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Introduction: Polygonatum kingianum is a traditional medicinal plant, and

processing has significantly impacts its quality.

Methods: Therefore, untargeted gas chromatography-mass spectrometry (GC-

MS) and Fourier transform-near-infrared spectroscopy (FT-NIR) were used to

analyze the 14 processing methods commonly used in the Chinese market.It is

dedicated to analyzing the causes of major volatile metabolite changes and

identifying signature volatile components for each processing method.

Results: The untargeted GC-MS technique identified a total of 333 metabolites.

The relative content accounted for sugars (43%), acids (20%), amino acids (18%),

nucleotides (6%), and esters (3%). The multiple steaming and roasting samples

contained more sugars, nucleotides, esters and flavonoids but fewer amino acids.

The sugars are predominantly monosaccharides or small molecular sugars,

mainly due to polysaccharides depolymerization. The heat treatment reduces

the amino acid content significantly, and the multiple steaming and roasting

methods are not conducive to accumulating amino acids. The multiple steaming

and roasting samples showed significant differences, as seen from principal

component analysis (PCA) and hierarchical cluster analysis (HCA) based on GC-

MS and FT-NIR. The partial least squares discriminant analysis (PLS-DA) based on

FT-NIR can achieve 96.43% identification rate for the processed samples.

Discussion: This study can provide some references and options for consumers,

producers, and researchers.

KEYWORDS

Polygonatum kingianum, processing methods, untargeted GC-MS, FT-NIR,
volatile components
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1 Introduction

Functional foods can have several health benefits for the human

body. They can prevent malnutrition and have an interventional

effect on metabolic diseases (Ahmed et al., 2022; Fu et al., 2022). As

the public pays more and more attention to their health, functional

food is becoming increasingly popular (Banwo et al., 2021).

Therefore, the quality and safety control of functional foods is

crucial. Currently, the functional foods sold in the market are

generally processed. Processed functional foods can be more

easily transported, stored, and enhance the value of the product

(Harasym et al., 2020). However, there are some problems with the

processing of the products. For example, the processing process is

difficult to unify, and there is a lack of corresponding technical

guidance specifications. Accordingly, the quality of the product will

vary, improper processing methods lead to the loss of nutrients, and

even toxic substances can be produced (Pundir et al., 2019). These

may lead to deception and even threaten the health of consumers.

Based on the above, it is necessary to study the processing quality of

functional foods. In doing so, it can provide consumers with a basis

for choice and guide the actual production.

The genus Polygonatum is distributed in the Northern

Hemisphere, half of which is found in the Himalaya-Hengduan

Mountains (Xia et al., 2022). Most of the Polygonatum species are

considered to have nutritional and medicinal value in China and

India (Sharma et al., 2021; Xia et al., 2022). Polygonatum kingianum

Coll. et Hemsl is a well-known functional food in China and has

been used since the Qing Dynasty. It has an edible and medicinal

value and makes an important contribution to the economy of

China’s mountainous regions. The main chemical components of

Polygonatum species are polysaccharides, steroidal saponins,

triterpenoid saponins, and so on (Zhao et al., 2018). The

polysaccharides are the quality evaluation index of P. kingianum

and have been proven to have the effects of treating diabetes and

hypertension (Gu et al., 2020), anti-tumor, anti-oxidation, and anti-

aging (Li L. et al., 2018). The quality of P. kingianum is controlled by

many factors, such as geographical cultivation area, growing age,

processing method, and storage conditions (Xu et al., 2022a). The

processing method can directly affect the compositional changes of

P. cyrtonema, with reactions or decomposition between chemical

components (Fan et al., 2020). Variations in these components can

affect the sensory quality of P. kingianum, leading to important

physical changes. P. kingianum is often made into dried fruit for

snacking, powdered and added to food or drinks as a nutritional

supplement, or cooked as a vegetable (Wu et al., 2012). P.

kingianum is usually sold after processing, as eating it raw can

irritate the throat. The common processing methods of P.

kingianum in the Chinese market include air drying, roasting,

steaming, wine steaming, nine times steaming with nine times

roasting, etc. (Fan et al., 2020). Yu et al. (2010) analyzed the

processed P. kingianum using high-performance liquid

chromatography (HPLC) and found that the content of specific

steroidal saponins was significantly higher than that of the fresh

samples. Jin et al. (2021) used HPLC to study the effect of processing

on the polysaccharides in P. kingianum. The results showed that

steaming time, slice thickness, and drying temperature all affected
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the polysaccharide content. Wang et al . (2022) used

chromatography-tandem mass spectrometry (UHPLC-MS/MS) to

study the changes in the content of five components during the

processing of wine for P. kingianum and obtained that the changes

in the content of these components were related to the processing

time. Fan et al. (2020) used HPLC-MS/MS to analyze P. cyrtonema

from the processing of steaming and roasting nine times and found

that the polysaccharide composition differed greatly between each

processing. Generally, the processing research of P. kingianum is

still in the primary stage, with shallow research levels and single

technology. Most of the current studies, which focused on the

variation of polysaccharide content, did not perform a

comprehensive analysis. Therefore, it is necessary to conduct a

comprehensive analysis of 14 kinds of processed P. kingianum in

the Chinese market. This study may provide an evaluation and

control of the processing quality of P. kingianum.

Untargeted gas chromatography-mass spectrometry (GC-MS)

techniques are commonly used to analyze volatile organic

compounds. The good analytical efficiency of gas chromatography

and the coupling of mass spectrometry allow the structure of

analytes to be determined and initial identification to be

performed (Majchrzak et al., 2018). Untargeted GC-MS is widely

used in food quality certification, including processing analysis,

geographic traceability, adulteration detection, etc. (Farag et al.,

2020). This technique has the advantage of high throughput

analysis of numerous metabolites. In this study, untargeted GC-

MS was used to quantitatively assess the metabolites of P.

kingianum with different processing methods. However,

simultaneously, the technique is costly and takes a long time to

analyze. Near-infrared spectroscopy (NIR) has complementary

functions with untargeted GC-MS technology. NIR is a prevalent

non-destructive analysis technique with the advantage of simple,

fast, and comprehensive analysis (Xu et al., 2022a). The NIR

spectral data show the absorption intensity of functional groups,

which is an overall measurement and more suitable for qualitative

evaluation. However, there is no study on the different processing

methods of P. kingianum by NIR. Therefore, both untargeted GC-

MS and Fourier transform-near-infrared spectroscopy (FT-NIR)

techniques were chosen in this study to achieve a comprehensive

quantitative and qualitative evaluation. The combined use of

untargeted GC-MS and FT-NIR can compensate for the

disadvantages and build on both advantages. The latitudes of

untargeted GC-MS and FT-NIR data were large, thus requiring

multivariate statistical analysis. Principal component analysis

(PCA) and hierarchical cluster analysis (HCA) are exploratory

data analysis methods that allow the low-dimensional

representation of high-dimensional data (Borras et al., 2015). In

this study, untargeted GC-MS and FT-NIR analyses were

performed using PCA and HCA to explore the clustering and

distribution among the samples. For further analysis of FT-NIR,

the samples were classified using a supervised partial least squares

discriminant analysis (PLS-DA) classification model. PLS-DA is

often used in multivariate statistical analysis, which is suitable for

small samples and can well handle multicollinearity data (Cosme

et al., 2021). The PLS-DA model aims to separate samples of

different groupings by finding a linear subspace of optimal
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explanatory variables (Gromski et al., 2015). The PLS-DA model

enables the predictive classification of unknown samples by

modeling a large number of known sample data. Notably, FT-

NIR shows broad and highly overlapping absorption bands, and

various types of preprocessing methods are required to improve the

interpretation of the spectra.

This study is the first to analyze 14 common processing

methods of P. kingianum in the Chinese market. Using

untargeted GC-MS and FT-NIR technology, combined with

multivariate data analysis methods, the qualitative and

quantitative evaluation of the quality of different processed P.

kingianum was realized. This study provides a reference for

consumer choice and a theoretical basis for the production of

P. kingianum.
2 Materials and methods

2.1 Plant materials

P. kingianum samples were collected from Longtan Township,

Pu’er City, Yunnan Province. All the collected samples were

identified as P. kingianum by Professor Jinyu Zhang (Institute of

Medicinal Plants, Yunnan Academy of Agricultural Sciences,

Kunming, China). The aerial parts and fibrous roots were

removed, then washed and prepared for processing. For each

processing method, 400 g of fresh P. kingianum was used and

subsequently divided into 8 replicate groups of 50 g each. After each

processing completed, each replicate was dried to brittle at 55°C and

ground into powder. 5 g was taken from each of the eight samples to

be mixed for subsequent untargeted GC-MS analysis.
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2.2 Processing experiment methods

After market research, a total of 14 most common processing

methods in the Chinesemarket were selected.Dry in the shade (1-Y):

fresh samples were cut into thin slices and placed in a cool and

ventilated place to brittle; Direct roasting (2-K): fresh samples were

cut into thin slices and placed in a constant temperature blast drying

oven at 55°C to brittle; Roasting after steaming (3-Z): fresh samples

were cut into thin slices, placed in a steamer at 100°C for 4 h, and then

placed in a constant temperature blast drying oven at 55°C to brittle;

Wine steaming and then roasting (4-J): fresh samples were cut into

thin slices, mixed with white wine and placed in a steamer at 100°C

for 4 h, and then placed in a constant temperature blast drying oven

at 55°C to brittle; Nine times of steaming with roasting (1-K-0 to 1-

K-9): the slices were mixed with rice wine and placed in a 100°C

steamer. After steaming for 4 h, roast them in a constant temperature

oven at 55°C for 4 h until semi-dry. This was one steaming and one

roasting. Then, repeat the above operation until nine steaming and

nine roasting. When one of the processes is finished, they all need to

be dried at a constant temperature oven at 55°C to brittle. Among

them, 1-K-0 is the original sample. Figure 1 illustrates the processing

flow of the samples (1-K-0 to 1-K-9). Figure 2 shows 14 kinds of

processed P. kingianum.
2.3 Metabolite extraction

Refer to the experimental method proposed by Fiehn et al. for

extracting metabolites (Fiehn and Kind, 2007). The mixed sample of

each processing method were accurately weighed 20mg into a 2 mL EP

tube, then add 0.5 mL of acetonitrile: isopropanol: water (3:3:2, V/V/V)
FIGURE 1

The processing flow of samples (1-k-0 to 1-K-9).
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mixed solution (-20°C) accurately, and add 3-4 2mm zirconium beads;

The EP tube was put into a high flux tissue grinder, shocked at 30 Hz

for 20 s, allowed to stand for 10 s, cycled eight times, and sonicated in

an ice water bath for 5 min; 0.5 mL acetonitrile: isopropanol: water

(3:3:2, V/V/V) solution (-20°C) was added again and sonicated in an

ice water bath for 5 minutes; After centrifugation at 12,000 rpm for

2 min, 500 mL supernatant solution was taken and added into a new 2

mL EP tube; The EP tube was then put into a vacuum concentrator to

concentrate until dry (8-10 h), and the remaining supernatant was

placed on -80°C refrigerator for backup; The 80 mL of 20 mg/mL O-

Methylhydroxylamine solution was added for re-dissolution, vortex

vibration for 30 s, and incubated at 60°C for 60 min; Finally, 100 mL
BSTFA-TMCS (99:1) reagent was added and the reaction was carried

out at 70°C for 90 min, centrifuged at 14,000 rpm for 3 min, and 90-

100 mL of supernatant was added into the detection bottle; Samples

were placed in sealed cuvettes to be tested and processed for GC-TOF

upper detection within 24 h. The extraction method we use is

derivatized to detect as many metabolites with weak volatility in the

samples as possible. It is important to note that complex extraction

methods may result in the loss of metabolites and affect the true picture

of the compounds in the sample.
2.4 Untargeted gas chromatography-mass
spectrometry conditions

Metabolites were detected using a Pegasus BT gas

chromatography time-of-flight mass spectrometer (LECO,

Laboratory Equipment Corporation). Gas chromatography was

performed on a DB-5MS capillary column (30 m × 250 mm i.d.,

0.25 mm film thickness, Agilent J & W Scientific, Folsom, CA, USA)

to separate the derivatives at a constant flow of 1 mL/min helium. 1
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µL of the sample was injected in the split mode in a 1:10 split ratio

by the auto-sampler. The injection temperature was 280°C. The

temperature of the transfer line ion source was 320°C and 230°C,

respectively. The programs of temperature-rise were followed by an

initial temperature of 50°C for 0.5 min, 15 °C/min rates up to 320°C

and staying at 320°C for 9 min. Mass spectrometry was performed

using a full scan method with a scan rate of 10 spec/s, electron

energy of -70 V, and a solvent delay of 3 min.

Additionally, all samples were mixed with the same amount as

quality control samples (QC). In the process of getting on the

machine, QC value detection is carried out at intervals of 4 samples

to judge the system errors, such as instrument error and sample

stability during the detection process.
2.5 Fourier transform-near-infrared
spectroscopy measurement

The 100-mesh fine powder was taken and analyzed by FT-NIR

(Thermo Fisher Scientific INC., USA). Place the sample powder in

the NIR sample cup for measurement. A total of 32 scans were

performed with a resolution of 8 cm-1. The scanning range is 10000-

4000 cm-1. Each sample was measured three times in parallel, and

the average spectrum was taken during analysis.
2.6 Statistical analysis

2.6.1 Untargeted GC-MS data processing and
multivariate analysis

Firstly, the “mzML” format data from the instrument is

converted to “abf” format using ABF Converter software for the
FIGURE 2

The 14 kinds of processed Polygonatum kingianum.
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next step of data analysis (http://www.reifycs.com/AbfConverter/

index.html). Subsequently, the transformed data were analyzed

us ing MS-DIAL sof tware (ht tp : / /pr ime .psc . r iken . jp /

Metabolomics_Software/MS-DIAL/index2.html). The analysis

process included peak extraction, baseline filtering, correction,

peak alignment, and deconvolution. Then, peaks with a signal-to-

noise ratio greater than 3 were screened for background noise

elimination. The Fiehn gas database was used for the comparative

identification of metabolites (https://fiehnlab.ucdavis.edu/projects/

fiehnlib). The metabolite identification criteria are based on an

overall scoring of the mass spectrometry ion fragments based on

their match, retention time, and retention index (All metabolites

exemplified in this study had score values greater than 70, with the

majority in 90 and above). Metabolites with a mass spectrometry

ion matching degree greater than 70% were selected. The retention

times of fatty acid methyl esters (FAMEs) in the samples were

determined according to the MS-DIAL software, and then the

retention indices (RI) of the other metabolites in the samples

were calculated using the FAMEs. The tolerance or margin of

error for RI is 10,000, i.e., the absolute value of the difference

between the theoretical retention index of the metabolite and the

actual retention index in the experiment was less than 10,000.

Finally, the peak response values for individual ions were calculated

from the extract ion chromatography (EIC) plots extracted by the

instrument and used as the relative quantitative values for the

metabolites. The peak area is normalized for subsequent analysis,

and the value is enlarged by 1000 times to reduce the problem of

calculation accuracy in the future. It is worth noting that this

experiment uses non-targeted detection, that is, the detection of

metabolites in the sample without bias. This can be used to compare

the relative levels of the same metabolite in different samples. Then,

PCA and HCA were established using SIMCA-P+ 14.0 software

(Umetrics, Umea, Sweden) to explore the distribution and

clustering of the samples.

2.6.2 FT-NIR data processing and
multivariate analysis

The original FT-NIR has noise, stray light, unwanted variables,

etc., which reduces the accuracy of the analysis (Xu et al., 2022a).

Therefore, proper preprocessing can reduce spectral noise and

enhance the spectral features of the relevant properties. The

multiplicative scatter correction (MSC) and standard normal

variate (SNV) preprocessing methods can eliminate the scattering

effect caused by uneven sample particle size (Rinnan et al., 2009).

The second derivative (SD) can provide higher spectral resolution

and reveal more hidden peak information (Rinnan et al., 2009).

Therefore, this study employs these three methods and their

combination to optimize the data. FT-NIR was visualized by PCA

to analyze to conduct the qualitative analysis of different processing

methods. Firstly, the 112 samples were divided into 70% training set

(84 samples) and 30% test set (28 samples) using the Kennard-stone

algorithm. Then, different preprocessed data were used as the input

of the model, and the optimization performance of the

preprocessing on the data was compared. R2 and Q2 were used to

evaluate the fitness of the model, and root mean square error of
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estimation (RMSEE), root mean square error of cross validation

(RMSECV), and root mean square error of prediction (RMSEP)

were used to judge the robustness of the model. The closer the value

was to 0, the better the model. The classification performance of the

model was reflected by the accuracy of the training set and test set.

Additionally, 200 iterations of permutation tests were performed to

assess whether the model was overfitting. The PLS-DA model was

established using SIMCA-P+ 14.0 software (Umetrics,

Umea, Sweden).
3 Results and discussion

3.1 Metabolite analysis of different
processed samples

A total of 333 metabolites were identified by the untargeted GC-

MS technique. They can be classified into sugars (119 compounds),

acids (59 compounds), amino acids (57 compounds), nucleotides

(18 compounds), alcohols (19 compounds), esters (13 compounds),

flavonoids (5 compounds), alkaloids (4 compounds), vitamins (5

compounds), and others (34 compounds). The relative content

accounted of sugars (43%), acids (20%), amino acids (18%),

nucleotides (6%), esters (3%), and the rest were relatively low.

Figure 3A shows the proportions of various compounds. As shown

in Figures 3B, C, different processing methods have significant

effects on various compounds in P. kingianum.

3.1.1 Sugars and their derivatives
Sugars are the most important primary metabolite class in P.

kingianum and are the main energy source required to maintain

human life activities. Relatively high sugars are hexose, L-sorbinose,

D-(-)-fructose, alpha-D-glucopyranoside, beta-D-fructofuranosyl, L-

xylonic acid, D-glucose 1-phosphate, 1F-beta-D-fructosylsucrose,

beta-D-glucose, D-tagatose, UDP-glucuronate, etc. The remaining

main components are shown in Table S1. These are mostly

monosaccharides or small molecular sugars. The multiple roasted

samples (1-K-1 to 1-K-9) had significantly more sugars than other

processing methods. With the increase in roasting times, the sugar

content increased upward, reaching a maximum at the third time (1-

K-3) and then decreasing. The reasonmay be that polysaccharides are

depolymerized into monosaccharides or small molecular sugars

during the steaming and roasting processes (Fan et al., 2020). The

sample numbered (3-Z) had the lowest sugar content.

The compounds of hexose, D-(-)-fructose, L-xylonic acid, 3,6-

anhydrogalactose, L-(+)-arabinose, and salicin were present in samples

(1-Y, 2-K, 3-Z, 4- J, and 1-K-0) with minute amounts. However, the

content of these sugars gradually increased with increasing steaming

and roasting times and then tended to be stable. Among them, hexose

and D-(-)-fructose are common food supplements that contribute

significantly to sweetness. UDP-glucuronate, D-raffinose, citrate, beta-

D-fructose, and sucrose were relatively abundant in samples (1-Y, 2-K,

3-Z, 4-J, and 1-K-0), but the content gradually decreased with the

increase of roasting times. This may be due to the decomposition or

reaction with other components during roasting. Studies have
frontiersin.org
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confirmed that sucrose is rapidly destroyed after 2 h of roasting,

resulting in a sour taste and aroma (Wei et al., 2012). The contents of

D-tagatose, inositol, alpha-D-galactose, and turanose were stable in

each sample. Among them, inositol belongs to sugar alcohols, which

can be produced from sugar and contribute to the sweet taste of P.

kingianum. It is more thermostable than free sugars (Zayed et al.,

2022). Additionally, it also contains some sugar alcohols such as 5-

deoxyribitol, D-mannitol, Myo-inositol, lactitol, D-arabitol, D-threitol,

butane-1,2,3,4-tetrol, maltitol, etc. Sugar alcohols have high thermal

stability and are not prone to Maillard reactions (Wei et al., 2012).

Therefore, the content was relatively stable during processing.

However, L-sorbinose, Hex-2-ulofuranosyl hexopyranoside, 1-

kestose, and beta-maltose showed great differences in each sample,

and there was no regularity. Notably, hex-2-ulofuranosyl

hexopyranoside accumulated much more in 1-K-7, 1-K-8, and 1-K-9

samples than in other samples. This is because the increase in pyrans/

furans content is also a significant feature of the roasting process (Farag

et al., 2020). The most abundant pyrans/furans compound is hex-2-

ulofuranosylhexopyranoside, in addition to a small amount of alpha-d-

xylopyranose, 2-O-methyl-D-mannopyranosa, saligenin-beta-D-

glucopyranoside, methyl beta-D- galactoside, etc. Studies have

confirmed that amino acids and sugars can generate pyran/furan

through the Maillard reaction during roasting (Farag et al., 2015). Six

sugars (beta-D-glucose, 1F-beta-D-fructosylsucrose, D-glucose 1-

phosphate, 4-O-hexopyranosylhex-2-ulofuranose, melezitose and

beta-D-glucosamine) in samples (1-Y, 2-K, 3-Z, 4-J and 1-K-0) were

less than the samples (1-K-1 to 1-K-9). With the increase of roasting

times, these components showed an upward trend and then gradually

decreased. Beta-maltose is degraded to glucose under heat treatment

conditions and can undergo the Maillard reaction (Araki et al., 2022).

Therefore, the increase and decrease in glucose content may be

caused by the degradation of maltose and the Maillard

reaction simultaneously.
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3.1.2 Acids and their derivatives
Acids have an important influence on the flavor of P. kingianum

products. A total of 59 acids were detected, but only 19 were

abundant, including inorganic acids, organic acids, and fatty

acids. The primary acid compounds are phosphoric acid, malic

acid, glycolic acid, lactic acid, hexadecanoic acid, octadecanoic acid,

etc. The remaining main components are shown in Table S1. Acids

are lower in samples (1-Y, 3-Z, and 1-K-0), and the most in the 1-K-

9. Generally, the processing method has little effect on the acid

content of P. kingianum.

Phosphoric acid was the only inorganic acid detected in the

samples, and it was the most abundant acid species. Phosphoric acid

was abundant in all samples with little difference, contributing to

the sour taste of P. kingianum products (Zayed et al., 2022). Organic

acids play an important role in foods’ flavor, color, and aroma

(Bouhlali et al., 2020). Many organic acids are often used as sour

additives in food, directly affecting the consumer’s taste perception

through sourness or acidity. Malic acid is abundant in the roasting

processed products of P. kingianum. It is a common organic acid

with significant antioxidant activity (Nazir et al., 2020). Glycolic

acid was less in the samples (1-Y, 2-K, 3-Z, 4-J, and 1-K-0), but the

content gradually accumulated with increasing roasting times.

Lactic acid, hexadecanoic acid, octadecanoic acid, 5-

hydroxymethyl-2-furancarboxylic acid, tartronic acid, and

phosphoenolpyruvate acid were not significantly different among

the various processed samples. Among them, glycolic acid and lactic

acid can directly inhibit the formation of melanin in melanocytes,

thereby lightening the color of the skin (Usuki et al., 2003).

Hexadecanoic acid and octadecanoic acid are the most common

saturated fatty acids in animals and plants. 5-hydroxymethyl-2-

furancarboxylic acid is a metabolite produced from 5-

hydroxymethyl-2-furfural and can be eliminated renally (Jöbstl

et al., 2010). Tartronic acid inhibits the conversion of sugars into
B

C

A

FIGURE 3

Statistical analysis of GC-MS data of 14 kinds of processed Polygonatum kingianum. (A) the relative content ratio of various compounds in all
samples; (B) the relative content of amino acids, sugars, acids, nucleotides, and esters in 14 processed samples; (C) the relative content of alcohols,
vitamins, flavonoids and alkaloids in 14 processed samples; Each horizontal line in the B and C plots corresponds to the average of the relative
contents of the various compounds.
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fats in the human body (Shi et al., 2020). The samples (1-Y, 2-K, 3-

Z, 4-J, and 1-K-0) contained less D-glyceric acid, maleic acid,

succinic acid , oxalacet ic acid , ethylmalonic acid , 2-

hydroxybutanoic acid, and linoleate. However, these components

were more abundant in the multiple roasted samples with less

significant differences. This result indicates that the use of rice wine

for processing is beneficial to the accumulation of these acids, but

does not change significantly with the increase in roasting times. It

is worth noting that the content of oxalic acid in samples 1-K-8 and

1-K-9 was minimal. 2-Butene-1,4-dicarboxylic acid and 4-

hydroxybutanoic acid were more abundant in samples (1-Y, 2-K,

3-Z, 4-J, and 1-K-0), but in the remaining samples rare. Sugars and

acids are the two most common compounds in P. kingianum

products. Its proper proportion balance coupled with solid flavor

and aroma is an essential factor influencing consumers’ choice.
3.1.3 Amino acids and their derivatives
Amino acids can act as elements of essential proteins and are

also involved in a wide variety of biochemical and physiological

processes (Ribarova, 2018). Many studies have shown that the

processing and cooking methods of foods have a significant

impact on the type and content of amino acids (Motta et al.,

2020). A total of 57 amino acids were detected in all samples,

including 19 proteinogenic amino acids. The 19 kinds of

proteinogenic amino acids include eight kinds of essential amino

acids, two kinds of conditionally essential amino acids, and nine

kinds of non-essential amino acids. The amino acids with higher

content are L-pyroglutamic acid, 5-hydroxy-L-tryptophan, gamma-

aminobutyric acid, L-proline, L-tyrosine, L-serine, L-isoleucine,

glycine, L-leucine, etc. The remaining main components are

shown in Table S1. It was clearly observed that most of the

amino acids were abundant in the samples (1-Y, 2-K, 3-Z, 4-J,

and 1-K-0), but few in the rest of the samples. It is strongly

influenced by the processing methods. The present results are

similar to those of previous studies, where heat treatment

significantly reduced the amino acid content (Chen et al., 2015).

L-Pyroglutamic acid was detected at high levels in the samples

and is commonly thought to be associated with browning reactions

in food. The production of L-pyroglutamic acid is probably due to

the conversion from L-glutamine to L-glutamate first and then to L-

pyroglutamic acid during the heating process (Airaudo et al., 1987).

The analysis showed that the conversion of L-glutamine and L-

glutamate in samples (2-K and 1-K-1 to 1-K-9) was relatively

complete. Gamma-aminobutyric acid accumulated more in the

samples (1-Y, 2-K, 3-Z, 4-J, and 1-K-0) and none in the rest of

the samples. L-Pyroglutamic acid has been studied as a precursor of

gamma-aminobutyric acid (Wegener et al., 2017). Gamma-

aminobutyric acid has multiple pharmacological activities and is

widely used in functional foods (Pandey et al., 2021). The samples

(1-K-1, 1-K-7, 1-K-8, and 1-K-9) contained more 5-hydroxy-L-

tryptophan. 5-hydroxy-L-tryptophan is considered a popular

dietary supplement and is the immediate precursor for the

conversion of L-tryptophan to 5-hydroxy-tryptamine (Das et al.,

2004). Carnitine and 2-furoic acid were almost absent in the

samples (1-Y, 2-K, 3-Z, 4-J, 1-K-0, and 1-K-1), but the contents
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gradually accumulated with the increase of roasting times. Carnitine

is an amino acid derivative, a dietary supplement with a wide range

of biological activities, which can be synthesized from L-lysine and

L-methionine (Bremer, 1983; Dabrowska and Starek, 2014). Some

studies have confirmed that L-lysine is a clear indicator of the

heating process of food products and increases with increasing

roasting times (Cartus, 2017). However, no such pattern was found

in this test. Low levels of three biogenic amines, tyramine,

putrescine and cadaverine, were detected in the 1-Y. It is

important to note that the presence of biogenic amines in food is

closely related to spoilage. The presence of high levels of biogenic

amines can affect the quality and safety of food products (Dabadé

et al., 2021). Glycyl-L-proline was detected in the samples (1-Y, 2-K,

3-Z, 4-J, and 1-K-0) and was the only cross-linked amino acid

detected. The production of such substances may reduce the

bioavailability of amino acids (Cartus, 2017). Six odour-defining

amino acids, L-glutamate, L-aspartate, L-phenylalanine, L-alanine,

glycine, and L-tyrosine were detected in the samples (1-Y, 2-K, 3-Z,

4-J, and 1-K-0). L-Leucine, isoleucine, and L-valine can work

together to repair muscles and control blood sugar. In addition to

the above-mentioned, other protein-derived amino acids with high

content were also detected, such as L-proline, L-serine, L-isoleucine,

L-allothreonine, L-threonine, and DL-aspartic acid. Other amino

acids include DL-alanine, L-pipecolate, L-ornithine, L-citrulline,

DL-homoserine, N-acetylserotonin, and N-acetylornithine were

also detected.

3.1.4 Nucleotides and their derivatives
Exogenous nucleotides in food are considered conditionally

essential in modern research and play an important role in the life

activities of living organisms (Domıńguez-Álvarez et al., 2017). A

total of 18 nucleotides were detected, of which seven were relatively

high in content. Cytosine arabinoside monophosphate was the most

abundant nucleotide, with comparable amounts in the samples (1-

Y, 2-K, 3-Z, 4-J, and 1-K-0). With the increase of roasting times, the

content of cytosine arabinoside monophosphate also increased,

reaching the maximum in the 1-K-5 and then decreasing slightly.

5-Methylcytosine was almost absent from the samples (1-Y, 2-K, 3-

Z, 4-J, 1-K-0, and 1-K-1). 5-Methyluridine was the most abundant

in sample 1-K-1, but the content gradually decreased with

increasing roasting times. Uridine was present in tiny amounts in

the samples (1-Y, 2-K, 3-Z, and 4-J) but gradually accumulated as

the number of roasts increased. Uracil, 1-beta-D-ribofuranosyl- was

relatively more abundant in 1-K-2, and 4,5-dihydroorotic acid was

relatively more abundant in 2-K. Overall, samples 1-K-5 contained

the highest amount of total nucleotides.

3.1.5 Esters and their derivatives
Esters are the aromatic substances found in P. kingianum, and a

total of 13 were detected. As a whole, esters accumulated

progressively with increasing roasting, with the highest levels in

1-K-9. 3-Hydroxypropanoate was the most abundant of the esters,

followed by erythronic acid lactone, and they both showed an

increasing trend with increasing roasting times. The function of

3-hydroxypropionate is related to a propionate. (https://
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pubchem.ncbi.nlm.nih.gov/compound/5459847) D-Mannonate

was present in small amounts in the samples (2-K, 4-J, 1-K-0,

and 1-K-1). D-Mannonate is involved in the metabolism of D-

glucuronic acid. (https://ecmdb.ca/compounds/M2MDB000609)

The content glyceryl monooleate accumulated in the samples (1-

K-4 to 1-K-9) with the increase in roasting times. Glyceryl

monooleate is not persistent, bioaccumulative, and toxic, but also

has antidiabetes and antioxidant activities, so it is widely used in the

food industry (Api et al., 2021; Wei et al., 2021). 3-Hydroxy-3-

methylglutarate was relatively the most in sample 1-K-2, and the

content gradually decreased after the fifth roasting. 3-Hydroxy-3-

methylglutarate has a therapeutic effect on diabetes, but was present

in minute amounts in our current study samples (Francesconi

et al., 1987).

3.1.6 Miscellaneous
In addition to the above, small amounts of alcohols, flavonoids,

vitamins, alkaloids, nitrogenous compounds, etc. were detected.

There were 19 alcohols detected. Sphinganine was present in

minimal content in samples 1-K-0, but the content accumulated

gradually with increasing roasting times. Sphinganine can enhance

the adaptability of beneficial microorganisms in organisms (Lee

et al., 2021). Glycerol was only present in the samples (1-K-2, and 1-

K-4 to 1-K-7) and was reduced the more often they were roasted. 2-

Monopalmitin and 2-aminooctadecane-1,3-diol were detected at

low levels in all samples. Neohesperidin is the most abundant

flavanone glycosides in the samples and has a hypoglycemic effect

(Zhang et al., 2012). Three vitamins with high contents were also

detected in the samples: Nicotinic acid, pantothenic acid, and

ascorbate. Nicotinic acid and pantothenic acid are water-soluble

vitamin B compounds involved in life activities and have multiple

pharmacological activities (Zeng et al., 2021; Sadok et al., 2022).

Ascorbate is commonly used as an antioxidant and acidity regulator

in vegetable and fruit products (Jin et al., 2022). Three pyridines

were detected: 2-hydroxypyridine, 3-hydroxypyridine, and 4-

hydroxypyridine. Pyridines are considered to be frequently

produced flavor substances in food processing (Hidalgo et al.,

2020) . I t was found that 2-hydroxypyr idine and 3-

hydroxypyridine had a significant cumulative effect, accumulating

with increasing roasting times. 2-(3,4-Dihydroxyoxolan-2-yl)-2-

hydroxyacetaldehyde was rare in the samples (1-Y, 2-K, 3-Z, 4-J,

and 1-K-0) and was present in greater amounts in the rest of the

samples with no significant differences. 2-Pyrrolidinone was present

relatively more in the samples (1-Y, 2-K, and 1-K-0).

3.1.7 Multivariate data analysis of metabolites
from differently processed samples

PCA and HCA modeling were performed from untargeted GC-

MS data for all samples. The unsupervised PCA model was used to

analyze untargeted GC-MS data to visualize the data and explore the

distribution between samples. It can be seen from Figure S1 that the

four quality points are closely clustered, indicating that the

experimental method has good stability and fewer instrumental

errors. Figure 4A shows the score plot for PCA. PC1 accounted for

41.6% of the variance, and PC2 was responsible for 14.3% of the

variance. Figure 4A shows that the sample has four clusters. Samples
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1-Y, 2-K, 3-Z, 4-J, and 1-K-0 were clustered along the right side of

PC1. The remaining processed samples are distributed along the

negative axis of PC1 (1-K-1 to 1-K-9). The samples (1-K-1 to 1-K-3)

have clear clustering, as do samples (1-K-5 and 1-K-6). The samples

(1-K-4, 1-K-7, 1-K-8, and 1-K-9) have obvious separation trends.

Figures 4B–F is the corresponding loading plot of PCA to explain the

effect of chemical composition on the sample separation. Loading

diagrams were drawn according to the classification of compounds,

which are divided into sugars (Figure 4B), amino acids (Figure 4C),

acids (Figure 4D), nucleotides (Figure 4E), and others (Figure 4F). It

is observed from Figure 4B that citrate, sucrose, turanose, alpha-D-

galactose, and beta-D-fructose are the value that contribute

significantly to PC1 and can be used as an eigenvalue in the

samples (1-Y, 2-K, 3-Z, 4-J, and 1-K-0). The differentiation of

sample 1-K-1 from other samples can be attributed to beta-D-

glucose, and L-sorbinose. L-(+)-arabinose, D-(-)-fructose, salicin, L-

xylonic acid, and 3,6-anhydrogalactose had significantly negative

effects on PC1, significantly separating samples (1-K-4 to 1-K-9)

and the rest of the samples. These ingredients can serve as markers of

the abundance of multiple roasting products. The contribution of

amino acids to sample classification is evident in Figure 4C. 5-

Hydroxy-L-tryptophan, carnitine, N-acetylserotonin, and 2-furoic

acid contributed to the negative axis of PC1. These compounds

gradually accumulated with the increase of roasting times and could

be used as the characteristics of samples (1-K-1 to 1-K-9). As seen in

Figure 4D, the increase in the number of roasting sessions contributes

to the accumulation of acids. 2-Butene-1,4-dicarboxylic acid,

tartronic acid, and 4-hydroxybutanoic acid contributed to the

positive value of PC1 and were present in minute amounts in

samples (1-K-1 to 1-K-9). Oxalacetic acid and phosphoric acid also

contributed to the positive PC1 values, but they were significantly

greater in the samples (1-K-1 to 1-K-9). Glycolic acid and D-glyceric

acid had the most significant effects on the distribution of samples (1-

K-1 to 1-K-9). The content of glycolic acid and D-glyceric acid

gradually increased with increasing roasting times, which can be used

as a marker of roasting times. Figure 4E shows that the distribution of

nucleotides in the samples varies widely. Uracil, 1-beta-D-

ribofuranosyl- and 4,5-dihydroorotic acid phase in samples (1-Y, 2-

K, 3-Z, 4-J, 1-K-0, and 1-K-1) more than multiple roasting samples.

Cytosine arabinoside monophosphate, 5-methylcytosine, and uridine

can all be considered as features in multiple roasting products. 5-

Methyluridine may be characteristic of the samples (1-K-1 to 1-K-3).

Figure 4F shows that esters are more distributed in samples (1-K-1 to

1-K-9). 3-Hydroxypropanoate and 2-(3,4-Dihydroxyoxolan-2-yl)-2-

hydroxyacetaldehyde contributed significantly to the distribution of

the samples. 2-Pyrrolidinone also contributed significantly to the

sample distribution.

Different processed P. kingianum were classified according to

untargeted GC-MS data using HCA. HCA was used to observe the

relationship between different samples. The final result is displayed

by a dendrogram, which shows the similarities and differences

between samples. Computed using Euclidean distance and using

Ward’s algorithm to build a dendrogram. Ward’s algorithm

provides a classification between samples using the minimum

variance method (Taylan et al., 2020). The HCA dendrogram of

the sample is presented in Figure 5. The samples can be divided into
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two groups with heterogeneity values up to 1600. Samples with

roast multiple times are differentiated in the left arm of the HCA

dendrogram. The arm numbered “1” was divided into two clusters,

with subclusters numbered “3” and “4”. The arm numbered “3” was

the aggregation of quality control samples, which is consistent with

the PCA results, indicating the stability of the assay. The samples (1-

K-0, 1-Y, 2-K, 3-Z, and 4-J) in the arm numbered “4” were clustered

into one group, which is consistent with the PCA results. The arm

numbered “2” was divided into two clusters “5” and “6”, and the

number “6” was divided into two clusters. In summary, the samples

can be divided into 5 clusters according to the HCA of the

untargeted GC-MS data.
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3.2 FT-NIR analysis

3.2.1 FT-NIR spectrum feature interpretation
The average spectrum for each processing method is shown in

Figure 6A. Figure 6A represents the absorption of C-H, O-H, and

N-H chemical bonding vibrations in the samples. High absorbance

indicates a high level of compounds containing these chemical

bonds in the samples. The spectral peak shapes of each class of

processed samples were similar but with significant absorbance

differences. This indicates that the content of the chemical

constituents of different processed samples has great differences.

Nine absorption peaks were observed in the original average
B

C D

E F

A

FIGURE 4

PCA analysis of 14 processed Polygonatum kingianum based on GC-MS data. (A) the scores plot of PCA; B-F are loading diagrams of PCA, (B)
sugars; (C) acids; (D) amino acids; (E) nucleotides; (F) others.
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spectrum at wavenumbers of 8350 cm-1, 7260 cm-1, 6800 cm-1, 6340

cm-1, 5680 cm-1, 5160 cm-1, 4755 cm-1, 4381 cm-1, and 4300 cm-1.

Their formation is associated with the stretching and bending

vibrations of the N-H, C-H, and O-H of the hydrogen-containing

organic components. According to the literature (López et al., 2017;

Ciurczak et al., 2021; Xu et al., 2022b), the FT-NIR was analyzed as

follows (1) 4000 cm-1 is considered to be caused by the combined

vibration of C-H/C-C/C-O-C in polysaccharides; (2) 4386 cm-1 to

4252 cm-1 can be attributed to the C-H stretching vibration in

polysaccharides; (3) 4390 cm-1 is the combined vibration of O-H/C-

O in glucose; (4) 4750 cm-1 corresponds to polysaccharides and

carbohydrates, which are generated by C=O-O stretching or O-H

deformation; (5) 5168 cm-1 and 5089 cm-1 are considered as

characteristic absorption peaks of polysaccharides. It is produced

by the first overtone of O-H stretching; Around wavenumber 5186

cm-1 may be the O-H stretching and deformation vibration in

sucrose, glucose, fructose, polysaccharides or H2O (Zhan et al.,

2017). (6) 6000 cm-1 to 5400 cm-1 is attributed to the first overtone

of the C-H stretch (Li S. et al., 2018). The spectral bands near 5959

cm-1 to 5865cm-1 are assigned as the first overtone of C-H

stretching in ketones; (7) 6300 cm-1 to 5400 cm-1 attributed to

the first overtone of C-H stretching (8) 6798 cm-1 to 5025 cm-1 and

4878 cm-1 to 4831 cm-1 are generally believed to originate from

amides or proteins. The first overtone of N-H stretching (Lima

et al., 2022); 6800 cm-1 can also be attributed to the first overtone of
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O-H stretching vibration in H2O; (9) 7000 cm
-1 to 6700 cm-1 is the

first overtone of C-H group (Chen et al., 2018); 7100 cm-1 to 6000

cm-1 is the first overtone of the O-H stretch or N-H stretch

(Amirvaresi et al., 2021). (10) 7200 cm-1 to 6900 cm-1 may be due

to the first O-H overtone in the polysaccharide; (11) The band near

8354 cm-1 is considered as the second overtone of the C-H

stretching vibration of methyl or methylene in aliphatic

hydrocarbons (Li Y. et al., 2018).

It is worth noting that around 5263 cm-1 to 5235 cm-1 is the

C=O and C=OOH band of carboxylic acids, and around 5128 cm-1

to 5102 cm-1 is the C=O absorption band of acids and esters

(Ciurczak et al., 2021). The sample was rich in acid but showed

no characteristic peaks on FT-NIR. This may be because the

absorption peaks of the sugars cover the acids, as the sugars also

have absorption in this wavenumber region and the sample

contains more sugars than acids. Amino acid content varied

widely in the untargeted GC-MS data but showed no significant

characteristic peaks in the FT-NIR spectra. After reviewing the

literature (Cozzolino et al., 2010; Ciurczak et al., 2021; Wang et al.,

2021), the absorption of amino acids is at 8333 cm-1 (-CH=CH

second overtone), 6757 cm-1 (first overtone of C-H), 4673 cm-1 (C-

H vibrations), 4344 cm-1 and 4259 cm-1 (C-H combination tones),

4587 cm-1 to 4566 cm-1 (N-H vibrations). Against Figures 2, 5, no

higher absorbance was observed for the samples (1-Y,2-K,3-Z, 4-J,

and 1-K-0) in any of these bands, the absorption peaks of amino

acids are masked by more sugars. In the subsequent analysis,

various preprocessing methods were used to reveal hidden peaks.

The absorbance values of samples (1-K-2, 3-Z, 1-Y, 1-K-1, and 4-J)

at 5160 cm-1 are relatively high, which is most likely due to the

content of polysaccharides (Ciurczak et al., 2021; Xu et al., 2022b).

This is because the polysaccharides are broken down into small

molecular sugars or monosaccharides during the multiple steaming

and roasting process (Yao et al., 2022). The 4750 cm-1 can be

attributed not only to polysaccharides, but also to carbohydrates

(Ciurczak et al., 2021). Considering polysaccharides and small

molecular sugars together, this may account for the higher

absorbance of the samples (1-K-9 and 1-K-2). This may also be

why it differs from that at 5160 cm-1. Samples 1-K-2 and 1-K-9 had

higher absorbance at 6800cm-1, and the multiple steaming and
BA

FIGURE 6

(A) The average FT-NIR spectra of 14 processed Polygonatum kingianum; (B) PCA analysis of 14 processed Polygonatum kingianum based on FT-
NIR spectra.
FIGURE 5

HCA analysis of 14 processed Polygonatum kingianum based on
GC-MS data.
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roasting samples were also significantly higher than the samples (1-

Y, 1-K-0, 2-K, and 4-J). Therefore, the 6800 cm-1 peak in Figure 5

may be due to the increase in bound water in the sample as the

number of steaming and roasting cycles increases (Liu et al., 2021).

According to our practical experience, the samples with more

steaming and roasting times are easier to regain moisture. The

high absorbance of the 1-K-2 sample may be due to the high

polysaccharide content. Although the peak at 6800 cm-1 can also be

attributed to the N-H bond of amide or protein. There is no

inclination to interpret the peak at 6800 cm-1 as an absorption of

amide or protein. This is because absorption is present at 6798 cm-1

to 5025 cm-1 and 4878 cm-1 to 4831 cm-1, but no characteristic peak

is shown at any other wavenumbers (Ciurczak et al., 2021).

In general, the absorbance intensity of the average spectrum of

the multiple roasting is generally higher than that of the rest of the

processing methods. According to GC-MS data and literature

analysis, the higher absorbance of multiple roasting samples may

be due to the higher content of sugars and nucleotides. The

absorbance intensities of 1-K-9 and 1-K-2 in the samples were

relatively higher, and the absorbance of 2-K was the lowest. The low

absorbance values for sample 2-K may be attributed to the low

content of both small molecule sugars and polysaccharides. The 2-K

samples contained more amino acids compared with the samples

(1-K-1 to 1-K-9), but the lower percentage of amino acids could not

compete with the sugars. Sample 2-K also had lower absorbance

values compared to (1-Y, 3-Z, 4-J, and 1-K-0). The reason for this

may be that the polysaccharide content is also lower, especially at

5160 cm-1. It is worth noting that the absorbance value of a

particular wavenumber cannot be attributed entirely to one

substance, but is probably to be the combination of many

substances. The FT-NIR spectra of each sample are pretty

different, but it is still difficult to visually distinguish each sample.

Therefore, the supervised PLS-DA models were used for more in-

depth analysis.

3.2.2 Principal component analysis
based on FT-NIR

An unsupervised PCA model was built using raw FT-NIR

spectra to explore clustering between samples. The PCA score

plot is shown in Figure 6B. Three distinct clustering trends were

observed using PC1 and PC2, explaining 99% of the model

variation. PC1 contributes 90.9% of the variance, mainly for

distinguishing the multiple roasted samples (1-K-2 to 1-K-9) and

the rest of the processed samples (1-Y, 2-K, 3-Z, 4-J, 1-K-0, and 1-

K-1). The multiple roasted samples were distributed in the positive

direction of PC1, and the remaining samples were distributed in the

negative direction of PC1. PC2 is responsible for 8.1% of the

variance and mainly contributes to the separation of the samples

(1-K-2). PCA based on FT-NIR or GC-MS gave similar results, and

it is speculated that the clustering is more related to the amino acids

and sugars in the samples. The most significant difference between

the two results is that the sample (1-K-2) was independently

distinguished in FT-NIR. This may be due to the correlation of

the highest absorption peak around the wavenumber 5160 cm-1.

Although three distinct clusters were obtained using PCA, the
Frontiers in Plant Science 11
classification among the groups was not sufficiently clear, so

supervised PLS-DA models were used for the next step of

the analysis.

3.2.3 Partial least squares discriminant analysis
based on FT-NIR

Supervised PLS-DA models were built using different

preprocessed FT-NIR data. To ensure the reliability of the model,

7-fold cross validation was used to build the model. Moreover, the

most suitable number of potential variables (LVs) were selected by

the lowest RMSECV and the highest Q2. All the model parameters

were recorded in Table 1. The closer the values of RMSEP, RMSEE,

and RMSECV are to zero, the stronger the robustness of the PLS-

DAmodel. From all model results, the model built from the original

spectra gave the best classification results. The accuracy of the

model’s training set and test set were 95.24% and 92.86%,

respectively. RMSEP, RMSEE, and RMSECV were 0.1607, 0.1636,

and 0.1908, respectively. From the confusion matrix in Figure S2,

the identification of samples (1-K-7) is the most challenging and is

mistakenly identified as 1-K-6, 1-K-8, and 1-K-9. The model built

by MSC preprocessing has the following best recognition effect. The

training and test sets achieved correct recognition rates of 90.48%

and 96.43%, respectively. RMSEP, RMSEE, and RMSECV were

0.1523, 0.1624, and 0.1929. It is worth noting that the test set of the

model has a higher correct rate than the training set. The 200

iterations of permutation tests (Figure S3) of the model did not

reveal any risk of overfitting, so the reason for this is probably the

small sample size. As observed from the confusion matrix plot in

Figure S2, the identification of samples 1-K-6 and 1-K-7 had

identification barriers after preprocessing with MSC. In general, it

appears from Table 1 that the preprocessing did not improve the

classification results and was not as effective as the original spectral

modeling. The reason for this may be that the spectral

preprocessing shows more spectral information but does not

extract its feature information, resulting in more redundant and

invalid information. The Q2 and R2 of all models were relatively

low, indicating the low robustness and reliability of the models.

Therefore, feature selection or increasing the sample size of the

spectral data is likely to improve the performance of the model. In

summary, the PLS-DA model can identify and differentiate between

different processed P. kingianum samples to some extent.
3.3 Discussion

The results of this study show that different processing methods

significantly affect the chemical composition of P. kingianum. The

multiple roasted samples have more sugars, nucleotides, esters, and

flavonoids, but fewer amino acids. Heat treatment significantly

reduces the amino acid content, which is similar to the results of

this study (Chen et al., 2015). Acids and alkaloids did not vary much

between the various types of processed samples, but there was a

little pattern in the distribution of alcohols and vitamins. These

chemical components are closely related to the flavor and

nutritional value of P. kingianum. In terms of sugars, acids,
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nucleotides, and esters, samples 1-K-3 to 1-K-6 are more nutritious.

If the amino acids are chosen, then 1-Y and 3-Z are better. However,

it is worth noting that three low levels of biogenic amines were

detected in 1-Y. The samples (1-Y, 2-K, 3-Z, 4-J, and 1-K-0) contain

more polysaccharides and amino acids and are suitable for use as

nutritional supplements. With the increase of steaming and roasting

times, they are more suitable for consumption as dried fruit, as the

Maillard reaction contributes to the formation of color and flavor.

Figure 1 shows that the color of the samples (1-Y, 2-K, 3-Z, 4-J, and

1-K-0) is close to the original beige of P. kingianum. The color of the

samples (1-K-1 to 1-K-9) gradually darkens to black with increasing

steaming and roasting times. Fan et al. (2020) used HPLC-MS/MS

to study polysaccharide changes in P. cyrtonema processed by

steaming and roasting nine times. The results concluded that the

polysaccharides in the processed P. cyrtonema samples were mainly

composed of galactose, mannose, and glucose. The composition of

polysaccharides during processing is very different, and the changes

are not parallel. However, hexose, L-sorbinose, D-(-)-fructose, and

hex-2-ulofuranosyl hexopyranoside were the most abundant sugars

in the study here. The reasons for this may be differences in species,

processing, detection, and extraction methods. This study is the first

time to use untargeted GC-MS and FT-NIR to explore the effect of

processing methods on the chemical composition of P. kingianum.

However, a limitation of this study is that the experimental

parameters of the processing method used may not be optimal.

The later research can focus on parameter adjustment and optimize

the processing method, such as the time of steaming, the

temperature of roasting, and the thickness of the slices. It is also

worth noting that the quality of processed P. kingianum is evaluated

on a multi-factorial basis. As a food product, consumers care more

about taste and texture; as a functional product, the more potent

chemical composition is more important. It is indisputable that

many non-volatile compounds have nutritional value or biological

activity. Therefore, the next research may consider using LC-MS

for detection.

The FT-NIR spectra show the same trends and different

absorbances for the different processed samples. Thus, differences

in the chemical composition of different processed samples are

indicated. Similar distribution results were obtained by PCA based

on GC-MS and FT-NIR. The results confirmed the validity and

accuracy of FT-NIR in describing the chemical composition of

different processed samples. The PLS-DA model based on FT-NIR
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achieved 71.43%-96.43% identification accuracy for samples treated

with different processing methods. The preprocessed FT-NIR did

not improve the performance of the models, and all models had

lower R2 and Q2. This may be because too much redundant

information hides information that is powerful for classification.

Variable selection or feature extraction might be the solution. For

better results in later studies, sample sizes can also be increased, or

other analytical instruments can be considered for fusion analysis.

After increasing the sample size, the correlation analysis between

FT-NIR and GC-MS data can be considered to further confirm the

analytical capability of FT-NIR. FT-NIR is the key to enable rapid

analysis, and many studies have demonstrated its feasibility in

implementing predictive components. In one study, NIR was used

to predict soluble solids content in blueberries (Bai et al., 2022).

In conclusion, this study is the first to analyze 14 processed P.

kingianum using untargeted GC-MS and FT-NIR. It can provide

some references and options for consumers, producers,

and researchers.
4 Conclusions

In this study, we used untargeted GC-MS and FT-NIR to

qualitatively and quantitatively evaluate different processed P.

kingianum. The results showed that the chemical composition of

different processed P. kingianum differed greatly. Sugars, amino

acids and acids are the more abundant components of P.

kingianum. The sugars were mainly monosaccharides or small

molecular sugars and were more abundant in the samples roasted

several times. This may be the polysaccharides were broken down

during the steaming and roasting process. The samples with

multiple roasts contained more nucleotides, esters, and

flavonoids. The heat treatment significantly reduces the amino

acid content. The acids and alkaloids in different processed

samples did not change much. Changes in compounds can be

attributed to accumulation, chemical reactions or transformations,

presumably closely related to temperature. Overall, the samples (1-

Y, 2-K, 3-Z, 4-J, and 1-K-0) contained more polysaccharides and

amino acids and were suitable for use as nutritional supplements.

With increasing steaming and roasting times, they are more suitable

for consumption as dried fruits, as the Maillard reaction promotes

the formation of color and flavor. Both PCA and HCA based on
TABLE 1 Parameters of the PLS-DA model based on FT-NIR data.

R2 Q2 LVs RMSEP RMSEE RMSECV Train Acc (%) Test Acc (%)

Original 0.655 0.433 17 0.1607 0.1636 0.1908 95.24 92.86

MSC 0.601 0.404 15 0.1523 0.1624 0.1929 90.48 96.43

SNV 0.594 0.389 15 0.1616 0.1770 0.1974 88.10 89.29

SD 0.635 0.415 11 0.1820 0.1637 0.1995 92.86 71.43

MSC+SD 0.687 0.426 12 0.1673 0.1300 0.2026 98.81 82.14

SNV+SD 0.688 0.428 12 0.1665 0.1518 0.1955 92.86 85.71
R2=Coefficient of determination; Q2 represents the prediction ability of PLS-DA model.; LVs, Number of potential variables; RMSEP, Root mean square error of prediction; RMSEE, Root mean
square error of estimation; RMSECV, Root mean square error of cross validation; Train Acc, Classification accuracy of train sets; Test Acc, Classification accuracy of test sets.
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untargeted GC-MS data aggregate multiple roasted samples into a

group. The loading plot of PCA shows how the different

compounds contribute to the clustering of the sample. The FT-

NIR spectra of each processed sample had nine absorption peaks

with similar peak shapes but significant absorbance differences. The

PCA based on FT-NIR observed three clustering trends in the

samples that could be attributed to the distribution of sugars and

amino acids. Supervised PLS-DA models were established based on

FT-NIR with different preprocessing, and the recognition rate could

reach 71.43-96.43%. In summary, this study achieved effective

qualitative and quantitative evaluation of the different processed

P. kingianum using untargeted GC-MS and FT-NIR. The results of

the study can provide some references and options for consumers,

producers and researchers and can also contribute to the industrial

development of P. kingianum.
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