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Creation and utilization of crop germplasm resources
Introduction

Theworld’s populationwill almost exceed 8 billion in 2022 (https://www.unfpa.org/swp2022).

In contrast, the available area of cultivated land is decreasing every year. Therefore, it is a big

challenge for international agriculture to ensure the food security of such a huge population

(Pathirana and Carimi, 2022). With the recent COVID-2019 pandemic, global warming,

economic slowdowns, poverty, and inequality have increased unemployment, resulted in food

insecurity, and affected millions of people globally (FAO, 2021). The State of Food Security and

Nutrition in theWorld 2021, https://www.fao.org/3/cb4474en/online/cb4474en.html). To address

the increasing food demands, it is crucial to develop improved crop varieties with enhanced yield

through the utilization of diverse germplasm resources (Varshney et al., 2021a).

Crop germplasm resources (CGRs) refer to the geneticmaterial passed from parent to offspring

of a crop, which is usually found in a specific variety. Diversity of germplasm is essential for

improving multiple traits and increasing genetic gain. Due to the intensive production methods of

modern agriculture, many local varieties of crops have been replaced by a few improved elite

varieties. This has resulted in decreased genetic diversity in most of the crops. Several cultivated

crops lost their important alleles due to selection during human civilization. Crops with a narrow

genetic base make it difficult to breed new varieties with high yield and quality; for instance, peanut

has resulted in a narrow genetic base during human civilization (Gangurde et al., 2019). Beneficial

wild alleles associated with disease resistance and yield traits were lost during domestication and are

needed today in modern breeding programs (Bohra et al., 2021; Varshney et al., 2021b). For

instance, numerous such wild species from the genera Aegilops, Agropyron, Amblyopyrum,

Dasypyrum, Elymus, Leymus, Pascopyrum, Roegneria, and Thinopyrum are growing in a wide

range of areas and adapting to diverse climates, and most of them have been used for the genetic

improvement of wheat (Soreng et al., 2015; Laugerotte et al., 2022). Similarly,Haynaldia villosa is a

diploid wild grass with numerous traits similar to those of wheat, including high protein content,
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high resistance to cold, and resistance to powdery mildew (Cao et al.,

2011). The wheat–H. villosa translocation line 6VS/6AL has been applied

as the backbone parent of wheat breeding, resulting in the release of

dozens of commercial cultivars in China, the USA, and Canada (Cao et al.,

2011). As one of the most important oil crops worldwide, cultivated

peanut is an allotetraploid, derived from hybridization between the

progenitor species A. duranensis and A. ipaensis (Lavia et al., 2011;

Kochert et al., 1996; Halward et al., 1992; Zhao et al., 2021). There are

more than 80 species of the genus Arachis classified into nine sections,

providing great potential to diversify the cultivated gene pool for peanut

breeding. One of the main cultivated peanut cultivars, Yuanza9102,

showed high resistance to Ralstonia solanacearum due to the

introgression of the resistance gene of the wild diploid peanut species

Arachis diogoi (Wang et al., 2018; Han et al., 2022). Therefore, collection,

creation, evaluation, conservation, and utilization of germplasm resources,

especially from wild species, can help improve the cultivated gene pool.

In 1920, a Soviet geneticist named Nicolai Vavilov realized that

most crops had lost their diversity, and he created the first gene bank

in Petrograd by doing an extensive series of expeditions worldwide

(Janick, 2015). Later, several gene banks were developed in the USA,

Western Europe, and Australia (Pathirana and Carimi, 2022). In

1991, the International Plant Genetic Resources Institute (IPGRI)

signed an agreement in Rome, Italy, and developed the Crop Genetic

Resources Collaboration Network to conserve and utilize germplasm

resources. The network could collect ~200,000 accessions from 136

countries (Pathirana and Carimi, 2022). Utilization of these

germplasm resources to enrich the cultivated crop varieties is a

burning task for current breeding programs. Advances in genomics,

phenomics, and bioinformatics have opened new frontiers for the

conservation and utilization of germplasm resources. In our Research

Topic entitled “creation and utilization of crop germplasm resources,”

we published 17 research articles that shed light on the genetic

diversity and evolution of crop germplasm resources, including wild

relatives, landraces, and cultivated varieties, by using whole genome

resequencing and association analysis, phenotyping, and Distinctness,

Uniformity, and Stability (DUS) characterization, concerning

ideotypes, tolerance to biotic/abiotic stresses, high yield, and

nutritional traits. Furthermore, the included articles contributed to

the identification of important genes/QTLs and uncovered the

molecular mechanisms of those important traits.
Germplasm characterization, genetic
relationship, and population structure
of collected germplasms

Germplasm characterization is very important to identify potential

sources of traits of interest. For instance, 560 soybean cultivars,

comprised of 279 cultivars from Northeast and Northwest China

(NNC), 155 cultivars from the Huang-Huai-Hai Valleys (HHH), and

126 from Southern China (SC), were collected and designated as Modern

Chinese Soybean Cultivars (MCSCs). Population structure analysis

identified 13 maturity groups in soybeans in different ecoregions. The

germplasms of NNC showed high allele diversity but were distant when

compared with those of HHH and SC. Eleven major core-terminal

ancestor-derived families, including four derived from ancestors in NNC,
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four from HHH, and three from SC, contain 463 (82.68%) MCSCs with

some cross-distribution among ecoregions (Li et al.). Based on these

findings, we can predict how important it is to exchange germplasm to

enhance the genetic potential of crops.

Distinctiveness, uniformity, and stability (DUS) are the criteria

for a new variety release for cultivation in a farmer’s field. A total of

195 wheat varieties from the Huang-Huai-Hai region of China were

evaluated for 35 DUS characteristics. Of the 35 traits, eight

characteristics varied significantly, with the most variation in the

sterile spikelet. Artificial selection trends in flag leaf length and flag

leaf width, grain number per ear, and grain volume weight showed an

overall upward trend. In contrast, plant height showed a downward

trend. These findings indicated that selection of some non-economic

characteristics of wheat varieties, such as awn color, stem color, and

glume color, seemed to be able to enrich the genetic diversity of

varieties in the Huang-Huai-Hai region (Wang et al.).

The brewing industry in China is very popular, and Chinese

sorghum has been an important ingredient in brewing since ancient

times. Re-sequencing of 244 Chinese sorghum accessions resulted in

three genetic clusters, namely the Northern, the Southern, and the

Chishui groups. An important selective sweep region was identified

with homologous genes involved in grain size, pericarp thickness, and

the architecture of the inflorescence. These results also suggested that

pericarp strength determines the ability of grain to resist repeated

cooking during the brewing process (Zhang et al.).

The alleles from in situ conserved wild rice (Oryza rufipogon Griff.),

also called “Guiping wild rice,” can improve rice production worldwide.

A comparison of resequencing data between Guiping wild rice

populations and O. rufipogon and Oryza sativa populations indicated

that the in situ conserved wild rice population has a unique genetic

structure, with genes that were introgressed from aromatic and O. sativa

ssp. indica and japonica populations (Yang et al.).
Genome-wide association study and
multiple omics facilitated mining of
beneficial genes/loci

The comparative metabolomics study of four peanut testa colors,

including pink, purple, red, and white, identified 78 differentially

accumulated metabolites. The proanthocyanidins are most abundant in

pink testa, whereas, the red testa accumulated more isoflavones,

flavonols, and anthocyanidins (Zhang et al.). Similarly, the integrated

analysis of the metabolome and transcriptome identified 14 carotenoids

in five sweet potato cultivars and 27 differentially expressed genes

involved in carotenoid metabolism, respectively (Jia et al.). To identify

candidate genes and allelic diagnostic markers for resistance to R.

solanacearum of cultivated peanut, QTL-seq analysis identified the

resistance gene mapped in a 7.2 Mb physical region of chromosome

12 of Arachis hypogaea, and eight nucleotide binding site leucine rich

repeat genes were highlighted. Interestingly, two diagnostic SNP markers

were developed and validated for breeding disease-resistant peanut

varieties (Zhang et al.). Cold stress is an important abiotic stress

affecting plant growth and development by interfering with

physiological processes. A combinatorial approach to small RNA and

degradome sequencing identified 407 known miRNAs and 143 novel
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peanut-specific miRNAs. Transient expression analysis in Nicotiana

benthamiana showed that miR160, miR482, and miR2118 may play

positive roles and that miR396; miR162; and miR1511 play negative roles

in the regulation of peanut cold tolerance (Zhang et al.).

In this special issue, we also reported genetic dissection and

candidate gene/locus identification for several abiotic stresses, such as

salinity tolerance, nitrogen utilization efficiency, cold tolerance, and

photoperiod response. Salinity–alkalinity is among the serious abiotic

stresses limiting the yield potential of several crops. For instance, an

association panel of 200maize lines identified nine SNPs and associated

candidate genes with alkaline tolerance in maize seedlings. RNA-Seq

analysis confirmed five hub genes involved in alkaline tolerance (Li

et al.). The salinity–alkalinity tolerance of rice varieties at the

germination stage is very important because of the widespread use of

direct seeding technology in rice. Based on the evaluation of seven

germination-related traits on a 428-rice diversity panel, Xian/indica

accessions showed generally higher tolerance to alkali stress than Geng/

japonica accessions. Further, the GWAS identified 90 loci and eight

candidate genes associated with the alkali tolerance. Interestingly, a

negative regulator of alkali tolerance gene LOC_Os09g25060

(OsWRKY76) was identified (Mei et al.). Among two subspecies of

rice, geng/japonica has significantly lower nitrogen-use efficiency

(NUE) than xian/indica. Haplotype analysis based on 14 cloned

genes of NUE and 36 rice germplasm lines developed 18 intragenic

markers. The results reported 12 NUE genes, which are mostly present

in XI accessions. The elite haplotype of gene DEP1 is fixed in geng/

japonica cultivars, and elite haplotypes of genesMYB61 andNGR5 have

been introduced into some approved geng/japonica cultivars (Li et al.).

Though foxtail millet is a model crop, it is not globally distributed and

utilized due to its photoperiod sensitivity. Genetic mapping for

photoperiod sensitivity using a RIL population (Longgu 3 × Canggu

3) identified 21 QTLs and 116 candidate genes. A candidate gene,

SiCOL5, was identified as photoperiod-sensitive and regulated by

biological rhythm-related genes (Li et al.), which might shed light on

photoperiod-tolerant breeding.
Identification of the function of
candidate genes

Maize seeds are deficient in the essential amino acids cysteine (Cys)

and methionine (Met). The improved highest Met maize line, pRbcS :

AtSAT1-pRbcS : EcPAPR, increased Met by 2.24-fold. But the plants of

pRbcS : AtSAT1-pRbcS : EcPAPR showed progressively severe defects in

plant growth, including early senescence, stunting, and dwarfing,

indicating that excessive sulfur assimilation has an adverse effect on

plant development. The transcriptome analysis of maize leaves using

pRbcS : AtSAT1-pRbcS : EcPAPR identified 3,274 differentially expressed

genes associated with Met homeostasis. Two genes, serine/threonine–

protein kinase (CCR3) and heat shock 70 kDa protein (HSP), were

identified in the core of the leaves and endosperm, respectively (Xiang

et al.). Isopentenyl transferase (IPT) is an important rate-limiting enzyme

in cytokinin (CTK) synthesis in plants. In maize, over-expression of

ZmIPT2 led to delayed senescence of leaves and 17.71%–20.29%

increases in grain yield, providing new insight for the breeding of new

high-yield transgenic maize varieties (Song et al.).
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Creation and utilization of new
germplasms by mutagenesis and
introgression of foreign DNAs or
chromosome fragments

Mutation breeding can help expand the genetic base by producing

novel alleles with the help of chemical and physical mutagens. In field

peas, physical and chemical mutagenesis were carried out using gamma

irradiation and ethyl methanesulfonate (EMS), respectively. A gamma

radiation dose of 225 Gy and an EMS concentration of 5 mm were

selected as optimal dosages for mutagenesis in field peas. PEG-mediated

transformation and gene editing of the LOX gene were carried out using

the CRISPR/Cas system, providing the platform for creating new

germplasms (Pandey et al.). Thinopyrum intermedium (JJJsJsStSt, 2n =

6x = 42), with good resistance tomanywheat diseases, is known as one of

the most important closely related wild species of wheat. A new line,

CH51, was developed from the BC1F8 progeny of a partial wheat–T.

intermedium amphiploid TAI8335 and wheat cultivar (cv.) Jintai 170.

The CH51 showed high levels of resistance to the prevalent Chinese leaf

rust and stripe rust races in the field and can be used to increase the

resistance of wheat (Zhang et al.).
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