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Two different strategies of
Diversispora spurca-inoculated
walnut seedlings to improve leaf
P acquisition at low and
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Walnut (Juglans regia) is an important nut tree species in the world, whereas

walnut trees often face inadequate phosphorus (P) levels of soil, negatively limiting

its growth and yield. Arbuscular mycorrhizal fungi (AMF) can colonize walnut roots,

but whether and how AMF promotes walnut growth, physiological activities, and P

acquisition is unclear. The present study aimed to evaluate the effects of

Diversispora spurca on plant growth, chlorophyll component concentrations,

leaf gas exchange, sugar and P concentrations, and expression of purple acid

phosphatase (PAP) and phosphate transporter (PT) genes in leaves of J. regia var.

Liaohe 1 seedling under moderate (100 mmol/L P) and low P (1 mmol/L P) levels

conditions. Three months after inoculation, the root mycorrhizal colonization rate

and soil hyphal length were 45.6−53.2% and 18.7−39.9 cm/g soil, respectively, and

low P treatment significantly increased both root mycorrhizal colonization rate and

soil hyphal length. Low P levels inhibited plant growth (height, stem diameter,

and total biomass) and leaf gas exchange (photosynthetic rate, transpiration rate

and stomatal conductance), while AMF colonization significantly increased these

variables at moderate and low P levels. Low P treatment limited the level of

chlorophyll a, but AMF colonization did not significantly affect the level of

chlorophyll components, independent on soil P levels. AMF colonization also

increased leaf glucose at appropriate P levels and leaf fructose at low P levels

than non-AMF treatment. AMF colonization significantly increased leaf P

concentration by 21.0−26.2% than non-AMF colonization at low and moderate P

levels. Low P treatment reduced the expression of leaf JrPAP10, JrPAP12, and

JrPT3;2 in the inoculated plants, whereas AMF colonization up-regulated the

expression of leaf JrPAP10, JrPAP12, and JrPT3;2 at moderate P levels, although

AMF did not significantly alter the expression of JrPAPs and JrPTs at low P levels. It

is concluded that AMF improved plant growth, leaf gas exchange, and P acquisition
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of walnut seedlings at different P levels, where mycorrhizal promotion of P

acquisition was dominated by direct mycorrhizal involvement in P uptake at low

P levels, while up-regulation of host PAPs and PTs expressions at moderate

P levels.
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Introduction

Phosphorus (P) is an important nutrient for plant growth and

productivity. However, in the soil, P is immobilized in the form of

aluminum/iron or calcium/magnesium phosphate (Pi), which

prevents it from being acquired by plants. In addition, the

utilization rate of Pi in agriculture is 15−20%, making crops often

faced with P starvation (Malhotra et al., 2018). The use of a large

amount of P fertilizers leads to the decline in soil physical and

chemical properties, pollutes soil and aquatic environment, changes

biodiversity, and triggering significant carbon emissions (Li et al.,

2022). To deal with P starvation, plant roots absorb Pi directly from

the soil by Pi transporters (PTs) or indirectly through their symbiotic

arbuscular mycorrhizal fungi (AMF) (Wang et al., 2021). The

inorganic Pi absorbed by the roots is loaded through the Casparian

band in the xylem vessels and then transferred to the shoots via the

protein, phophate 1 (Sandhu and Rouached, 2022).

Attempts have also been made to use some beneficial

microorganisms to enhance plant growth under P starvation

conditions, such as the AMF (Adeyemi et al., 2021). AMF is an

ancient class of fungi that establish mycorrhizal symbiosis on about

80% of terrestrial plants, where AMF obtains their required sugars

and fatty acids from the plant partners in exchange for the acquired P

(Smith and Smith, 2011). In addition, mycorrhizal extraradical

mycelium can extend beyond the Pi depletion zone in the

rhizosphere to absorb Pi that cannot be obtained by plants, increase

the area of root absorption area, release organic acids such as citrate

and malate to dissolve organic Pi, and activate expressions of specific

PT genes in both mycorrhizal roots and AMF to absorb and transfer

Pi, thus enhancing plant P acquisition (Etesami et al., 2021). AMF

also changes Pi absorption kinetic parameters and stimulates other

microbial activities in the soil to jointly promote P absorption of host

plants (Smith et al., 2015). In addition to PTs, purple acid phosphatase

(PAP) genes are also involved in mycorrhizal enhancement of host P

acquisition. In soybeans, overexpression of GmPAP33 resulted in

increased plant P concentrations after AMF inoculation and also

participated in arbuscule degradation (Li et al., 2019).

Walnut (Juglans regia L.) is an important nut tree species in the

world, cultivated in Asia, North America, Europe and South America,

of which China is the world’s largest walnut producer, with 7.8

million hm2 of walnut planted area and a yield of 4.806 million t in

2020 (Ma and Ning, 2021). However, the soil fertility of walnut

orchards in China is relatively low, especially the Olsen-P level,

resulting in low fruit yield and oil content (Zhang, 2014), which

seriously limits the high yield and quality of walnut. In addition, in the
02
United States, many walnut trees in Lake County, California also

suffer from P starvation, mainly in the volcanic soil (Serr, 1960),

resulting in small and thin leaves, thin and few branches, and purplish

red in the petiole and leaf backside in severe cases. Some AMF

populations have been found to inhabit the rhizosphere of walnuts

and confer many important physiological contributions to the host

walnut (Ma et al., 2021). Mao et al. (2022) observed that the AMF

colonization rate of walnut roots in Yunnan, China ranged from

75.67% to 84.37%, along with the genus Acaulospora, Diversispora,

Funneliformis, Glomus, Rhizophagus, Scuteiiospora, Sclerocystis, and

Septoglomus recorded in the rhizosphere. And, further inoculation

revealed that these native AMF species significantly increased leaf and

root P content (Mao et al., 2022). In walnut seedlings inoculated with

five AMF species, Huang et al. (2020) observed improved plant

growth, coupled with the best effect on D. spurca. Mycorrhizal

walnut seedlings recorded higher mineral element concentrations,

including P than non-mycorrhizal seedlings, regardless of soil water

regimes (Behrooz et al., 2019). This shows the potential value of AMF

for P acquisition by walnut trees. However, it is not clear whether and

how the efficient AMF strain D. spurca affects P acquisition, leaf gas

exchange, and sugar accumulation in walnut plants under soil P-

deficient and P-sufficient conditions.

The purpose of this study was to analyze the effects of an efficient

AMF strain (D. spurca) on growth and leaf P concentrations, gas

exchange, chlorophyll component concentrations, sugar

accumulation, and PAP and PT gene expressions in walnut

seedlings grown in 1 and 100 mmol/L P levels.
Materials and methods

Plant culture

The seeds of walnut variety Liaohe No. 1 were provided by the

Walnut Technology Extension Center of Baokang (Hubei, China).

The seeds were surface disinfected with 75% ethanol for 8 min,

washed with distilled water, soaked in distilled water for a week, and

then sown in autoclaved sands for the germination in an incubator at

28°C/20°C (day and night temperature) and 80% relative humidity.

The seedlings with four leaves were transplanted into plastic pots (2.4

L) pre-filled with hydrochloric acid-washing sand to reduce the

interference of P in the substrate.

Based on the results of Huang et al. (2020), we selected the D.

spurca strain as the fungal material because it showed relatively good

effects on improving walnut growth. The D. spurca strain was isolated
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from the rhizosphere of tomato in Shouguang (Shandong, China).

After the morphological identification, the strain of D. spurca was

trapped by white clover under potted conditions. After approximately

11 weeks, the D. spurca-colonized roots and potted substrates were

collected as the mycorrhizal fungal inoculums and stored at 4°C after

natural air-drying. Before use, the spore density was 15 spores/g. The

inoculation of D. spurca was carried out at the time of transplanting.

A total of 120 g of mycorrhizal fungal inoculums was applied to the

designed pot as the inoculation treatment. The equal amount of

autoclaved mycorrhizal inoculums was applied to the uninoculated

pot as the uninoculation treatment, followed by 2 mL of filtered (25

mm) solution with equal amount of mycorrhizal inoculums added to

maintain the consistency of the microbiota except for the target strain.

Seven days after the inoculation, P treatments were applied. P

concentrations in the potted substrate were achieved by controlling the

KH2PO4 level in Hoagland nutrient solutions (pH 7.0), where 1 mmol/L

and 100 mmol/L KH2PO4 was defined as the low P andmoderate P level

(Li et al., 2010). To reduce the difference in K levels of nutrient solutions

among treatments, additional KNO3 was added to the P-deficient

treatment to ensure the consistent K level. The nutrient solution was

used at an intensity of 150 mL per pot at the three-day intervals.

All treated seedlings were placed in a greenhouse from May 4,

2020 to August 4, 2020, where environmental conditions were

described in detail by Zou et al. (2021)
Experimental design

This experiment consisted of two factors: one was inoculation

with (+A) and without (-A) D. spurca and the other was P treatments

with 1 mmol/L (P1) and 100 mmol/L (P100) P. Each treatment was

replicated eight times in 32 pots, with one walnut seedling planted in

each pot in a randomized arrangement.
Determinations of variables

After three months of treatments, the plants were harvested. Plant

height, stem diameter, and total biomass were measured directly

before harvesting. At the same time, a portable Li-6400

photosynthetic apparatus (Li-Cor Inc., Lincoln, USA) was used to

determine leaf gas exchange starting at 9:00 am on a sunny day before

harvest. The soil attached to the roots was gently shaken off for hyphal

length analysis, based on the method outlined by Bethlenfalvay and

Ames (1987). A portion of root segments were cut, and root

mycorrhizal staining was performed using trypan blue method

described by Phillips and Hayman (1970). After microscopic

observation, the root mycorrhizal colonization rate (%) was

estimated as the percentage of the length of root segments

colonized by AMF to the total length of root segments examined.

Eight plants from each treatment were divided equally into two

parts, one of which was immediately frozen in liquid nitrogen and

then stored at -80 °C for analysis of gene expressions. The other part

was killed at 105 °C for 3 min after chlorophyll determination, then

dried at 75 °C to constant weight, ground to powder, and passed

through a 2 mm sieve for P concentration determination. The ICP

Spectrometer (IRIS Advantage, Thermo, Waltham, USA) was used to
Frontiers in Plant Science 03
analyze leaf P concentration. The concentration of glucose, fructose

and sucrose in leaves was determined according to the colorimetric

method described in detail by Wu et al. (2015b). The concentration of

chlorophyll components was extracted with 80% acetone and

determined using the method described by He et al. (2022).

The sequences of PAP genes (PAP10 and PAP12) and PT genes

(PT3;1 and PT3;3) in Arabidopsis were obtained from the NCBI

database (http://www.ncbi.nlm.nih.gov) and then compared with

genome-wide of walnut (http://aegilops.wheat.ucdavis.edu/Walnut/

data.php). The primer sequences (Supplementary Table S1) of

JrPAP10, JrPAP12, JrPT3;1, and JrPT3;3 genes were designed using

Primer5 premier 5.0 software and synthesized by Shanghai

Bioengineering Co., Ltd. (Shanghai, China). Total RNA of leaf

samples was extracted using an EASY spin Plus plant RNA kit

(Aidlab). The reverse transcription of RNA was performed using

the PrimeScript™ RT reagent kit with gDNA eraser kit (Takara). The

18S rRNA of walnut was used as the reference gene for qRT-PCR

amplification. qRT-PCR was performed using the fluorescent dye

method (2×AceQ® qPCR SYBR® Green Master Mix) with three

biological replicates per treatment. The 2-DDCt method (Livak and

Schmittgen, 2001) was used to calculate the relative gene expression,

in which the relative expression was normalized by the treatment with

non-inoculation of D. spurca at P100 levels.
Statistical analysis

The data obtained from this experiment were presented using the

means ± standard deviation. A two-factor (P treatments and AMF

inoculations) analysis of variance was used for statistical analysis, with

arcsine transformation preprocessed for percentages. Significant

differences were compared at the 0.05 level using the Duncan’s new

multiple range test. All statistical analyses were performed under

SAS software.
Results

Changes in root AMF colonization and soil
hyphal length

No mycorrhizal colonization was observed in roots of walnut

seedlings inoculated without D. spurca, while mycorrhizal structures

were visible in roots of walnut seedlings inoculated with D. spurca

(Figure 1A), where the root mycorrhizal colonization rate ranged

from 45.6% to 53.2% (Figure 1B) and soil hyphal length varied from

18.7 to 39.9 cm/g soil (Figure 1C), respectively. The P1 treatment

significantly increased the root AMF colonization rate and soil hyphal

length by 16.7% and 113.4%, respectively, compared with P100
treatment. P treatments and AMF inoculations significantly

interacted with each other on soil hyphal length (Table 1).
Plant growth responses

Walnut plants clearly responded to the P treatment as well as the

D. spurca inoculation (Figure 2A). Both P treatments and AMF
frontiersin.org
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inoculations significantly altered plant growth variables, including

plant height, stem diameter, and total biomass (Figures 2B–D). The

P100 treatment significantly increased plant height, stem diameter,

and total biomass by 6.0%, 14.1% and 32.9% in uninoculated plants

and by 11.4%, 11.0% and 11.7% in inoculated plants, respectively,

compared with the P1 treatment. On the other hand, inoculation with

D. spurca also significantly increased plant height, stem diameter, and

total biomass by 12.9%, 14.2%, and 51.5% under P1 conditions and by

18.7%, 11.2%, and 27.3% under P100 conditions, respectively,

compared with the uninoculation control. There was not any
Frontiers in Plant Science 04
significant interaction between AMF inoculation and P treatment

on these growth variables (Table 1).
Responses of leaf chlorophyll
component concentrations

P100 treatment significantly promoted concentrations of

chlorophyll a in leaves of uninoculated plants by 39.8% as well as

concentrations of chlorophyll a and total chlorophyll in leaves of
TABLE 1 Significance in interaction between arbuscular mycorrhizal fungi (AMF) treatments and phosphorus (P) treatments.

AMF treatments P treatments Interaction

Root mycorrhizal colonization rate <0.0001 0.1234 0.1234

Soil hyphal length <0.0001 0.0008 0.0008

Plant height <0.0001 0.0016 0.1856

Stem diameter 0.0003 0.0004 0.8247

Total biomass <0.0001 0.0005 0.1455

Chlorophyll a 0.1826 0.0015 0.6505

Chlorophyll b 0.1988 0.2294 0.2518

Carotenoid 0.1124 0.1108 0.9261

Total chlorophyll 0.1291 0.0038 0.4066

Leaf photosynthetic rate 0.0187 <0.0001 0.1631

Leaf transpiration rate 0.0162 0.0708 0.9161

Leaf stomatal conductance 0.0027 0.0341 0.9671

Leaf fructose 0.1184 0.8547 0.0036

Leaf glucose 0.3765 0.0185 0.0287

Leaf sucrose 0.5571 0.0009 0.1001

Leaf P 0.0029 0.0016 0.0540

Leaf JrPT3;1 <0.0001 <0.0001 <0.0001

Leaf JrPT3;2 0.0016 0.3693 0.0322

Leaf JrPAP10 <0.0001 <0.0001 <0.000

Leaf JrPAP12 <0.0001 <0.0001 0.0099
fro
A B C

FIGURE 1

Root colonization (A) of Diversispora spurca and changes in root mycorrhizal colonization rate (B) and soil hyphal length (C) of walnut seedlings
inoculated with D. spurca grown in 1 and 100 mmol/L phosphorus levels. Data (means ± SD, n = 4) followed by different letters above the bars indicate
significant (P < 0.05) differences. P1+A, the walnut seedlings inoculated with D. spurca at 1 mmol/L phosphorus levels; P1-A, the walnut seedlings
inoculated without D. spurca at 1 mmol/L phosphorus levels; P100+A, the walnut seedlings inoculated with D. spurca at 100 mmol/L phosphorus levels;
P100-A, the walnut seedlings inoculated without D. spurca at 100 mmol/L phosphorus levels.
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inoculated plants by 47.4% and 39.7%, respectively, compared to P1
treatment (Figure 3). On the other hand, although walnut seedlings

inoculated with D. spurcamaintained relatively higher concentrations

of chlorophyll a, chlorophyll b, carotenoid, and total chlorophyll, the

difference was not significant, independent of substrate P levels. No

significant interaction appeared on leaf chlorophyll component

concentrations (Table 1).
Responses of leaf gas exchange

The application of P100 significantly increased leaf photosynthetic

rate, transpiration rate and stomatal conductance by 14.0%, 18.2%,

and 15.4% in inoculated plants and 34.6%, 26.3%, and 16.3% in
Frontiers in Plant Science 05
uninoculated plants, respectively, compared with P1 conditions

(Figures 4A–C). Similarly, D. spurca-inoculated plants showed

significantly higher leaf photosynthetic rate, transpiration rate, and

stomatal conductance, with increases of 23.4%, 35.1%, and 25.0%

under P1 conditions, and 4.5%, 26.4%, and 24.0% under P100
conditions, respectively. No significant interaction appeared on leaf

gas exchange variables (Table 1).
Responses of leaf sugars

P100 treatment dramatically reduced leaf glucose concentration of

uninoculated plants, while distinctly increased leaf glucose

concentration of inoculated plants by 19.7%, along with the
A

B DC

FIGURE 2

Changes in plant growth performance (A), plant height (B), stem diameter (C), and total biomass production (D) of walnut seedlings inoculated with
Diversispora spurca grown in 1 and 100 mmol/L phosphorus levels. Data (means ± SD, n = 4) followed by different letters above the bars indicate
significant (P < 0.05) differences. The abbreviations were shown in Figure 1.
FIGURE 3

Changes in leaf chlorophyll component concentrations of walnut seedlings inoculated with Diversispora spurca grown in 1 and 100 mmol/L phosphorus
levels. Data (means ± SD, n = 4) followed by different letters above the bars indicate significant (P < 0.05) differences. The abbreviations were shown in
Figure 1.
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reduction of leaf fructose and sucrose by 38.5% and 29.4%,

respectively, compared with P1 treatment (Figure 5). On the other

hand, mycorrhizal plants recorded 33.6% significantly higher leaf

fructose concentration under P1 conditions and 30.0% significantly

higher leaf glucose concentration under P100 conditions, respectively.

In addition, AMF inoculation and P treatment significantly interacted

to affect leaf fructose and glucose concentrations (Table 1).
Responses of leaf P concentration

P100 treatment dramatically increased leaf P concentration by

22.1% in uninoculated plants and 17.1% in inoculated plants,

respectively, compared with P1 treatment (Figure 6). In addition, D.

spurca inoculation significantly increased leaf P concentration by

26.2% and 21.0% under P1 and P100 conditions, respectively. No

significant interaction was found on leaf P concentration (Table 1)
Responses of leaf PTs and PAPs expressions

P100 treatment dramatically up-regulated JrPAP10, JrPAP12, and

JrPT3;2 expressions in mycorrhizal plants by 23.48-, 1.29-, and 3.79-
Frontiers in Plant Science 06
fold and JrPT3;1 expression in non-mycorrhizal plants by 4.19-fold,

along with a 0.77-fold down-regulated expression of JrPAP12 in non-

mycorrhizal plants, compared with P1 treatment (Figure 7). Under P1
conditions, D. spurca inoculation did not alter expressions of

JrPAP10, JrPAP12, JrPT3;1, and JrPT3;2. However, under P100
conditions, the fungal inoculation up-regulated JrPAP10, JrPAP12,

and JrPT3;2 by 12.76-, 10.19-, and 6.59-fold, respectively, along with a

0.80-fold down-regulation of JrPT3;1 expression, compared with non-

inoculation control. AMF inoculations and P treatments significantly

interacted with each other to affect leaf JrPAP10, JrPAP12, JrPT3;1,

and JrPT3;2 expression (Table 1).
Discussion

The results of this study showed that D. spurca was able to

establish mycorrhizal symbiosis with the roots of walnut seedlings.

Low P (P1) treatment dramatically stimulated root AMF colonization

rate and soil hyphal length, compared with moderate P (P100)

treatment. This is consistent with the results of Wu et al. (2015b)

inoculating Funneliformis mosseae on trifoliate orange at 0.5 and 50
A B C

FIGURE 4

Changes in leaf photosynthesis rate (A), transpiration rate (B), and stomatal conductance (C) of walnut seedlings inoculated with Diversispora spurca
grown in 1 and 100 mmol/L phosphorus levels. Data (means ± SD, n = 4) followed by different letters above the bars indicate significant (P < 0.05)
differences. The abbreviations were shown in Figure 1.
FIGURE 5

Changes in leaf fructose, glucose, and sucrose concentrations of walnut seedlings inoculated with Diversispora spurca grown in 1 and 100 mmol/L
phosphorus levels. Data (means ± SD, n = 4) followed by different letters above the bars indicate significant (P < 0.05) differences. The abbreviations
were shown in Figure 1.
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mmol/L P levels, but contrary to the results of Shao et al. (2021)

inoculating Claroideoglomus etunicatum on tea plants at 0.5 and 50

mmol/L P levels. Usually, AMF colonization of roots is negatively

correlated with substrate P levels, and thus low P levels in substrates

stimulate hyphal growth and mycorrhizal formation (Wu et al.,

2015a). Moreover, in the condition of substrate P deficiency, plant

growth is more dependent on the mycorrhizal pathway to obtain P

(Smith and Smith, 2012). In the present study, low P treatment

significantly reduced plant height, stem diameter, and biomass

production of walnut seedlings, but inoculation with D. spurca

alleviated the inhibitory effects of low P stress on plant growth to

varying degrees, and the promoting effect of mycorrhizae on total

biomass was higher under P1 conditions than under P100 conditions,

indicating a more prominent role of mycorrhizae under low P

conditions. In addition to the growth improvement of walnut

seedlings by D. spurca under P stress, similar results occurred
Frontiers in Plant Science 07
under soil drought conditions (Ma et al., 2022), showing the

important role of the D. spurca strain on plant growth of

walnut seedlings.

In this study, inoculation with D. spurca did not significantly alter

concentrations of chlorophyll a, chlorophyll b, carotenoid, and total

chlorophyll, independent of substrate P levels. However, in maize,

inoculation with Glomus mosseae significantly increased chlorophyll

levels at 0.05 and 1 mmol/L P levels (Feng et al., 2002), which was

associated with the promotion of host Mg and Fe acquisition by AMF

(Zhang et al., 2018). This showed that the improvement of

chlorophyll component concentrations by AMF is variable and may

be dependent on AMF, host plants, and environmental conditions.

Mycorrhiza-triggered changes in chlorophyll compositions were not

significant in walnut seedlings, which in turn caused leaf glucose,

fructose, and sucrose contents to be barely affected at low and

moderate P levels, although mycorrhizal walnut plants showed
FIGURE 6

Changes in leaf phosphorus (P) concentrations of walnut seedlings inoculated with Diversispora spurca grown in 1 and 100 mmol/L P levels. Data (means
± SD, n = 4) followed by different letters above the bars indicate significant (P < 0.05) differences. The abbreviations were shown in Figure 1.
FIGURE 7

Changes in expressions of purple acid phosphatase (PAP) and phosphate transporter (PT) in leaves of walnut seedlings inoculated with Diversispora
spurca grown in 1 and 100 mmol/L phosphorus levels. Data (means ± SD, n = 3) followed by different letters above the bars indicate significant (P < 0.05)
differences. The abbreviations were shown in Figure 1.
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higher fructose concentrations under P1 conditions as well as glucose

concentrations at P100. AMF-induced sugar changes of walnut

seedlings were associated with mycorrhizal roots forming a strong

carbon pool and greater mycorrhizal roots consumed a large amount

of sugar (Wu et al., 2015b; He et al., 2022). More experiments are

required to verify the reason. However, D. spurca inoculation

significantly elevated leaf photosynthetic rate, stomatal

conductance, and transpiration rate, although low P treatment

inhibited leaf gas exchange. Thus, under low P stress, AMF may

accelerate leaf gas exchange in host plants by reducing stomatal

resistance as well as increasing transpiration fluxes (Zhu et al.,

2011). Another explanation is that AMF alters the levels of

endogenous hormones, especially abscisic acid, and thus regulates

leaf gas exchange (He et al., 2019).

The present study showed that D. spurca inoculation significantly

increased leaf P levels of walnut seedlings, and the increase was higher

at P1 levels than at P100 levels, showing the prominent effect of D.

spurca on host P uptake at low P levels. This is because plant roots at

P100 levels can take up sufficient P and therefore have relatively low

dependence on arbuscular mycorrhizae, whereas at P1 levels, plant

roots do not take up sufficient P and need to take up additional P to

meet plant P demand with the help of AMF through its extraradical

hyphal extension to areas inaccessible to the root (Song et al., 2001).

PAP is the largest class of acid phosphatases, secreting acid

phosphatase to the cell wall or to the root surface and environment,

mainly involved in the hydrolysis of multiple Pi esters in the

rhizosphere or extra-plasmic space, thus facilitating plant P

acquisition (Schenk et al., 2013; Wang et al., 2014). The present

study showed that in D. spurca-inoculated walnut seedlings, P1
treatment significantly suppressed the expression of both JrPAP10

and JrPAP12, compared with P100 treatment, whereas in uninoculated

plants, JrPAP12 expression was up-regulated. This suggested that

mycorrhizal plants are distinct from non-mycorrhizal plants in terms

of PAPs expression response in the face of P stress. This is due to the

fact that mycorrhizal plants exhibited higher mycorrhizal

colonization rate of roots and soil hyphal length under low P versus

moderate P conditions, and they can better help the host to obtain P

through reducing arbuscule degradation (Li et al., 2019), resulting in a

reduced dependence on PAPs. D. spurca did not alter JrPAP10 and

JrPAP12 expression under low P conditions. However, at P100 levels,

D. spurca significantly up-regulated JrPAP10 and JrPAP12 expression.

Combined with no significant changes in JrPT expressions by D.

spurca at low P levels, this implies that at low P levels, mycorrhizae

promote plant P acquisition mainly by increasing root mycorrhizal

colonization rate and soil hyphal length, which in turn directly

exploits the mycorrhizal pathway to promote host P acquisition

(Smith and Smith, 2011; Smith et al., 2015). In Arabidopsis, it has

been demonstrated that AtPAP10 is a secreted acid phosphatase and

is an essential component of the adaptive response of plants to Pi

limitation, but AtPAP12 is an intracellular acid phosphatase (Wang

et al., 2014). Therefore, at P100 levels, D. spurca might promote the

expression of intracellular acid phosphatase (JrPAP12) and secret acid

phosphatase genes (JrPAP10). In addition, AtPAP10 on the root

surface is controlled by ethylene only (Zhang et al., 2014), so

whether mycorrhizal up-regulation of JrPAP10 is related to
Frontiers in Plant Science 08
mycorrhizal triggering of ethylene synthesis remains to be

further investigated.

PTs are an important membrane protein found in the

mitochondrial, plasma and plastid membranes of plants, controlling

the uptake and translocation of Pi in plants (Nakamori et al., 2002).

AMF usually induces the expression of host high-affinity PT genes to

enhance plant uptake of P (Luo et al., 2019). The results of this study

showed that low P treatment inhibited the expression of JrPT3;1 in

uninoculated plants as well as the expression of JrPT3;2 in inoculated

plants, suggesting that JrPT3;1 and JrPT3;2 are not genes up-regulated

for expression at low P levels. Huang et al. (2022) also found that low

P repressed the expression of PT1;1 in leaves of Camellia oleifera

seedlings. However, walnut plants colonized by D. spurca did not

show significant changes in JrPT3;1 and JrPT3;2 in leaves at low P

levels, while at moderate P levels, JrPT3;1 was repressed and JrPT3;2

was up-regulated. This suggests that AMF only up-regulated the

expression of JrPT3;2 at appropriate P levels. In addition,

mycorrhizal regulation of host PTs expression may be closely

related to host root-hair status, where substrate low P levels

increase root-hair density (Wang et al., 2006; Zhang et al., 2019;

Shao et al., 2021), thereby promoting host P acquisition by both root-

hairs and mycorrhizal pathways. Shao et al. (2021) also found that

Claroideoglomus etunicatum up-regulated the expression of CsPT1

but suppressed the expression of CsPT4 in leaves of tea plants under

low and appropriate P conditions. Cao et al. (2022) also found that

PTs expressions were dependent on the AMF species and plant

tissues. It concludes that AMF-up-regulated PT expressions depend

on AMF species, plant tissues, substrate P levels, and PT genes. On the

other hand, at moderate P levels, mycorrhizal enhancement of plant P

acquisition is related to the up-regulation of host PAPs and PTs

expression. More work needs to be done around the expression of

more PTs genes in leaves and roots under mycorrhization conditions.

Mycorrhizae can specifically induce the expression of certain high and

low affinity PT genes (Rausch et al., 2001). In the present study,

JrPT3;2 may be a candidate PT gene specifically induced by AMF at

moderate P levels, but functions of JrPT3;2 in arbuscule-containing

cortical cells of roots remains to be investigated.

Conclusion

This study showed that low P treatment significantly inhibited

plant growth, leaf gas exchange, chlorophyll component

concentrations, and P concentration of walnut plants, but D. spurca

significantly promoted plant growth and leaf gas exchange as well as P

acquisition at low P levels. Although AMF did not induce the

expression of JrPAP10, JrPAP12, JrPT3;1, and JrPT3;2 at low P

levels, the promotion of P acquisition by AMF at low P levels may

be related to the increase of root AMF colonization and soil hyphal

length. However, mycorrhizal promotion of host P acquisition at

moderate P levels was associated with AMF-increased expression of

JrPT3;2, JrPAP10, and JrPAP12. This suggests that AMF has different

strategies to promote host P acquisition at different P levels. More

studies need to be carried out on expressions of whole family

members of PTs and PAPs in leaves and roots of walnut seedlings

under mycorrhization conditions.
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plant growth, gas exchange, root morphology, and nutrient uptake of walnuts. Plant Soil
Environ. 66, 295–302. doi: 10.17221/240/2020-PSE
Li, Y. F., Jin, S. H., Ye, Z. Q., Huang, J. Q., and Jiang, P. K. (2010). Root morphology and
physiological characteristics in carya cathayensis seedlings with low phosphorus stress. J.
Zhejiang A.&F. Univ, 27, 239–245.

Li, X. R., Sun, J., Albinsky, D., Zarrabian, D., Hull, R., Lee, T., et al. (2022). Nutrient
regulation of lipochitooligosaccharide recognition in plants via NSP1 and NSP2. Nat.
Commun. 13, 6421. doi: 10.1038/s41467-022-33908-3

Li, C. C., Zhou, J., Wang, X. R., and Liao, H. (2019). A purple acid phosphatase,
GmPAP33, participates in arbuscule degeneration during arbuscular mycorrhizal
symbiosis in soybean. Plant Cell Environ. 42, 2015–2027. doi: 10.1111/pce.13530

Livak, K. J., and Schmittgen, T. D. (2001). Analysis of relative gene expression data
using real-time quantitative PCR and the 2-DDCt. Methods 25, 402–408. doi: 10.1006/
meth.2001.1262

Luo, Y. Y., Hao, X. J., and Zhang, K. Y. (2019). Effect of inoculation of AM fungi on
different phosphorus morphology of discarded soil in coal mining area. Southwest China
J. Agric. Sci. 32, 381–388. doi: 10.16213/j.cnki.scjas.2019.2.026

Ma, T., and Ning, D. L. (2021). Analysis of international competitiveness of China
walnut industry. For. Sci. Technol. 64 (1), 3–7. doi: 10.13456/j.cnki.lykt.2019.12.26.0002
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