing two blocks to be scanned at once.

Before performing scans, Styrofoam spherical targets with a

diameter of 0.127 m were placed within each block as reference

markers to aid point cloud registration (Figure 1B), alignment, and

plot identification. The spheres were painted yellow or red and

mounted on 1.52 m-tall wooden dowels, which are 0.5 m taller than

the expected maximum plant height. The dowels were manually

pushed into the soil about 0.15 m deep. Each plot contained six

reference markers. A white reference marker was placed at each

corner of the block. The position of the reference markers was

consistent across all scanned blocks.

Field experiments showed wind speeds to be lowest during the

morning hours up until the early afternoon hours. When wind

speeds exceeded 14.5 km h-1, canopy movement exceeded the

uncertainty acceptable for trait measurement. As a result,

scanning took place between 9 a.m. and 2 p.m., or when wind

speeds were 14.5 km h-1 or lower, to ensure the point cloud’s quality

was not compromised. While the optimal lighting condition for

scanning is at noon, when sunlight is evenly distributed across the

scanning area, field experiments demonstrated that overcast

lighting also resulted in high-quality point cloud data. We
Frontiers in Plant Science 04
avoided operating the scanner in the early mornings or late

afternoons when direct or bright sunlight reflected from plant

materials would cause laser signal saturation, resulting in

erroneous points synonymous with glare in 2D photography.

Validation data consisting of plant height and canopy area were

collected on August 8th. Plant height was recorded as the distance

between the soil line at the base of the stem and the topmost leaf.

The canopy area was defined as the visible area of the canopy from

the nadir described in detail below.

On each plot, plant height was measured manually with a meter

stick. The canopy area was measured on a subset of the plots as

follows: First, a digital camera (Zenmuse X5 camera with a lens focal

length of 45 mm)) mounted on a drone (Matrice 600 Pro) captured

RGB images of the plots flown at 30mwith 80% overlap and stitched

together using Pix 4-D stitching software. We used an in-house

Python script to extract individual plots from the stitched

orthomosaic image, using the geolocation data obtained from the

ground control points (GCP) and the RTK GPS mounted on the

UAV. Next, we converted the images from RGB to the HSV color

space, and the canopy was separated from the ground by applying a

threshold to the Hue (H) color channel. We experimented with

different threshold values for the Hue channel and found that the

hue value worked best for our case. The canopy area was then

calculated by determining the total number of non-zero (canopy)

pixels and converting this value to m2. To obtain the conversion

factor from pixels to m2, we measured a predefined marker in

the images.
2.3 Point cloud processing pipeline

The pipeline was built using Python 3.7.3 and various other

programs and packages, including Autodesk Recap 4.2.2.15, Cloud

Compare 2.12.4 (Girardeau-Montaut n.d.), Open3D 0.11.2 (Zhou et

al., 2018), and MATLAB 2019a. MATLAB and Cloud Compare

were used via the command line interface and incorporated into the

Python script via the Python subprocess library. The specific tasks

carried out by these packages are depicted in Figure 2. The point

cloud data was converted from FLS (Faro) to PCD (Point Cloud

Library) format using Autodesk Recap Pro and Cloud Compare.

Then, point cloud processing and trait extraction were performed
FIGURE 2

Data Processing Pipeline: Several applications were utilized in the pipeline. Autodesk recap pro was used to convert a scanner-vendor-specific file
format to a generic one. CloudCompare and Open3D were employed for noise removal, voxelization, registration, and segmentation.
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using Open3D, Cloud Compare, and MATLAB. This included

cropping, voxelization, registration, noise removal, segmentation,

and surface mesh reconstruction.

2.3.1 Point cloud file format conversion
The Trimble TX5 saves point cloud data in the FLS format,

which is incompatible with the subsequent point cloud processing

software. To ensure compatibility, the point cloud data format was

converted from FLS to E57 using the Autodesk Recap Pro software.

The E57 file format is a compact, vendor-independent format for

storing point clouds, images, and metadata generated by 3D

imaging systems such as laser scanners. Additionally, the E57

format retains the RGB component of the point cloud data.

Finally, using Cloud Compare, the E57 files were converted to the

PCD file format, which includes the Euclidean x, y, and z

coordinates of each point and the RGB color value associated

with each point.

2.3.2 Region of interest cropping
From the converted point cloud data, the region of interest, a

block of the field, from each scan was automatically cropped out

using the white-colored reference markers placed at the block’s four

corners. The markers were identified by separating points whose

normalized R, G, and B color values are close to 1 and have a z

coordinate (vertical direction, opposite of the gravity) value greater

than 1 m. The z-value constraint was used to eliminate other white

objects, such as orange and white plot stake identifiers. Then, the

four white markers were identified as distinct objects using the

connected components algorithm. Finally, the block was cropped

out using the four markers’ mean x and y coordinates (Figure 3A).

2.3.3 Homogenization
Due to the variable distances between the scanner and the plots,

the point cloud density for a single plot captured from four different

corners/perspectives varied (Figure 3B). This disparity can cause

problems in mesh generation and skeletonization (Labussière et al.,

2020; Xia et al., 2020). To reduce the disparity in point density, we

voxelized the point clouds. The density of a point cloud is

homogenized via uniform subsampling or voxel downsampling.

We chose the latter method because it is more rigorous in ensuring

uniform point distances and is invariant to the distribution of

points within the sampling distance. It downsamples a point cloud

uniformly using a regular voxel grid of 5 mm resolution. Briefly,

voxels are used to group points, and each voxel generates an exact

one point by averaging all points within an occupied voxel. Each

point contains Euclidean x, y, and z coordinates and R, G, and

B values.

2.3.4 Registration
Each block’s four voxelized point clouds were co-registered and

merged to form a single point cloud (Figure 3). The registration was

carried out using the Cloudcompare ‘Align’ tool. We interactively

identified a pair of color spheres in the point clouds, and then based

on the center of the selected color spheres, the point clouds were

aligned by rigid body transformation, ensuring the average root
Frontiers in Plant Science 05
mean squared values of the distances between the paired points

after registration is less than 0.01 m. When the preceding procedure

failed to produce satisfactory results, we used the iterative closest

point (ICP) algorithm to achieve fine registration. The tool can

register up to two-point clouds in a single registration. As a result,

three registrations were necessary to merge the four perspectives

into a single cloud. The final registered point cloud contained

duplicate points, and their density was inconsistent. Therefore, it

was voxel-downsampled to restore the uniform point density in the

registered point cloud.

2.3.5 Noise removal
Due to the so-called edge effect, in which a laser beam is

partially intercepted at an object’s edge, and the remaining beam

travels further to collide with other objects or passes through the

canopy, phase-shift lidar instruments, such as the Trimble TX5, are

more prone to generate noisy spurious points via range averaging.

Additionally, poor co-registration of point clouds and wind-driven

movement of the plants can introduce noisy points.

A statistical-outlier-removal algorithm was used to remove

noise in the registered point cloud (Figure 3C). The algorithm

begins by calculating the average distance between each point and

its (k) closest neighbors. Then it discards points whose average

distance exceeds a predefined threshold, µ+as. µ and s denote the

mean and standard deviation of the average distances, respectively,

and a is a parameter that can be tuned. The smaller the value of a,
the more aggressive the point removal. By monitoring the deviation

of a trait value (canopy height) for various combinations, the

number of nearest neighbors, k and a, were selected.

2.3.6 Plot segmentation and ground .removal
The visible ground points between the plots were used to segment

each plot and remove the ground. A plane (z = f (x, y)) was fitted to the

registered point cloud, and the points above the fitted plane were

retained (Figures 3). The plane passes through the middle of each plot,

and the points above the plane comprise the top portion of the

canopies. Each canopy top was labeled using the connected

component algorithm, and each component’s mean x and y

coordinate was considered the plot’s approximate center. The

surrounding points within a square band of width 0.1 m and inner

length 0.1 m are the faithful ground points for each plot. Finally, a

plane was fitted through the ground points, and the points above the

plane were considered the canopy.
2.4 Trait extraction

Height, volume, and surface area were extracted from the

segmented canopy point clouds (Figure 3). The canopy height

was determined by subtracting the minimum z-value in the

canopy points from the mean z-value of the top 3% of canopy

points. The choice of using the top 3% was based on a heuristic

approach, as it yielded the closest agreement with the ground truth

values (See Supplemental Material (S1)). To calculate volume and

surface area, canopy points were bound into a tight ‘watertight’
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triangular mesh using MATLAB’s trisurf algorithm, and the volume

and surface area were calculated using Python’s trimesh library.

Traits of the projected 2D outline of the point clouds were also

extracted. First, the 3d point cloud of the canopy was projected onto

the plane of interest. The projected points’ boundary/contour was

considered the 2D canopy outline. Area, aspect ratio, roundness,

circularity, and solidity of the outline are defined as ( Jubery

et al., 2016):
Frontiers in Plant Science 06
• aspect ratio = major axis of the best-fit ellipse on the outline:

minor axis of the best-fit ellipse on the outline; the ratio of the

major to the minor axis of the best-fitted ellipse on the outline;

• roundness = 4 ∗ Area/(pi ∗ MajorAxis2); it indicates the

closeness of the shape of the outline to a circle;

• circularity = 4 ∗ pi ∗ Area/(Perimeter)2; it indicates the

closeness of the form of the outline to a circle;
B

C D

E

F

A

FIGURE 3

Point cloud processing pipeline: (A) The scanner captured the point cloud of a block at four corners of the block. The density of the point cloud is
greater in proximity to the scanner. (B) Each point cloud was downsampled to reduce disparities in point cloud density. (C) The point clouds were
registered, and the noise was removed. (D) Individual canopy detection was identified using height-based segmentation and connected components
algorithm, (E) Ground point cloud was removed by identifying visible ground points around the canopy, (F) For the canopy point cloud, a triangular
surface mesh was generated and the traits, including area, volume were computed.
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Fron
• solidity = Area/Convex Area; it is a measure of the

compactness of the object.
2.5 Canopy fingerprints

Fingerprints are a way of representing complex physical objects

mathematically. It can be used to illustrate various features on a local

scale in a hierarchical and/or multi-scale way. Mathematical

representation enables statistical or machine learning techniques to

determine the similarity, signatures, and relationships between groups

of objects. Here, we fingerprint a canopy by encoding it as a collection

of sub-canopy-level features. For example, to fingerprint the shape of a

canopy, we divide it into 2n+1 equally divided sections (sub-canopy).

Here, we divide the canopy in the height direction into the 2n+1

sections. We then generate the signature of each sub-canopy using

several geometric traits and normalize the traits concerning the traits

of the center (nth) sub-canopy. Finally, we represent normalized traits

in a vector format to generate the fingerprint. Here ‘n’ is a tunable

parameter that depends on the complexity of the canopies and

intended downstream tasks involving the fingerprints (Figure 4).
3 Results and discussion

3.1 Parameters/conditions for TLS scanning
and point cloud processing

Results showed that the point count (an indirect estimate of point

density) of a canopy varies by its distance from the scanner, with as

much as a 50% reduction when a canopy is close to the scanner versus

when it is at the farthest possible distance from the scanner. However,

this study circumvents the point density effect by registering multiple

perspectives of the same scanned area. Thus, if the point density of a

canopy near the scanner decreases as the scanner is moved farther

away, the points lost can be recovered by scanning from a distinct

perspective closer to the canopy (See Supplemental Material (S2)).

We used statistical outlier removal to reduce noise from the point

cloud. Outlier selection is dependent on the values of two parameters:

k, the number of neighbors, and alpha, the standard deviation ratio.

We investigated the effect of 40 different combinations of these

parameters on the extracted canopy height, including five values of

the number of neighbors (k = 8, 16, 24, 32, 40) and eight levels of the

standard deviation ratio.
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The change in nearest neighbor parameter, k, from 8 to 16, average

canopy height difference changed significantly after increasing

(Figure 5). However, there were no significant changes in the average

height difference for the remaining experiments (k = 32, k = 40).

Additionally, following each experiment, visual analysis of the canopy

point cloud revealed thatmost outliers were removed at k = 24.When k

≥ 24 and the standard deviation ratio was 0.075, no visually discernible

changes in canopy structure occurred. Thus, the number of nearest

neighbors, k, and the standard deviation ratio noise removal parameters

were set at 24 and 0.075 for all noise removal tasks, respectively.

To evaluate the performance of co-registration, we determined

the canopy top-view 2D projected area of a subsample of plants and

compared it to the ground truth 2D projected area extracted from

RGB images. By flattening the z values, the 3D point cloud of the

canopy was projected onto the XY plane. A closed polyline

represented the boundary/contour of the projected points, and its

area was taken as the canopy area. An excellent agreement between

the top-view canopy area and the ground truth area with R2 =

0.826 (Figure 6).
3.2 Validation of the extracted
canopy height

The results indicate that the extracted canopy height from the

point cloud correlates with manual ground truth measurements

taken on the same scanning day (Figure 7). Around 95% of the

variation observed in extracted height values could be explained by

a fitted linear least-squares regression model. Ground truth outliers

in canopy height were defined as individuals with a Z-score greater

than 2.5 compared to all samples’ mean and standard deviation.

Fewer than 2% of ground truth height measurements were

considered outliers and were likely human errors in the

collection. The deviation of heights from the manual

measurements within the outliers ranged from 0.11 m to 0.43 m,

with TLS measurements more frequently smaller than ground truth.

After visualizing the outlier canopies’ point cloud data, one

explanation for the lower TLS height measurements is that

occlusions between the measured canopy and neighboring

canopies were not detected during data processing. However,

manual height measurements of the canopies confirmed that the

canopy segmentation and TLS height measurements were accurate

(See Supplemental Material (S3)). Due to the low outlier rate (less
FIGURE 4

Overview of soybean canopy fingerprinting. Each canopy was subdivided into a predetermined number of sub-canopies, and the signature of each
sub-canopy was extracted using several features, which were then arranged in a vector format and normalized with respect to the center sub-
canopy features to represent the fingerprint of the canopy.
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than 2%) and high correlation (95%) between TLS and ground truth

height data, TLS-based height extraction is a more robust method

for canopy height measurement. This is useful because the TLS

based method is automated.
3.3 Fingerprinting and implications

Typical drone and LiDAR 3D point clouds are often limited to a

top-down view of the plant canopy due to collection limitations.

Figure 8 depicts the canopy’s conventional representation, as often

shown from the whole plant perspective, and then shows a

fingerprint perspective. The fingerprint representation was created

by dividing the canopy into three and nine sub-canopies (2n+1,

where n = 1 and 4). With these canopy fingerprints, we can find

similar-looking canopies for a given canopy or a desired/given

shape. Splitting these canopies into sub-canopies enables new

opportunities for phenomics and further genomic assessment of

cultivars. Traditionally, only the labor and time-extensive method
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of plant component partitioning would come close to this

capability, but still lacked the ability for fingerprinting (Hintz and

Albrecht, 1994; Raza et al., 2021). Sub-canopies paired with their

fingerprints have the potential to further explore the unique

relationships between certain fingerprint types or clusters with

known canopy traits such as branching, leaf size, or leaf angle

and their relationships with yield and yield component traits (Feng

et al., 2018; Bianchi et al., 2020; Moro Rosso et al, 2021).

With digital canopy fingerprints, we can now query a given

canopy (Figure 9). The canopy point clouds database was converted

to a searchable fingerprint database. To query a given canopy, a

fingerprint of the canopy was generated and then compared with

the existing database of fingerprints to identify the possible match.

This capability could enable further in-depth development and

exploration of the germplasm resources for ideotypes (Kokubun,

1988; Evangelista et al., 2021; Lukas et al., 2022; Roth et al., 2022).

While this work evaluated a single time point, a more in-depth and

temporal fingerprint could be developed to evaluate the canopy

growth and development across time. These temporal fingerprints

could open new insights into agronomic traits (Pfeiffer and Pilcher,

1987; Shiraiwa and Sinclair, 1993), diseases, and pesticide

applications (Hanna et al . , 2008; Sikora et al . , 2014;

Nagasubramanian et al., 2019; Viggers et al, 2022), or even

develop fingerprint responses to abiotic stress and amendments

(Frederick et al., 1991; Anda et al., 2021; Shivani Chiranjeevi et al,

2021; Bonds et al., 2022). An example of searching for potential

ideotypes is shown in Figure 10, where some canopies with

monotonically increasing mass at the top or the bottom are

identified using the fingerprint representation. To find a canopy

of the desired shape, we constructed a fingerprint of the desired

shape and then determined which canopy fingerprints have the least

Euclidean distance to the desired fingerprint. This further enables

the exploration of canopy fingerprints in silico not only in relation

to proposed ideotypes but also as a complement to crop modeling.
FIGURE 6

Comparison of the canopy area calculated from images captured by
the UAV mount camera with the point clouds captured by the TLS.
The TLS point cloud was projected onto a 2D XY plane (Top view),
and the area of the closed contour around the projected point
cloud was considered a canopy area.
FIGURE 7

Comparison between manually measured canopy height (ground truth)
and automatically measured canopy height from TLS-captured point
cloud. The horizontal bar represents the measurement uncertainty
associated with ground-truth data. The TLS-based plant height
corresponds well with the actual plant height. Extreme outliers are
believed to be the result of human mistakes.
FIGURE 5

Effect of the number of neighbors (K) in the noise removal algorithm
on the plant’s height after noise removal. A large neighborhood size
may eliminate both the actual canopy point cloud and noise, but a
small neighborhood size may result in the preservation of noisy
points. Optimal K was determined when increasing K had a
negligible effect on plant height.
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One of the core components of crop modeling is modeling the effect

of light interception and radiation use efficiency of the canopy

(Edwards et al, 2005; Singer et al., 2011; Zhu et al., 2020a). With

canopy fingerprints integrated into a crop model, the theoretical

evaluation of more genotypes in the models would be enabled, and

stronger models could be developed and could also be expanded to

explore environmental impacts and impacts on canopy fingerprints

(Chiozza et al., 2021b; Krause et al., 2022).

An aspect of the fingerprinting to be further developed would be

including the RGB data in the fingerprints. As apparent canopy color

is related to soybean photosynthetic activity yield and plant health

(Harrison et al, 1981; Rogovska et al, 2007; Naik et al., 2017; Yuan

et al., 2019; Kaler et al., 2020; Rairdin et al., 2022). While the RGB

data is already includedwithin the voxels, additional work to evaluate

the impact on fingerprint clustering due to color changes within each

sublayer will be useful. Evaluating the color differences within each

layer could provide an added trait assessment for radiation use

efficiency relative to the amount of chlorophyll active in each

canopy layer. Figure 11 shows PCA performed on the fingerprints

and clustering. Each cluster’s representative sample looks quite
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different and shows that the fingerprint can be used to pick diverse

samples with the shape analysis alone. However, the inclusion of

color data and additional layers, such as horizontal sub-layering,

could further enable more detailed fingerprints for assessment and

query while still reducing the computation load required for

searching canopy fingerprint databases. These methods can parse

out canopy features (through their fingerprinting) for a more

informative representation of the canopy and the role of various

organs throughout the canopy on desired traits, e.g., seed yield. This

enables the discovery of new relationships between canopy and organ

level features and their impact on yield and yield component traits.

While this work is focused on fingerprints assessed from TLS

laser point clouds, the concept of canopy fingerprints could also be

implemented with any technology capable of building a full canopy

3D point cloud, such as structured light, space-carving, or full canopy

structure from motion (Nguyen et al., 2015; Zhou et al., 2019; Das

Choudhury et al., 2020). While we focus on canopy fingerprints,

further work should be done to evaluate whole plant fingerprints,

especially root system architecture (RSA) fingerprints. While 2D

imaging is routine for RSA traits (Falk et al, 2020b; Jubery et al.,
B CA

FIGURE 8

Traditional representation vs. canopy fingerprinting: Top panel: (A) Full canopy representation using height (H), volume (V), and surface area (A, B)
Sub-canopy features including height (H1), volume(V1), Area(A1), (C) Sub-canopy 2D features including Area (A2), Aspect ratio (AR2), Circularity (CR2),
Roundness (R2), Convex Area (CA2) and Solidity (S2), bottom panel: Fingerprint of the canopy shape Volume and Projected 2D Area (A2).
FIGURE 9

Query of a given canopy: the canopy point clouds database was converted to a fingerprint database. To query a given canopy, a fingerprint of the
canopy was generated and then compared with the existing database of fingerprints to identify the possible match.
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2021), there is tremendous interest in 3D imaging of root traits. RSA

Fingerprints would further enable a whole plant analysis and efficient

query system, and technology such as Xray-CT already enables dense

3D point clouds to be built of RSA (Gerth et al., 2021; Teramoto et al,

2021). Whole plant fingerprints could help meet the need for efficient

RSA and canopy modeling, clustering, and assessment (Falk et al.,

2020a; Carley et al., 2022a) while further exploring the root and shoot

relationships to critical traits such as nodulation (Carley et al., 2022b).

Irrespective of shoot or root fingerprints, there is tremendous

potential for using this information to ID specific accessions and

characterize germplasm collection (Azevedo Peixoto et al., 2017),

cluster them based on their canopy features, develop relationships

between agronomic, disease, or stress-induced traits, and modularize

canopy features for their integration in trait development.
4 Conclusions

This study proposed an end-to-endfingerprint generation pipeline

from a 3D point cloud of diverse soybean canopies grown on hill plots.
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The pipeline includes point cloud noise removal, registration, plot

extraction, and fingerprint generation. Canopy fingerprinting is a

generic and powerful approach to constructing interpretable, multi-

scale, and/or hierarchical geometric traits from 3D point cloud data.

This approach is a useful middle ground between conventional

approaches of extracting coarse scale (i.e., full canopy scale)

geometric features that may not comprehensively capture the spatial

distribution of the canopy and the more recent approaches of directly

compressing the point cloud data that produce difficult to interpret

features. The generated fingerprints were used to query canopies of

specific shapes to the group and identify similar canopies, which could

be useful for future work in further identifying the relationships

between canopy, agronomic traits, and yield relative to proposed

ideotypes in varying climate scenarios. Canopy or whole plant

fingerprinting could be used as a pre-classifier for a complete shape-

based retrieval system. It could be used as a pseudo-leveler for self-

supervised model training (REF) or useful in situations of limited

annotation to train ML models (Kar et al., 2021; Nagasubramanian

et al., 2021). Fingerprints could be added as a semantic tag (metadata)

to the point cloud and can be queried instead of opening the data, and
FIGURE 10

Canopies of given shapes (conical and inverted conical) were queried from the fingerprint database. The candidates look representative of the
given shapes.
FIGURE 11

Identifying diversity in the canopy database: The fingerprints of the canopies were clustered and then visualized after dimensionality reduction using
principal component analysis (PCA). The cluster-representative samples demonstrate the diversity of the canopies of each cluster.
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can also be used for privacy-preserving deep models if data sharing is

challenging (Cho et al., 2022). Fingerprinting also serves as a promising

tool to store and quantify the inter-genotype or inter-environment

variability. In combination with cropmodels and further development

of voxel RGB data, these fingerprints could enable vast and rapid

assessment of in silico genotypes for future experimentation in addition

to the already improved searchability that fingerprint databases

provide. As the fingerprint is based on simple sub-canopy level

features, it has some limitations, and the proposed framework is

sensitive to rigid transformations. If an upright plant becomes tilted,

we get different fingerprint representations. However, this could be

useful for estimating agronomic traits like lodging. Additionally, the

vector of features as a function of plant height could be used for

functional GWAS to explore putative loci with multi-scale canopy

features.While our pipeline is built on TLS, future applications need to

explore drone- and ground-based phenotyping (Gao et al., 2018; Guo

et al., 2021; Riera et al., 2021). Plant phenotypic fingerprints serve as a

novel opportunity to offer a diverse advantage to the future of high

throughput phenotyping serving as a useful tool for data curation,

cultivar selection, evaluation, and additional experimentation.

Integration of canopy fingerprints with machine learning models can

further advance the field of phenomics and cyber-agricultural systems

(Singh et al., 2016; Singh et al., 2018; Singh A. K. et al., 2021).
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SUPPLEMENTARY FIGURE 1

R-squared (R²) values of the predicted TLS height against the ground truth

values, with respect to varying % of top canopy points. The results showed
that the R² value was highest when canopy height was calculated using the

top 3% of the canopy points.

SUPPLEMENTARY FIGURE 2

Variation of point count of a canopy relative to its distance from the scanner.

SUPPLEMENTARY FIGURE 3

Examples of height measurement differences between TLS and Manual. The

images depict interactive TLS (3D point cloud)-based height measurement
within the CloudCompare software.

SUPPLEMENTARY FIGURE 4

This histogram displays the distribution of canopies based on the number of

points they contain. The data pertains to 464 soybean cultivars including 450
plant introduction (PI) lines that were studied, representing a diverse range

of maturities, seed weights, and stem terminations, and originating from
35 different countries. Data was obtained from one or two replicates

per cultivar.
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