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Individual and combined
effects of arbuscular mycorrhizal
fungi and phytohormones on the
growth and physiobiochemical
characteristics of tea
cutting seedlings

Xiubing GAO1,2*†, Yan LIU3†, Chunyan LIU2, Can GUO1,
Yuan ZHANG1, Chiyu MA1 and Xueyi DUAN1

1Guizhou Tea Research Institute, Guizhou Province Academy of Agricultural Science, Guiyang,
Guizhou, China, 2College of Horticalture and Gardening, Yangtze University, Jingzhou, Hubei, China,
3Guizhou Institutes of Biology, Guizhou Academy of Sciences, Guiyang, Guizhou, China
Both arbuscular mycorrhizal fungi (AMF) and phytohormones collectively

regulate plant growth and root development, but their individual and

combined effects on tea [Camellia sinensis (L.) O. Kuntze] cutting seedings

remain unclear. This study examined the individual and combined effects of

two species of AMF (Rhizophagus intraradices, RI and Funneliformis mosseae,

FM) and two types of palnt hormones (strigolactones, SLs; polyamines, PAs) on

tea cutting seedings, by evaluating the growth and physiobiochemical

characteristics of plants treated with the AMFs and/or hormones. The results

showed that inoculation with either AMF individually or hormones treatment

alone could significantly enhanced mycorrhizal colonization, growth target and

physiobiochemical characteristics of tea cutting seedlings. Interestingly, the

addition of a combination of AMFs and hormones showed superior effects,

while SL and RI exhibited the most improvements to the colonization rate, plant

growth, root-morphological traits, root DHA activity, photosynthesis, chlorophyll

content, soluble sugar content in leaves, and the activities of antioxidant

enzymes (SOD, POD, and CAT), compared to other treatment combinations

(SL + FM, PA + RI, and PA + FM). Correlation analyses revealed a significantly (p <

0.05) positive correlation of root AMF colonization with root-related traits (e.g.,

DHA, root total length, surface area, and volume) and leaf-related traits (e.g., leaf

area, shoot biomass, total chlorophyll, and antioxidant enzyme activities). This

study demonstrated that while the apllication of individual AMF or plant

hormones had a certain good effects on most growth and physiobiochemical

characteristics parameters of tea cutting seedings, the additive effect was from

specific combined of AMF and plant hormones. These results highlight the

possibility for combined of AMF and plant hormones to improve the asexual

reproduction of tea plants via cuttings.
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1 Introduction

Tea [Camellia sinensis (L.) O. Kuntze] is a widely consumed

aromatic beverage throughout the world and an important cash

crop in China (Liu et al., 2021). As a perennial evergreen woody

plant that generally grows in acidic soil (Singh et al., 2010), tea

leaves are rich in polyphenols, amino acids, polysaccharides,

flavonoids, and other natural active substances, which have

multiple health benefits, including promoting immunity and the

mental health of humans (Senanayake, 2013).

Though tea plant propagation can occur via sexual or asexual

reproduction, asexual reproduction is mainly preferred as it ensures

the inheritance of the mother plant’s excellent characteristics and

facilitates rapid propagation (Koyuncu and Balta, 2004; Romero,

2004). Tea plants are mainly propagated using the tea-cuttings

method, which has been used for over 200 years in China (Wang

et al., 2022). This asexual propagation method allows for a long

breeding season and maintains the high purity of the tea variety

(Wang et al., 2011). However, tea cutting seedlings with limited

rooting have low survival rates. Therefore, it is important to

improve the survival of tea cutting seedlings and promote

their growth.

Arbuscular mycorrhizal fungus (AMFs) is a type of beneficial

soil microorganism that benefits the host plant by improving root

growth, nutrient absorption, soil properties, and stress resistance

(Huang et al., 2011; Wipf et al., 2019). Tea plants live in symbiosis

with AMFs and strongly depend on the capacity of AMFs for P

uptake Shao et al, 2021. The AMF resources in the rhizosphere of

tea are abundant, while Acaulospora and Glomus are the dominant

AMF genera, and form good symbiotic relationships with tea plants

(Liu et al., 2021). A previous study revealed that inoculation with

four AMFs (Claroideoglomus etunicatum, Diversispora spurca, D.

versiformis, and mixed-AMF) could promote the growth and

biomass of tea seedlings (Shao et al., 2018). Meanwhile,

inoculation with C. etunicatum significantly improved the leaf

water content and antioxidant enzyme activity of tea plants under

drought stress (Liu et al., 2020). In addition, AMF inoculation

promoted the flavor and quality (e.g., catechins, amino acids, and

tea polyphenols) of tea under phosphorus stress conditions (Shao

et al., 2018; Cao et al., 2021a).

Increasing evidence has shown that AMF spore germination,

hyphal growth, and root colonization were initiated by plant

hormones (Requena et al., 2007; Sun et al., 2012; Liao et al., 2018;

Pei et al., 2020). Plant hormones are known to be signaling

molecules that act as important regulators of plant growth and

root development, and have also been shown to play crucial roles in

modulating the interactions between plants and AMFs.

Strigolactones (SLs), a new class of plant hormone, are

synthesized in the plant roots and play an important role in in

the regulation of plant growth, root development, and the overall

morphological structure of plants (Akiyama et al., 2005). SLs are

also involved in enhancing plant resistance to biotic and abiotic

stresses (Sedaghat et al., 2017; Min et al., 2019). Recently, it has

become clear that SLs not only stimulate seed germination, but also

promote hyphae branching, activate mitochondrial function, release

small molecular functional proteins of AMFs (Akiyama et al., 2005;
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Besserer et al., 2008; Waters et al., 2017), and improve the symbiotic

associations between plant roots and soil microorganisms. SLs also

enhance plant resistance to abiotic stresses (Xu et al., 2018; Yao and

Waters, 2020).

Similarly, polyamines (PAs) [e.g., diamine putrescine (Put),

triamine spermidine (Spd), and tetraamine spermine (Spm)]) are

another class of exogenous hormones that can regulate plant growth

and development, and enhance stress tolerance (Wang et al., 2015).

Exogenic PAs are considered to be associated with mycorrhizal

development (Jiménez Bremont et al., 2014) and were shown to

significantly increase mycorrhizal colonization (Wu et al., 2012),

improve antioxidant enzyme activity (SOD, POD and APX), and

reduce malondialdehyde (MDA) levels in Elymus nutans and

Elymus sibiricus under drought stress (Liang et al., 2020). In

addition, phytohormones are important regulatory signaling

factors involved in the symbiosis between AMFs and plants (Hull

et al., 2021). Meanwhile, the concentration and chemical structure

of SLs can control many aspects of shoot and root growth due to

varied recognition by the root affecting the branching of arbuscular

mycorrhizal hyphae (Waters et al., 2017).

Both AMF and plant hormones play important roles in plant

growth and development, and also in enhanceing plants resistance,

which showed a probably to compensate for the disadvantage of

current tea cutting technology, but few studies have examined the

individual and combined effects of AMF and plant hormones on the

growth and propagation of tea cutting seedlings. In this study, we

studied two species of AMF (R. intraradices and F. mosseae) with

two types of exogenous plant hormone (GR24 and Spm) to examine

their effects on the propagation, root development, photosynthesis,

and antioxidant pathways in tea cutting seedings (C. sinensis cv.

Fuding-Dabaicha).
2 Materials and methods

2.1 Experimental site and conditions

The experiment was carried out from October 2017 to

November 2018, at the Guiyang Tea Garden Base (106°

39’24.09”E, 26°30’52.07”N, 1127.10 m) of the Guizhou Tea

Research Institute, Guizhou Province Academy of Agricultural

Science, Guizhou, China. Tea cuttings were grown in a

greenhouse at 30/22°C (day/night) with a relative humidity of

60% and a 14/10 h (light/dark) cycle. A seedbed (8−10 m length

× 1.2−1.3 m width × 20−25 cm height) was prepared in a deep

furrow field, in which a width of 10−15 cm was reserved for each

region separated by furrows.
2.2 Test materials

Fuding white tea (C.sinensis (L.) O. Kuntze cv. Fuding-

Dabaicha), from the Guiyang Tea Germplasm Garden (106°

39’15.86”E, 26°30’10.53”N, 1116.4m) at the Guizhou Tea

Research Institute, Guizhou Province Academy of Agricultural

Science, China, and were most widely cultivated variety of tea tree
frontiersin.org

https://doi.org/10.3389/fpls.2023.1140267
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


GAO et al. 10.3389/fpls.2023.1140267
of Guizhou provience (planting rate is more than 65%) and planted

~20 years ago, were used as the experimental materials. From

October to November of 2017, when the lateral buds of the

mother tea tree grew to 10−15 cm, spikes were cut. The spikes

were half-lignified, annual, and strong, with long internodes, and

were full axillary buds. The spikes were also free of disease and

insect pests. Each cutting was 3−4 cm long with a portion of the

mature leaf and plump axillary bud.

Based on the morphological identification of AMF spores, the

dominant strains, Rhizophagus intraradices and Funneliformis

mosseae, were used as the fungal materials. Fungi were isolated

from the soil of the Guiyang Germplasm Tea Garden using the wet

sieving and decanting method described by Gerdemann and

Nicolson (1963). The isolated AMF spores were propagated in a

greenhouse with white clover (Trifolium repens) hosts, and grown

in a sterilized sand-soil substrate (mass ratio = 1: 1) at 30/22°C (day/

night) with a relative humidity of 60% and a 14/10 h (light/dark)

cycle in a greenhouse. After three months of cultivation, root

segments, spores, hyphae, and the substrate containing white

clover colonization were collected as the inocula (the spores

density of RI and FM were 19.7 ± 1.0 and 19.4 ± 1.4 spores per 1

g of soil, respectively, using the wet sieving and decanting method).
2.3 Experimental design

The study was a two-factor experiment. The first factor was the

fungal inoculation with R. intraradices (+RI), F. mosseae (+FM), or

non-AMF inoculations (-AMF). The second factor was the

application of the SL analog, GR24 (+SL), spermidine (+PA), or

no hormone (-HOR). In total, there were nine treatments: -AMF –

HOR, -AMF + SL, -AMF + PA, +RI – HOR, +RI + SL, +RI + PA,

+FM – HOR, +FM + SL and +FM + PA. Each treatment contained

three replicate plots (1.2 m in width and 5 m in length).
2.4 Preparation and
experimental execution

Tea cuttings were grown in a seedling bed of acidic soil by laying

them flat on a black plastic film and treating them with 5%

formaldehyde for disinfection for 24 h before the test. The

physicochemical properties of the soil were: pH, 4.51; Olsen-P,

4.52 mg/kg; available K, 275.67 mg/kg; and alkali-hydrolyzed N,

31.09 mg/kg. A layer of matrix containing AMF inocula of about 2.0

kg was spread on the furrowed field and covered with a 3−5 cm of

subsoil. The subsoil was collected from a barren mountain, was

mildly acidic, and was also treated with 5% formaldehyde.

The tea cuttings were disinfected by immersion in 1%

carbendazim for 5 min, followed by three washes in distilled

water. The planting density included a 0.5−1 cm plant spacing

and 3−5 cm row spacing. After planting ~45 days, the base of

tea cuttings were sprayed with 5 L of SL (1 mmol/L GR24) or PA

(1 mmol/L triamine spermidine) in the hormone-treatment groups.

GR24 (1 mmol/L; Umehara et al., 2008) and triamine spermidine
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(1 mmol/L; Wu and Zou, 2009) were dissolved in about 3-5 mL of

acetone and absolute ethanol, respectively, and then prepared at 2x

the desired final concentrations. The control treatments (-AMF +

-HOR, -AMF + SL, -AMF + PA) were sprayed with the same weight

sterilization inocula, which contained the same concentration of

acetone or absolute ethanol as the solvent, respectively.
2.5 Measurements

After ~90 days of AMF inoculation, the survival rate,

germination rate, and callus formation rate of 1,000 randomly

selected tea seedlings were estimated. After ~160 days of AMF

inoculation, the tea roots were stained for microscopic observation,

according to the method of Phillips and Hayman (1970). The

mycorrhizal colonization rate was estimated in terms of the

number of roots planted with fungi and the percentage of the

total number of roots observed.

After ~240 days of AMF inoculation, the tea cuttings were

harvest. Then the height and leaf surface area of the plants were

determined, and the above-ground and below-ground biomasses

were determined after 48 h of drying at 80°C. The roots were

immediately scanned with an Epson Scanner (J221A, Seiko Epson

Cop., Tokyo, Japan), and root pictures were analyzed using

WinRHIZO Software (2007b) (Regent Instruments, Montreal, QC

Canada) to identify morphological traits.

During the sampling time between 9:00−11:00 am on sunny

days, three fully functional and expanded leaves were selected for

each treatment (the third leaf from the top). The gas exchange

parameters of the tea seedling leaves were determined using the Li-

6400 portable photosynthetic instrument (LI-COR, United States)

to determine the net photosynthetic rate (Pn), stomatal

conductivity (Cond), intercellular CO2 concentration (Ci), and

transpiration rate (Tr). Each measurement was repeated three

times. The chlorophyll index of the second leaf from the top of

tea cuttings were estimated with the Dualex Portable Plant

Polyphenol Chlorophyll Meter (Dualex Scientific+)(Zhang

et al., 2022).

Root dehydrogenase activity was measured using the

triphenyltetrazazole chloride (TTC) colorimetry method (Chu

et al., 2007). The soluble sugar content in leaves was determined

using anthrone colorimetry (Li, 2006). The leaf MDA content was

measured at 532 nm and 600 nm following the thiobarbituric acid

method described by Sudhakar et al. (2001). Peroxidase (POD),

catalase (CAT), and superoxide dismutase (SOD) activities in leaves

were determined colorimetrically, as described by He et al. (2020).
2.6 Statistical analysis

The data (means ± SD) obtained in this study were analyzed by

two-way analysis of variance (ANOVA) in SAS software (v9.1.3)

(SAS Institute Inc., Cary, NC, USA). Significant differences between

treatments were compared using the Duncan’s Multiple Range
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Tests at the P < 0.05 level. The Pearson’s correlation coefficients

between selective variables were analyzed using SAS software. Data

were graphed using SigmaPlot software (v10.0) (Systat Software,

Inc., Chicago, IL, USA).
3 Results

3.1 AMF-hormone combinations
improved the mycorrhizal colonization of
tea cutting seedings

AMF colonization was observed in the RI-inoculated, FM-

inoculated, and non-inoculated treatment groups (Figure 1A).

Compared to -AMF – HOR and +FM + PA treatments, different

treatments of RI and FM significantly improved the mycorrhizal

colonization rate of tea cutting seedlings (Figure 1B). In addition, SL

treatment increased the mycorrhizal colonization rates of non-

inoculated and RI-inoculated tea cutting seedlings by 22.2% and

35.8%, respectively, but did not affect the AMF colonization rate in

the FM-alone group. Irrespective of AMF inoculation, the

application of PA had no significant effect on the mycorrhizal

colonization rate. Two-way ANOVA was used to determine the

effect of inoculated AMFs and plant hormones on the differences

between variables after treatment, and a significant interaction

between AMF and plant hormones was found in the mycorrhizal

colonization of tea cutting seedlings (Table 1).
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3.2 AMF-hormone combinations improved
the quality and growth indices of tea
cutting seedings

Indices such as the survival rate, callus formation rate, height,

leaf area, shoot biomass, and root biomass are closely associated

with the quality and growth of tea cutting seedings. In this study, the

survival rate of tea cutting seedings in all treatments was more than

95%, and the callus formation rate was more than 94% (Table 2).

Compared to the -AMF - HOR treatment, the +RI + SL treatment

group had the highest survival rate (98.6%) and callus formation

rate (97.9%), and increased plant height of tea cutting seedings by

38.9%. None of the other treatments exhibited significant

differences in plant height (P < 0.05). In the absense of the

hormone application, RI and FM inoculations significantly

increased the tea leaf surface area by 12.0% and 6.7%,

respectively. Such inoculations also increased the shoot biomass

and root biomass by 12.5% and 1.8%, 22.6% and 6.5% in the RI

alone group and SL alone group, respectively.Without AMF

inoculation, SL alone significantly increased the tea leaf surface

area and shoot biomass of tea cutting seedings by 6.8% and 12.5%,

respectively. PA alone significantly increased the survival rate (P <

0.05). Regardless of AMF inoculation, the application of PA had no

significant effect on the leaf surface area. Interestingly, compared to

the -AMF - HOR treatment, AMF or hormone treatments alone did

not significantly affect the plant height or root biomass, while the

combination of AMF and hormone treatment significantly
FIGURE 1

AMFs and plant hormones interaction improved the mycorrhizal colonization of tea cutting seedings. (A) The root system colonization structures of
AMF. (B) Interaction effect of AMF inoculation and plant hormones on AMF colonization rates. Data bars (means ± SD, n = 3) indicated by different
letters suggest significant differences (P < 0.05). AMF, arbuscular mycorrhizal fungi; RI, Rhizophagus intraradices; FM, Funneliformis mosseae; HOR,
hormone; SL, strigolactones; PA, spermidine. The same treatments apply to other Figures/Tables. Different lowercase letters in a figure indicate that
the mean values are significantly different (P < 0.05) from each other according to LSD test.
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increased the survival rate, callus formation rate, height, shoot

biomass, and root biomass. In all AMF-hormone treatment

groups, the best quality and growth indices of tea cutting seedings

were observed in the +RI + SL treatment group. Two-way ANOVAs

revealed that AMF-hormone interactions had significant effects on

the leaf area and the shoot biomass of the tea cutting seedings root

systems (P < 0.05).
3.3 AMF-hormone combinations
improved the root system architecture of
tea cutting seedings

AMF and hormone interactions had different effects on the root

architecture of tea cutting seedings (Figure 2, 3). Compared to the

-AMF - HOR treatment, RI or FM alone significantly increased the

projected root area (RI, 17.2%; FM, 20.2%), average root diameter

(RI, 27.3%; FM, 29.5%), and root volume (RI, 53.2%; FM, 47.7%)
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(Table 3), but had no significant impact on the total length and root

surface area. Without the AMF inoculation, SL only significantly

increased the average root diameter by 27.2%, while PA significantly

increased the projected area and average root diameter by 17.2% and

18.2%, respectively. In combination with RI inoculation, SL

significantly increased the total length, average root diameter, and

root volume of tea cuttings by 61.9%, 39.3%, and 42.5%, respectively.

However, the application of PA in combination with RI inoculation

had no significant effect on root-system configuration. Following FM

inoculation, SL significantly improved the average root diameter and

root volume by 19.3% and 28.0%, respectively, while the application

of PA only increased the average root diameter by 15.8%. Overall, the

effect of the combination of AMF and hormones on the root system

architecture was not always better than AMF inoculation or hormone

treatment alone; only the specified combination of +RI + SL

significantly improved root system architecture in this study (P <

0.05). Two-way ANOVA showed that the AMF-hormone interaction

had significant effects on the total length, average diameter, and

volume of the root systems of tea cutting seedings (P < 0.05).
TABLE 2 Effects of AMFs and hormones on the quality and growth of tea cutting seedings.

AMF treat-
ments

Hormone
treatment

Surviving
rate (%)

Callus formation
rate (%)

Height
(cm)

Leaf area
(cm2)

Shoot biomass
(g/plant)

Root biomass
(g/plant)

-AMF -HOR 95.3 ± 0.4d 94.7 ± 1.1c 10.8 ± 2.0b 13.3 ± 0.3d 5.6 ± 0.5c 3.1 ± 0.3b

+SL 96.1 ± 0.3cd 95.4 ± 0.5bc 10.9 ± 0.8b 14.2 ± 0.1bc 6.3 ± 0.1ab 3.2 ± 0.1ab

+PA 96.8 ± 0.2bc 95.3 ± 0.2bc 11.0 ± 0.7b 13.6 ± 0.4cd 6.0 ± 0.2abc 3.2 ± 0.5ab

+RI -HOR 97.6 ± 0.6ab 95.9 ± 1.0bc 12.8 ±
2.0ab

14.9 ± 0.4b 6.3 ± 0.5ab 3.4 ± 0.2ab

+SL 98.6 ± 0.4a 97.9 ± 0.5a 15.0 ± 0.8a 16.1 ± 0.7a 6.5 ± 0.6a 3.8 ± 0.4a

+PA 97.8 ± 1.1ab 96.6 ± 0.3abc 13.0 ±
1.5ab

14.3 ± 0.2bc 5.7 ± 0.2bc 3.0 ± 0.5b

+FM -HOR 96.4 ± 1.1bcd 96.4 ± 1.7abc 11.3 ± 1.7b 14.2 ± 0.7bc 5.7 ± 0.2bc 3.3 ± 0.4ab

+SL 95.2 ± 1.3d 96.7 ± 1.3ab 12.8 ±
2.7ab

14.7 ± 0.5b 5.8 ± 0.6bc 3.5 ± 0.3ab

+PA 96.6 ± 0.8bcd 96.4 ± 1.1abc 12.6 ±
1.1ab

14.5 ± 0.3b 6.1 ± 0.5abc 3.0 ± 0.2b

Significance

AMF <0.0001 <0.0001 0.0058 <0.0001 0.2313 0.4027

Hormones 0.2318 <0.0001 0.2042 0.0005 0.1744 0.0654

AMF×Hormones 0.1784 0.1802 0.5719 0.0470 0.0400 0.5006
Data are presented as mean ± SE (n = 3). Different letters within each parameters indicate that the mean values are significantly different (P < 0.05) from each other according to LSD test. The
same below.
The bold values mean that there are significant or very significant differences.
TABLE 1 Analysis of variance (ANOVA) of different variables after treatment with AMFs and hormones.

Root colonization Root DHA Total chlorophyll Leaf soluble sugar MDA SOD POD CAT

AMFs <0.0001 <0.0001 0.1486 <0.0001 0.0001 0.0392 <0.0001 <0.0001

Hormones <0.0001 0.0008 0.0018 0.0614 0.0055 0.0003 0.0471 <0.0001

AMFs×Hormones 0.0363 0.0156 0.0178 0.0008 0.9947 0.2869 0.0031 <0.0001
front
Bold values denote statistical significance at the p < 0.05 level. The “×” symbolizes the interaction of the two factors (AMFs and Hormones) within ANOVA. The bold values means there are
significant or very significant differences. The same below.
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3.4 AMF-hormone combinations increased
root DHA activity

In the absence of plant hormone treatment, inoculation with RI

or FM had no significant effect on root DHA activity (Figure 4).

However, following inoculation with AMF, PA significantly

increased root DHA activity by 15.1% (P < 0.05), while SL had no

significant effect compared to the corresponding control (-HOR +

-AMF). Compared to the other combined treatments, the +RI + SL

group exhibited the highest increase in root DHA activity at 24.3%

compared to the corresponding control (-HOR + RI). The +RI + PA

and +FM + PA treatment groups also had significantly higher root

DHA activities than the controls (P < 0.05). This turned out to be

the case as the specified combination of AMFs and hormones had a

significant effect on the root DHA activity.
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3.5 AMF-hormone combinations affected
the photosynthesis of tea cutting seedings

As shown in Table 4, in the absence of hormone treamtents, RI

inoculation significantly improved the net photosynthetic rate and

stomatal conductance of tea cutting seedlings by 36.2% and 47.3%,

respectively. Additionally, FM inoculation significantly improved

the Pn, Cond, and Tr by 32.6%, 39.6%, and 41.3%, respectively. In

the absence of AMF inoculation, SL had no significant effect on

photosynthetic parameters, while PA only significantly increased

Cond (30.8%). Treatement with +RI + SL significantly improved the

Pn, Cond, and Tr by 43.8%, 58.2%, and 89.9%, rewpectively, while

+RI + PA significantly improved Pn, Cond, and Tr by 37.5%, 29.9%,

and 51.9%, respectively. Treatment with +FM + SL increased Pn by

21.2%, while treatment with +FM + PA significantly improved the

Cond and the transpiration rate by 27.6% and 26.5%, respectively.

No significant difference in Ci was observed in any treatment. Two-

way ANOVA revealed that AMF-hormone interactions had

significant effects on stomatal conductance and the transpiration

rate of tea cutting seedings (P < 0.05).
3.6 AMF-hormone combinations affected
chlorophyll and soluble sugar contents in
tea cutting seedings leaves

As shown in Figure 5A, compared to the -AMF - HOR

treatment group, RI inoculation alone had no significant effect on

the chlorophyll content, while FM inoculation alone significantly

increased the chlorophyll content by 28.2%. Treatment with -AMF

+ SL and -AMF + PA significantly increased the chlorophyll content

by 31.9% and 23.4%, respectively. Treatment with +RI + SL

significantly increased the chlorophyll content by 34.6%, while

+RI + PA had no significant effect. Treatment with +FM + SL

and +FM + PA did not affect the chlorophyll content.

Concerning the soluble sugar content in the leaves of tea cutting

seedings, the application of SL and PA without AMF inoculation

significantly reduced the soluble sugar contents of leaves (Figure 5B) by

32.8% and 43.2%, respectively. Treatment with +RI + SL significantly

increased the soluble sugar content by 16.0%, while +RI+PA had no

significant effect. Treatment with +FM + SL and +FM + PA

significantly increased the soluble sugar content of leaves by 28.0%

and 23.2%, respectively. In the absence of hormone treatment, RI
FIGURE 3

Root system architecture responses of tea cutting seedings to
different treatments.
FIGURE 2

Root morphological responses of tea cutting seedings to different treatments. Compared with other treatments, +RI+SL treatment significantly
improved the root-system configuration.
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inoculation significantly increased the leaf content of soluble proteins

by 35.9%, while FM inoculation had no effect. In addition, AMF and

hormone interactions had significant effects on the total chlorophyll

and soluble sugar contents of tea cutting seedings (Table 1).
3.7 AMF-hormone combinations increased
the POD, SOD, and CAT activities of tea
cutting seedings

Compared to the -AMF - HOR treatment, +RI + SL or +RI + PA

treatments did not change the MDA content, while FM inoculation
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significantly reduced MDA concentrations by 19.7% (Figure 6A).

When inoculated with RI and FM, spraying SL or PA had no

significant effect on MDA concentration.

Similar to MDA concentrations, RI inoculation and FM inoculation

alone did not affect leaf SOD activities compared to the -AMF - HOR

treatment group (Figure 6B). However, the application of SL significantly

increased SOD activities by 32.8%, while PA treatment caused no change.

Treatment with +RI + SL significantly increased SOD activity by 26.7%,

while treatment with +RI + PA caused no change. Neither +FM+ SL nor

+FM + PA treatments affected SOD activities.

In the absence of hormone treatments, RI inoculation alone

significantly increased POD activity by 45.2%, while FM inoculation

caused no effect (Figure 6C). Without AMF or with FM inoculation, the

application of SL or PA had no significant effect on POD activities, while

treatment with +RI + SL significantly improved POD activity by 40.1%.

In the absence of hormone treatment, RI inoculation or FM

inoculations significantly improved the leaf CAT activity by 62.2%

and 71.1%, respectively (Figure 6D). Treatment with -AMF + SL

significantly improved leaf CAT activity by 38.2%, while -AMF + PA

had no effect. When combined with RI inoculation, both SL and PA

treatment significantly improved the leaf CAT activity by 87.1% and

20.3%, respectively. When combined with FM inoculation, SL or PA

treatment exhibited no significant changes in leaf CAT activity.

Compared to the other treatments, +RI + SL treatment caused

the highest increase in POD, SOD, and CAT activities. Thus, AMF-

hormone interactions significantly (P < 0.01) affected the leaf POD

and CAT activities of tea cutting seedings (Table 1).
3.8 Correlation analysis

Analyses of Pearson’s correlation coefficients by correlation

heat map showed that the AMF colonization rate had a
TABLE 3 Interaction effect of AMFs and hormones on the root system architecture of tea cutting seedings.

AMF treat-
ments

Hormone
treatment

Total length
(cm)

Projected area
(cm2)

Surface area
(cm2)

Average diameter
(mm)

Volume
(cm3)

-AMF -HOR 135.8 ± 10.9c 9.9 ± 0.9c 12.3 ± 1.0b 0.44 ± 0.04d 1.09 ± 0.09d

+SL 152.4 ± 15.0c 11.1 ± 1.2bc 13.1 ± 0.1ab 0.54 ± 0.01c 1.21 ± 0.03d

+PA 158.0 ± 22.5bc 11.6 ± 0.7ab 13.4 ± 1.3ab 0.52 ± 0.04c 1.23 ± 0.15d

+RI -HOR 149.7 ± 8.1c 11.6 ± 0.4ab 13.0 ± 0.6ab 0.56 ± 0.04c 1.67 ± 0.05c

+SL 242.3 ± 31.7a 13.0 ± 0.9a 14.9 ± 1.4a 0.78 ± 0.05a 2.38 ± 0.16a

+PA 154.0 ± 16.8bc 11.7 ± 1.1ab 13.1 ± 1.8ab 0.55 ± 0.03c 1.77 ± 0.12c

+FM -HOR 167.9 ± 16.1bc 11.9 ± 0.7ab 12.5 ± 0.7b 0.57 ± 0.05c 1.61 ± 0.15c

+SL 189.3 ± 22.0b 12.0 ± 0.4ab 13.4 ± 1.0ab 0.68 ± 0.06b 2.06 ± 0.20b

+PA 145.1 ± 18.3c 11.1 ± 1.0bc 12.7 ± 0.4b 0.66 ± 0.02b 1.73 ± 0.16c

Significance

AMF 0.0061 0.0293 0.2537 <0.0001 <0.0001

Hormones 0.0001 0.0827 0.0752 <0.0001 <0.0001

AMF×Hormones 0.0025 0.1306 0.5409 0.0013 0.0062
Data are presented as the mean ± SE (n = 3).
The bold values mean that there are significant or very significant differences.
FIGURE 4

AMFs and plant hormones interaction significantly increased the
root DHA activity. Different lowercase letters in a figure indicate that
the mean values are significantly different (P < 0.05) from each other
according to LSD test. The same below.
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significant positive correlation with the root-related indices, such as

the root DHA activity, total root length, average root diameter, root

volume, and root surface area (Figure 7). Root biomass was also

significantly positively correlated with the total root length and root

volume. Root DHA activity was significantly positively correlated

with the total length, projected area, average diameter, and volume

of roots.

The AMF colonization rate was also positively correlated with

leaf-related indices, such as leaf surface area, total chlorophyll, leaf

SOD, POD, and CAT activity, shoot biomass, and leaf soluble sugar

content (Figure 8). Similarly, the leaf area exhibited significant

positive correlations with the soluble leaf sugar content, leaf SOD,

POD and CAT activity, shoot biomass, and total chlorophyll, while

a significant negative correlation was observed between leaf area

and MDA content. The total chlorophyll content was significantly

positively correlated with leaf SOD and CAT activities. The soluble

leaf sugar content was significantly positively correlated with leaf

POD and CAT activity, while it was negatively correlated with leaf

MDA content.

Collectively, the AMF colonization rate was significantly positively

correlated with most of plant growth and physiobiochemical

characteristics and could be one of the key factors affecting the

growth status of tea cutting seedings.
4 Discussion

Both PAs and SLs can regulate the symbiosis between AMF and

plants in various ways (Wu et al., 2012; Mitra et al., 2021a). This

point of view was indirectly confirmed in our study. This study

showed that regardless of AMF inoculation, the AMF structure was

observed in the rhizosphere of Fuding-Dabaicha in all treatment

groups, while the RI or FM inoculations promoted AMF
Frontiers in Plant Science 08
colonization compared to the corresponding control treatments

(Cao et al., 2021b). This was because in the field, although the

seedling bed was treated with 5% formaldehyde for disinfection

over 24 h before the test, a small quantity of AMF still survived.

However, the effect of the surviving AMF was weaker than that of

the additional AMF inocula, since the spore density of the inocula

was quite higher than that in the treated seedling soil bed. The soil

survived AMF could not meet the crop demands, and therefore,

additional AMF inoculations are required to improve the

mycorrhizal benefits to plants.

AMF-hormone interactions had a significant effect on the

mycorrhizal colonization of the tea rhizosphere, which was

consistent with the results of Kountche et al. (2018). SLs can

induce AMF spore germination, mycelium elongation, and

branching, and play a key role in the communication between

plants and fungi (Mostofa et al., 2018). However, in this study, SL

spraying significantly promoted the AMF colonization of

rhizospheres in both the non-inoculated and RI-inoculated

treatment groups, but did not promote the root colonization of

FM, thus, indicating that the effect of hormones could be unique to

specific AMF strains. In addition, exogenous PA treatment had no

significant effect on the AMFs colonizing Fuding-Dabaicha roots,

which was inconsistent with the results of Wu and Zou (2010) in

citrus. Those findings could be attributed to differences in test

materials. Mycorrhizal regulation by PAs has also been shown to

depend on the types of polyamines and roots (Wu and Zou, 2010;

Wu et al., 2012).

In this study, RI or FM inoculation, and the application of SL

and PA, improved the quality and growth status of tea cutting

seedlings to differing degrees. Once AMF achieve a symbiotic

relationship with host plants, they expand the roots of hosts

through mycelia, promoting nutrient and water absorption, stress

resistance, and growth of the host plant (Wang et al., 2016;
TABLE 4 Effects of AMFs and hormones on photosynthesis in tea cutting seedings.

AMF treatments Hormone treatments Pn(µmol/m2/s) Cond (mmol/m2/s) Ci (mmol/mol) Tr (mmol/m2/s)

-AMF -HOR 4.70 ± 1.40e 0.091 ± 0.035f 317.3 ± 21.5a 1.04 ± 0.33f

+SL 5.59 ± 0.74de 0.101 ± 0.026ef 309.4 ± 19.3a 1.13 ± 0.37f

+PA 5.64 ± 0.87de 0.119 ± 0.015de 322.7 ± 9.0a 1.20 ± 0.18ef

+RI -HOR 6.40 ± 0.74cd 0.134 ± 0.016d 313.3 ± 26.0a 1.29 ± 0.25ef

+SL 9.20 ± 0.81a 0.212 ± 0.051a 316.3 ± 17.1a 2.45 ± 0.43a

+PA 8.80 ± 1.22a 0.174 ± 0.031b 311.1 ± 16.2a 1.96 ± 0.45b

+FM -HOR 6.23 ± 1.57cd 0.127 ± 0.019d 314.2 ± 14.0a 1.47 ± 0.46de

+SL 7.55 ± 1.49b 0.140 ± 0.017cd 311.4 ± 8.1a 1.61 ± 0.33cd

+PA 7.08 ± 2.20bc 0.162 ± 0.030bc 318.1 ± 14.3a 1.86 ± 0.40bc

Significance

AMF <0.0001 <0.0001 0.7625 <0.0001

Hormone <0.0001 <0.0001 0.4883 <0.0001

AMF×Hormone 0.0676 0.0001 0.4635 <0.0001
Data are presented as the mean ± SE (n = 10). Pn, net photosynthetic rate; Cond, stomatal conductivity; Ci, intercellular CO2 concentration; Tr, transpiration rate.
The bold values mean that there are significant or very significant differences.
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Chandrasekaran et al., 2021). SLs can promote seed germination, in

shaping root architecture (Ruyter-Spira et al., 2011), regulate plant

branching, and improve plant biomass (Kapulnik et al., 2011;

Sharifi and Bidabadi, 2020). Similarly, PAs, as common low-

molecular-weight biostimulation agents, promote plant growth,

development, and defense under stress conditions (Wu et al.,

2012; Sharma et al., 2021). In this study, PA spraying with RI or

FM inocula had no significant impacts on the growth of tea cutting

seedlings, while the interaction between RI and SL improved tea

cutting seedling growth. Notably, SL induces spore germination and

mycelium branching in AMFs, facilitating its symbiosis with the

host plant (Mitra et al., 2021a). Hormone treatments can promote

the benefits of AMF to tea plants by improving plant growth to

different degrees. However, the degree of the effect varies based on

the AMF species and hormones. Our results suggest that +RI + SL

treatment may have a strong potential for the development of tea

cuttings seedings and improving asexual propagation.

Adventitious root formation is a prerequisite for successful cutting

propagation (Kharal and Shrestha, 2020), and a good root system

architecture could provides sufficient nutrients to tea cutting seedings

(Campos et al., 2021). In this study, the single inoculation of RI or FM

significantly increased the projected root area, and the average diameter

and volume of tea roots. In addition, spraying SL with the RI inocula

further promoted the positive effect, because SL promoted the

symbiotic relationship with the host plant (Mitra et al., 2021a). The

SL synthesized in roots can then be transported to the soil over a short

distance, so it could further promote mycorrhizal colonization (Shen

et al., 2022). The root architecture was consistent with the growth

quality of tea cuttings among all treatments. Correlation analyses also

showed significantly positive correlations between AMF root

colonization and root morphological traits and biomass(P < 0.05),

thus, indicating that the SL-RI interaction promoted the growth of tea

cutting seedlings related to the AMF colonization.

The root activity reflects the metabolic capacity of plant roots

(Liu et al., 2009; Huang et al., 2015). AMF or SL treatments alone

did not show a significant effect on root DHA activities (an

indicator of root activity), while PA treatments alone elevated

DHA activity. Notably, PAs are an important regulator of root
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growth and function (Sharma et al., 2021). The combination of SL

or PA with RI inoculation significantly improved root DHA

activity, along with providing better effects under the +RI + SL

combined treatment. The DHA activity was significantly positively

correlated with the total root length, projected area, and average

diameter and volume, suggesting that SL conferred good root

activity in mycorrhizal plants.

Plant growth is driven by photosynthesis (Moustakas et al., 2020).

In this study, AMF inoculation increased the Pn and Cond of tea

cutting seedlings, which was consistent with the results of Wu and Zou

(2010) in citrus seedlings. Moreover, we found that the individual SL or

PA treatments alone failed to change the photosynthetic activity of tea

cutting seedlings, as the photosynthetic activity in combination with

AMF treatments promoted almost the same change to the varying

degrees. Notably, the +RI + SL treatment group showed the highest

increase in the photosynthetic capacity of tea cutting seedlings. The

increased photosynthetic capacity accelerates the accumulation of plant

carbohydrates, promotes the growth of tea cutting seedlings, and

increases the supply of organic carbon to AMFs, promoting

mycorrhizal symbiosis with tea plants (Kountche et al., 2018). In

addition, mycorrhiza-induction enhances root structure and plant

hormones promote the absorption of soil nutrients, which increases

photosynthesis in tea seedlings (Mitra et al., 2021b).

Root activity showed a significant positive correlation with the

photosynthetic rate (Wei et al., 2004). Strong root activity also

delays the senescence of above-ground plant parts and promotes the

synthesis and partitioning of photosynthates (Wang et al., 2013).

Therefore, the +RI + SL treatment group had higher chlorophyll

and soluble sugar contents in leaves. Additionally, SL or PA alone

significantly increased the total chlorophyll content, but reduced the

soluble sugar content in tea leaves. In general, leaf-produced

carbohydrates are first used for the leaf and then transferred to

other parts of the plant (Zhang et al., 2020b). Thus, spraying SL or

PA may have promoted the leaf carbohydrate distribution to the

roots, increasing root development and thereby reducing leaf

soluble sugar content.

The morphological and physiological adaptation of the root

system are important factors for plants to access soil resources.
A B

FIGURE 5

AMFs and plant hormones interaction had significant effects on chlorophyll indexes and soluble sugar contents in tea cutting seedings leaves. Effects
of AMFs and hormones on (A) total chlorophyll index and (B) leaf soluble sugar content. Different lowercase letters in a figure indicate that the
mean values are significantly different (P < 0.05) from each other according to LSD test.
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Cutting seedings may experience poor nutrient absorption and poor

stress tolerance, which will lead to the substantial production of

ROS and affect photosynthesis because of the shallow root system

and weak nutrient absorption (Mutui et al., 2015; Yang et al., 2016).

AMF could improve the stress resistance of host plants by

promoting antioxidase activities; reducing the MDA content is

also well known (Yan et al., 2020). In this study, single RI

inoculation noticeably promoted POD and CAT activities, while

single FM inoculation promoted CAT activities and reduced MDA

content. SL treatment alone promoted SOD and CAT activities,

which was consistent with the findings of Sharifi and Bidabadi

(2020). The synthetic exogenous SLs are mainly SL analogs (e.g.,

germination releaser, GR). GR24 is the most active and commonly

used synthetic SL (Jiang et al., 2013) and its exogenous application

has been shown to improve cell viability, photosynthesis, and

antioxidant enzyme activities in tomato and rape seedlings (Lu

et al., 2019; Zhang et al., 2020a). In this study, the foliar spray

containing GR24 significantly improved the antioxidant enzyme

activity and effectively alleviated oxidative damage in salvia. PA

alone showed no significant effects on MDA content or antioxidase

activity. However, PA treatment could maintain the cell pH and

ionic homeostasis to ensure the maintenance of cell health (Zhang

et al., 2020c). In addition, SL in combination with AMF further

promoted the SOD, POD, and CAT activities of tea, thereby

improving their survival rate and growth performance.

In addition, Pearson’s correlation analyses showed that the degree

of root mycorrhizal colonization was significantly positively
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correlated with most plant growth and physiobiochemical

characteristics parameters of tea cutting seedings, such as

significantly positively correlated with root-related indicators (eg.

root DHA activity, total root length, average root diameter, root

volume) and leaf-related indicators(eg. leaf surface area, total
A B

DC

FIGURE 6

AMFs and plant hormones interaction showed the highest increase in POD, SOD, and CAT activities. Effects of AMFs and hormones on (A) MDA
content and the leaf activities of (B) SOD, (C) POD, and (D) CAT. Different lowercase letters in a figure indicate that the mean values are significantly
different (P < 0.05) from each other according to LSD test.
FIGURE 7

Correlation heat map of root-related indicators. **Significant at p <
0.01; *significant at p < 0.05.The same below.
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chlorophyll index, and leaf SOD, POD, and CAT activity), so

mycorrhizal colonization could be considered as one of the key

factors reflecting the growth status of tea cutting seedings.

SLs, as host-derived precolonization signals (Akiyama et al.,

2005), can stimulate the hyphal branching of AMF, and

consequently promote symbiotic interactions between AMF and

plants (Banasiak et al., 2020). Furthermore, during the symbiosis

phase, SLs in root secretions enhance AMF spore germination,

metabolic activity, and mycelium branching, thus, improving the

interactions between AMFs and host plants (López-Ráez et al.,

2017). The improved growth performance observed in +RI + SL

treated tea cutting seedings can be attributed to the good symbiotic

relationship between AMF and tea cutting seedings as the

mycorrhizal colonization observed following this treatment was

the highest compared to the corresponding AMF treatment alone.

This good performance required to select a combination of specific

AMF and specific plant hormone, for the mycorrhizal colonization

in other AMF and hormone treatment(eg. +RI + PA, FM + SL) were

not always higher or significantly increasing compared to

corresponding AMF alone treatment. This could potentially be

specific combination being case specific. For AMF-hormone

interactions, especially between specific AMFs and the specific

plant hormones, in our study were RI and SL, their effects on

improving the growth performance many well by SL promoting the

RI colonization to from good symbiosis with tea cutting seedings,

then take this to improve their root architecture and photosynthetic

characteristics, coupled with great antioxidant defense systems. The

mechanisms needed to further study.

In conclusion, although the apllication of individual AMF or

plant hormones had a certain good effects on most growth and

physiobiochemical characteristics parameters of tea cutting

seedings, the additive effect was from specific combined of AMF

and plant hormone, in our study was the combined of SL and RI.
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These results highlight the possibility for combined of AMF and

plant hormone to improve the asexual reproduction of tea plants

via cuttings, and our findings provide a provided a practical and

feasible strategy for further research to improve the asexual

reproduction of tea plants via cuttings.
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FIGURE 8

Correlation heat map between AMFs colonization and leaf-related
indicators. **Significant at p < 0.01; *significant at p < 0.05.
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