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Genomic selection is expected to improve selection efficiency and genetic gain

in breeding programs. The objective of this study was to assess the efficacy of

predicting the performance of grain sorghum hybrids using genomic information

of parental genotypes. One hundred and two public sorghum inbred parents

were genotyped using genotyping-by-sequencing. Ninty-nine of the inbreds

were crossed to three tester female parents generating a total of 204 hybrids for

evaluation at two environments. The hybrids were sorted in to three sets of 77,59

and 68 and evaluated along with two commercial checks using a randomized

complete block design in three replications. The sequence analysis generated

66,265 SNPmarkers that were used to predict the performance of 204 F1 hybrids

resulted from crosses between the parents. Both additive (partial model) and

additive and dominance (full model) were constructed and tested using various

training population (TP) sizes and cross-validation procedures. Increasing TP size

from 41 to 163 increased prediction accuracies for all traits. With the partial

model, the five-fold cross validated prediction accuracies ranged from 0.03 for

thousand kernel weight (TKW) to 0.58 for grain yield (GY) while it ranged from

0.06 for TKW to 0.67 for GY with the full model. The results suggest that genomic

prediction could become an effective tool for predicting the performance of

sorghum hybrids based on parental genotypes.

KEYWORDS

genomic-estimated breeding value, ridge regression best linear unbiased prediction,
single nucleotide polymorphism, training population, validation population
1 Introduction

Conventional breeding schemes, such as the pedigree method, though time-

consuming, remains the most common method used in breeding programs. In sorghum

hybrid breeding, populations are initiated from crosses between selected parental sources,

and segregating populations are evaluated over multiple seasons, and most promising

inbred lines are selected as potential parents often based on their performance in hybrid
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combination with other lines. Promising female parents undergo

conversion into cytoplasmic male sterility before they can be tested

in hybrid combinations. Development of hybrid cultivar is a

cumbersome process; it involves synthesis of hundreds of

testcross hybrids and evaluation over multiple environments to

identify handful of most promising hybrids. It takes significant

amount of time and resources to complete the development of

hybrid product.

The advent of molecular marker techniques has opened a new

horizon for enhancing breeding efficiency through reducing time

needed to develop cultivars or improving accuracy during selection

(Hasan et al., 2021). Marker-assisted selection (MAS) has shown

promise for incorporating quantitative trait loci (QTL) through

backcrossing. This approach has been successfully used in different

crops, such as yield-related traits in rice (Oryza sativa L.) (Kulkarni

et al., 2020), salinity and drought tolerance in maize (Zea mays L.)

(Ribaut and Ragot, 2007; Luo et al., 2017), disease resistance in rice

(Ni et al., 2015). But MAS has been shown to be more effective for

traits under the influence of major effect QTL (Castro et al., 2003;

Xu and Crouch, 2008) and thus only a few significant markers with

large effects are needed. The small-effect QTL often associated with

important agronomic traits are hard to capture using MAS and

hence its efficiency for improving complex traits, such as yield, has

been limited (Bernardo, 2010). Moreover, many QTL mapped to

date are based on simple bi-parental population and their

application in MAS is limited to the use of those specific genetic

backgrounds as breeding parents. The efficiency of MAS becomes

even more limited in hybrid breeding where parental lines that have

undergone independent selection are cross combined and tested for

expression of the trait in a background different from the one under

which they were selected.

Therefore, a less expensive and faster method that allows

selection of inbred parents with enhanced hybrid performance is

needed. Such method should provide a clue about how the most

promising hybrids can be identified without expensive and

laborious field testing. Since hybrid performance is the result of

putting together of different alleles at several loci associated with the

trait of interest (Ben-Israel et al., 2012), new methods should be able

to predict how well a given hybrid can do through genetic profiling

of its inbred parents (Technow et al., 2012; Cui et al., 2020).

Predicting hybrid performance can ultimately reduce the number

of hybrids to be evaluated in the field and hence reduce costs

associated with synthesizing and phenotyping large number

of crosses.

The next generation sequencing (NGS) technologies have

provided tools for scanning the entire genome of species instead

of few selected genomic regions and capture single nucleotide

polymorphisms (SNPs) throughout the genome. Such

polymorphisms are often in linkage disequilibrium with alleles

responsible for a change in gene functions. Thus, selection

approach that takes into account all SNPs across the genome

known as genomic selection (GS) may be more powerful than

other indirect selection schemes used in the past. Genomic selection

is a modified version of MAS that predicts the genetic values of

individuals using genome-wide markers without the need for gene

and QTL discovery. Unlike MAS, GS permits the use of molecular
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markers with both major and minor effects on the traits to build the

prediction model that is used to predict the phenotypes of untested

individuals (Meuwissen et al., 2001). Phenotypes are predicted from

the genome information using appropriate prediction models which

may provide genomic-estimated breeding values (GEBVs) for each

genotype. Prediction of breeding values of the selection candidates

is made based on phenotypic data from a set of individuals (training

population) randomly drawn from the larger set and marker

information of the entire population (Meuwissen et al., 2001).

Genomic selection has been successfully conducted in several

crops (Windhausen et al., 2012; Sallam et al., 2015; Spindel et al.,

2015). When the accuracy of genomic estimated breeding value

(GEBV) is high enough, genomic prediction (GP) can reduce

breeding time because the proportion of superior genotypes in a

breeding population may increase, and hence accelerate selection

gain (Bernardo, 2010; Heffner et al., 2010). To date, several studies

have found high prediction accuracies for grain yield and other

quantitative traits in maize and wheat (Triticum aestivum L.) using

experimental cross-validation (Lorenzana and Bernardo, 2009; Guo

et al., 2012). Genomic prediction for single-cross hybrid

performance in maize has been shown to outperform marker-

assisted recurrent selection (Massman et al., 2013; Zhang et al.,

2022). Furthermore, moderate cross-validation prediction

accuracies have also been reported for yield and other traits in

diverse germplasm and breeding populations of wheat, barley

(Hordeum vulgare), and maize (Heffner et al., 2011; Lorenz et al.,

2012; Crossa et al., 2014).

In sorghum, GS studies were mainly focused on model training

to predict genomic estimated breeding values (GEBVs) of

individuals in different sets of populations (Hao et al., 2021).

Grain yield and drought adaptation of sorghum hybrids have

been assessed using multi-trait model on multi-environment

phenotypic performance of 2645 testcross hybrids using their

maternal lines genomic and pedigree information (Velazco et al.,

2019). They reported that multi-trait genomic evaluation of

important agronomic traits enhances genomic prediction of

productivity and drought adaptation in grain sorghum. Although

full advantage from multi-trait G-BLUP was obtained, only the

maternal genomic and pedigree information was considered in this

study. Accommodation of genotype-by-environment interaction

(GEI) and heterogenous variance of the marker effects through

weighted K-BLUP had significant increments in prediction

accuracy (Velazco et al., 2020). Comparison of different genomic

prediction models incorporating marker-based and pedigree

relationships showed higher selection accuracy for marker-based

relationship than the pedigree information (Hunt et al., 2018).

Moderate to high prediction accuracy for grain composition was

obtained for grain sorghum diversity panel and biparental

recombinant inbred lines using Bayesian multi-output regressor

stacking model than in single-trait single environment models

(Sapkota et al., 2020). This approach may be extended to hybrid

breeding to replace the extensive hybrid synthesis and evaluation

schemes by genome-based prediction. Prediction of hybrid

performance based on general (GCA) and specific (SCA)

combining abilities applied through genomic-enabled prediction

models that incorporated population structure and GEI effects were
frontiersin.org
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used to train classical GCA-SCA-based on genomic (GB) models

under a hierarchical Bayesian framework (Fonseca et al., 2021).

Using a leave-one-out cross-validation scheme, they effectively

predicted hybrid performance and increased prediction accuracy.

However, the prediction accuracy of hybrid performance was found

to be dependent on repeatability and genetic architecture of the

trait, the degree of genetic similarity among parents, the structure of

the training set, the method used to perform predictions (genomic

or classical GCA-SCA–based models), and the complexity of the

models (single or multi-environments). The objective of the present

study was to determine whether genomic selection scheme can be

effectively used to predict hybrid performance of grain sorghum in

the semi-arid mid west with a reasonable accuracy to warrant its

application in hybrid breeding program.
2 Materials and methods

2.1 Plant materials

A total of 102 public parental inbred lines, including 99

pollinator lines (fertility-restorer lines) and 3 seed parents (A/B-

male sterile lines), bred at Kansas State and Texas A&M

Universities, were used in this study. Of these, 59 lines were

Acetolactate synthase (ALS) inhibitor herbicide-resistant sorghum

pollinator parents (R-lines), 16 were Acetyl co-enzyme-A

Carboxylase (ACCase) pollinator parents and 24 were

conventional (non-herbicide resistant) pollinators. The lines

represented diverse pedigrees in the program and were believed

to provide diverse set of hybrids when crossed with three tester

females that also represent diversity among the public female

inbreds. The female parents were ATx399, ATx3042 and AOK11.

A total of 204 F1 hybrids developed from crosses between 99

pollinator lines and the three seed parents were categorized into

three subgroups. Group 1 hybrids consisted of crosses between 77

pollinator parents and AOK11 as a female parent, while Group 2

comprised hybrids from crosses between 59 pollinator parents and

ATx3042. Group 3 comprised F1 hybrids between 68 pollinator

parents and ATx399. Forty-four of the pollinator lines were

common across the three populations.
2.2 Field phenotyping

The 204 F1 hybrids were evaluated across four environments at

Kansas State University (KSU) Agronomy Research Farm Ashland

Bottoms near Manhattan during 2012, 2013 and 2014 seasons and

at the Northeast experimental station near Ottawa, KS during 2014.

The tests at Ashland bottoms were planted on June 8, 7 and 17 for

2012, 2013 and 2014 seasons, respectively. Field planting at Ottawa

was done on June 17, 2014. The experiments were laid in a

randomized complete block design with three replications. The

gross plot size was 5 m long paired rows spaced 0.75 m apart. On

average, the annual precipitation for KSU Agronomy Research

Farm Ashland Bottoms was 338, 539 and 576 mm for 2012, 2013

and 2014, respectively.
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Data were collected on days to flowering, plant height, grain

yield and yield components, including panicle length, panicle

weight, panicle yield, number of kernels per panicle, and

thousand kernel weight. Days to flowering was determined by

recording the number of days from planting to when 50% of

plants in each plot reached half-bloom. The plant height was

recorded by measuring the distance from soil surface to the tip of

the panicle at physiological maturity expressed in centimeters. The

grain yield was measured as the weight of the kernels harvested at

maturity from each plot recorded in kilograms per hectare.

Prior to harvesting, three panicles from main plants were

randomly sampled from each plot for measuring yield

components. Mean of the three panicles was used to represent a

plot and the moisture content was adjusted to 12.5% for statistical

analysis. The panicle length was determined as the mean length of

the panicles measured from the base to the tip of the panicle. The

panicle weight was recorded as the weight of panicle from

individual plant. The panicle yield was measured as the weight of

grains threshed from a single panicle. The kernel number was

recorded by counting the kernels threshed from each panicle using a

laboratory seed counter (Model 850-3, International Marketing and

Design Corporation). The thousand kernel weight was determined

by measuring the weight of 250 kernels from each panicle and

multiplied by four.
2.3 DNA extraction and genotyping

Seeds of the parental lines were planted in the greenhouse at

Kansas State University using 96-cell flat trays filled with Metro-mix

360 (Sun Gro, Agawam, MA) growing medium. Two weeks after

planting, young leaf tissues were harvested from each line for genomic

DNA extraction using the standard cetyltrimethylammonium

bromide (CTAB) method (Doyle, 1987). The Quant-iT PicoGreen

dsDNA Assay Kit (Invitrogen, Carlsbad, CA) was used to quantify the

concentration of the DNA samples. SNP genotyping and allele calling

were carried out using the genotyping-by-sequencing (GBS) platform

at the former Institute of Genomic Diversity (currently Cornell

Genomic Facility; https://www.biotech.cornell.edu/core-facilities-brc/

facilities/genomics-facility) as described in Purcell et al. (2007). The

DNA samples were digested with ApeKI restriction enzyme

(recognition site: G|CWCG) and 96-plex GBS libraries were

constructed as described by Elshire et al. (2011). DNA sequencing

was done using either the Illumina Genome Analyzer IIx or

Hiseq2000. The Illumina sequencing reads were aligned to the

sorghum reference genome v2.1 (http://phytozome.jgi.doe.gov/pz/

portal.html; Paterson et al., 2009). SNP calling was conducted using

TASSEL 3.0 GBS pipeline (http://www.maizegenetics.net/tassel/;

Bradbury et al., 2007; Glaubitz et al., 2014). The GBS data was

filtered using minor allele frequency (MAF) of < 5% and missing

data of < 20%, which resulted in 66,265 high quality SNPs for

downstream analysis. The missing data were imputed using

BEAGLE 4.1 (Browning and Browning, 2007). The markers were

spread accross the entire genome with the least number of markers

3,950 mapped on to chromosome 7 followed by 4,388 on

chromosome 8. The highest number of markers per chromosome of
frontiersin.org
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10,189 was found on chromosome 1 followed by 8,946 on

chromosome 2. Chromosomes 3, 4, 5, 6, 9 and 10 had 8,798, 7,162,

5,454, 6,724, 4,965 and 5,689 markers, respectively. The average

marker density per chromosome was 6,626.
2.4 Statistical analysis

2.4.1 Variance components and heritability
The variance components were calculated using SAS v.9.3 (SAS

Institute, Cary NC, 2011). The following statistical model was used

for the analysis of the data across four environments:

yijk   =   μ   +   gi   +   ej   +(ge)ij   +   rk(j)   +   eijk

where yijk is the phenotypic observation for ith single cross

evaluated in the jth environment, m is the grand mean for a trait; gi

represents effect of the ith single cross; ej represents the effect of the

jth environment; (ge)ij represents the interaction effect between

single cross and environment; rk(j) represents the effect of

replication nested within the jth environment; and eijk represents

the residual variance. Environment and replication nested within

environment effects were modeled as fixed effects while all other

effects were treated as random. Error variance was allowed to be

heterogeneous among environments.

Broad-sense heritability (H) for each trait was estimated across

environments as described by Hallauer et al. (2010):

H =
s 2
g

s 2
g +

s 2
ge

e + s 2
e
er

where s 2
g , is the genetic variance,s 2

ge is the genotype-by-

environment interaction variance,s 2
e is the residual variance, r is

the number of replications and e is the total number

of environments.

2.4.2 Population structure and relatedness
To account for population structure that affects prediction

accuracy (Riedelsheimer et al., 2013; Lipka et al., 2014), we

computed principal component analysis (PCA) on the genotype

data of the parental inbred lines using prcomp package in R (Becker

et al., 1988). Pairwise genetic distance among the 102 parental

inbred lines was estimated by coefficient of co-ancestry directly

from 66,265 SNPs among the parents. We also computed kinship

matrix as a measure of familial relatedness among the parental

inbred lines using the VanRaden method (VanRaden, 2008) in

TASSEL 5.2.14 (Bradbury et al., 2007).

2.4.3 Genomic prediction of hybrid performance
Genomic estimated breeding values (GEBVs) were calculated

using ridge regression best linear unbiased prediction (RR-BLUP)

model implemented in rrBLUP package in R (Endelman, 2011),

which assumes that all marker effects are normally distributed and

have the same variance (Whittaker et al., 2000). We first generated

design matrices for additive and dominance effects from the marker

information of the parental lines for the 204 F1 hybrids as described

by (Zhao et al., 2013). We predicted the hybrid performance by
Frontiers in Plant Science 04
considering only additive marker effects (partial model) using the

following reduced model: y = 1nm + KAa + e. We then used both

additive and dominance marker effects (full model) in the

prediction model to assess if the combined genetic effects would

improve the prediction accuracy. The latter was re-run using the full

model as follows: y= 1nm + KAa + KDd +e; where 1n = a vector of

ones, and n and m represent the number of single cross hybrids and

the across environment mean, respectively. KA is the design matrix

(n x m) for the additive marker effects, in which m indicates the

number of markers, which were coded as -1, 0 and 1, where “-1” and

“1” representing homozygous genotypic classes A2A2 and A1A1

and “0” representing heterozygous (A1A2) genotypes. KD is the

design matrix for the dominance marker effects coded as 0, 1, 0 with

score “0” representing both homozygous genotypes (A2A2 and

A1A1) and “1” for the heterozygous (A1A2) genotypes. The

additive and dominance effects of the ith marker were

represented as a and d, respectively, in the prediction model while

e represents the residual effect for the jth hybrid.

Prediction accuracy, r (ĝ, g), was computed as a measure of the

correlation between the observed and predicted phenotypes and

divided by the square root of heritability of the trait across

environments (Yu et al., 2020). Single-trait prediction accuracy, r

(ĝ, g), of hybrid performance was estimated using a five-fold cross-

validation (CV) procedure with random sampling method without

replacement. The five-fold CV prediction accuracy results were

obtained by dividing the 204 F1 hybrids into five random subsets

and using 100 iterations. We tested four levels of the TP size (nTP =

41, 82, 122 and 163) to predict the performance of the remaining

hybrids as a validation population (VP) using the two models.
3 Results

3.1 Hybrid performance, variance
components and heritability

Table 1 summarizes agronomic performance of the 204 F1

hybrids across environments. Flowering time, plant height, and

grain yield ranged from 53 to 85 d, from 79.3 to 164 cm, and from

4.0 to 14.5 Mg ha-1, respectively. Overall, each hybrid flowered 65 d

after planting, was 111cm tall, and produced 7.9 Mg ha-1 grain

yield. Mean panicle length, panicle weight and panicle yield were

25.5 cm, 68.8 g and 47.7 g, respectively. Mean kernel number per

panicle and thousand kernel weight were 1,640 and 29.1 g,

respectively. Broad-sense heritability varied from 0.23 for grain

yield, thousand kernel weight, and panicle weight to 0.81 for

flowering time.
3.2 Population structure and relatedness

The first three PCs from the PCA computed across the 102

parental lines accounted for 25.1% of the variance. A plot of PC1

(11.6%), PC2 (7.5%) and PC3 (6.0%) revealed three groups, which

generally agrees with pedigree information of the maternal lines

(Figure 1). Although most of the lines (97%) were from the KSU
frontiersin.org
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sorghum breeding program, there was clear pattern of genetic

differences among the inbred parents. Relative kinship values

across pairs of the 102 parental lines ranged from 0 to 1.5 with

98% of the pairs having < 0.5 coefficients and an overall average of

0.1, which suggests that majority of the lines were distantly

related (Figure 2).
3.3 Genomic prediction accuracy

Figures 3A, B summarizes the five-fold CV prediction

accuracies of hybrids. Both partial model (that incorporated only

the additive marker effects) and full model (that used both additive

and dominance marker effects) gave moderate to high prediction

accuracies of hybrid performance for all traits with the highest

accuracy observed for grain yield and the lowest for thousand kernel

weight. Prediction accuracy based on additive marker effects alone

was slightly lower than when both additive and dominance effects
Frontiers in Plant Science 05
were considered for all traits except for kernel number where the

full model had the same level of prediction accuracy with the one

based on additive effects alone. For other traits, including panicle

length, panicle weight, thousand kernel weight and grain yield, the

use of the full model marginally improved prediction accuracy

whereas accuracies for plant height and days to flowering were

higher with the partial model. For grain yield, which showed an

overall higher prediction accuracy, the additive model alone gave r

(ĝ, g) of 0.58 versus 0.67 obtained when the full model was used

(Figures 3A, B). Although the full model provided better prediction,

thousand kernel weight was less predictable for all training

population sizes. Other traits, including panicle length and

panicle weight also displayed similar trend. On the other hand,

the use of the full model decreased the prediction accuracy from

0.24 to 0.17 for panicle length, from 0.18 to 0.14 for days to

flowering and from 0.36 to 0.3 for plant height (Figures 3A, B).
3.4 Genomic prediction accuracy as
influenced by training population size

Prediction of hybrid performance was studied for various TP

sizes considering additive marker effects alone as well as for

combined additive and dominance effects, the results are

summarized in Table 2. The prediction accuracies of hybrid

performance for grain yield and yield components based on

additive marker effects alone increased as the number of

individuals assigned to the TP increased for all traits. Increasing

the TP size from 41 (20%) to 163 (80%) increased the prediction

accuracy for panicle length, panicle weight, panicle yield and kernel

weight by 20, 100, 175 and 89%, respectively. Other traits, including

days to flowering, plant height and grain yield had their prediction

accuracies increased by 156, 65 and 28%, respectively, when the TP

sizes were increased. Prediction accuracy for different traits based

on additive effect model was markedly different with grain yield and

other yield component traits, namely, panicle weight, kernel

number and plant height having higher prediction accuracies

while thousand kernel weight, panicle yield and days to flowering

showing the lowest prediction accuracy. Similarly, the prediction

accuracy of hybrid performance under both additive and
TABLE 1 Summary of eight agronomic traits of sorghum hybrids evaluated across 4 environments at Manhattan in 2012-2014 and Ottawa in 2014
summer seasons.

Trait Mean* Range s2g s2ge s2
e H

Panicle length (cm) 25.5 ± 2.6 19.1-32.7 1.45 2.3 2.4 0.55

Panicle weight (g) 68.8 ± 14.7 28.4-97.3 17.8 67.9 21.4 0.23

Panicle yield (g) 47.7 ± 9.1 26.3-71.0 25.8 30.5 11.5 0.47

Number of kernels per panicle 1640 ± 307.3 1029-2324 33.6 28.2 12.9 0.52

Thousand kernel weight (g) 29.1 ± 2.4 23.3-38.8 0.43 2.27 3.9 0.23

Days to flowering (days) 65 ± 5.3 53-85 10.2 3.93 6.8 0.81

Plant height (cm) 110.7 ± 14.6 79.3-164 40.9 69.8 52.5 0.47

Grain yield (Mg ha-1) 7894.5 ± 2331.3 4014-14475.5 41.1 49.33 31.2 0.23
frontiers
*Mean with standard errors; s2g, genetic variance; s2ge, genotype-by-environment interaction variance; s2e, residual variance; H, broad-sense heritability.
FIGURE 1

Principal component analysis (PCA) results of 102 parental sorghum
inbred lines estimated using 66,265 single nucleotide polymorphism
(SNP) markers. Subgroup, G1 = Red; G2 = green and G3 = blue.
in.org
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dominance model was similar to when only the additive effects were

considered and for all traits the accuracy increased as the TP

size increased.

Prediction accuracy of hybrid performance using five-fold CV

where TP and VP are related by commonmales or females using the

partial model are presented in Table 3. When relatedness was only

due to common male parental lines in the TP and the VP, the

prediction accuracy of hybrid performance for different traits

ranged from 0.06 for thousand kernel weight to 0.59 for grain

yield. On the other hand, when relatedness was due to common

female parents, the average prediction accuracy ranged from 0.17

for panicle weight to 0.56 for grain yield (Table 3).
4 Discussion

The recent breakthrough in genetic marker technology and

bioinformatics tools integrating DNA markers with phenotypes has

expanded the knowledge of marker effect on phenotype; opening

way for MAS to enhance breeding efficiency. While the applicability

of MAS was limited to QTL with large effect, a further development

based on next-generation sequencing has provided a more powerful

tool, genomic selection (GS), to facilitate selection for small effect

QTL affecting key traits of agronomic importance (Arruda et al.,

2016; Cerrudo et al., 2018). Because GS accounts for all loci with

both major and minor effects on the trait, it is expected to address

some of the shortcomings of MAS (Cerrudo et al., 2018).

In the present study, GS was used to predict F1 hybrid

performance with respect to eight different agronomic traits of
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sorghum. Prior to building the genomic prediction model, structure

analysis was conducted to determine population structure and

familial relatedness. The kinship values among the lines were

expectedly low and it may be the result of a deliberate attempt by

the breeding programs to diversify parental sources in order to

maximize hybrid vigor. The grain yield values (7.9 to 14.5 t ha-1)

observed in this study may be partly the result of increased heterosis

that resulted from the low kinship coefficients among the lines.

Genomic selection utilizes phenotype and genomic data of

subset of a population (training population, TP) to predict the

performance of the selection candidates based on their genotype

only. For GS to be effective, it is very important that high quality

genotype data is obtained on the entire population and good quality

phenotype data on the TP. This study also looked at the effect of TP

size on prediction accuracy of hybrid performance and compared

two prediction models, one based on additive marker effects only,

and the other considering both additive and dominance effects, to

predict F1 hybrid performance in sorghum. The additive and

dominance allelic effects were estimated for each marker and used

to calculate predicted phenotypes (GEBVs) for untested F1 hybrids

using RR-BLUP genomic prediction based on an infinitesimal

model where all predictors are maintained in the analysis. This

model gave higher prediction accuracies in previous studies (Habier

et al., 2007; Zhao et al., 2013).

Previous studies have shown that in cross-validation schemes,

prediction accuracy can be overestimated if both TP and validation

population (VP) sets contain related lines (Edwards et al., 2019;

Lozada et al., 2019; Fraslin et al., 2022). Therefore, in this study,

principal component analysis (PCA) was performed on the parental
FIGURE 2

Heatmap of pairwise kinship matrix values estimated using VanRaden algorithm for 66,265 single nucleotide polymorphic (SNP) markers among 102
sorghum parental inbred lines. The distribution of coefficients of co-ancestry is shown by the color histogram, and the stronger red color indicates
the individuals that are more related to each other.
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TABLE 2 Prediction accuracy of hybrid performance for eight agronomic traits as affected by training population size considering additive effects/
additive and dominance effects of the markers in the model.

Trait
Prediction accuracy, r (ĝ, g) at different Training population sizes (nTP)*

nTP = 41 nTP = 82 nTP = 122 nTP = 163

Panicle length 0.25/0.20 0.28/0.24 0.28/0.25 0.30/0.28

Panicle weight 0.19/0.15 0.26/0.18 0.33/0.21 0.38/0.28

Panicle yield 0.08/0.09 0.12/0.15 0.17/0.17 0.22/0.27

Number of kernels per panicle 0.18/0.17 0.26/0.22 0.29/0.24 0.34/0.29

Thousand kernel weight 0.01/0.03 0.02/0.02 0.04/0.02 0.12/0.18

Days to flowering 0.09/0.06 0.12/0.10 0.14/0.13 0.23/0.14

Plant height 0.23/0.26 0.28/0.30 0.33/0.33 0.38/0.34

Grain yield 0.46/0.49 0.53/0.52 0.56/0.56 0.59/0.58
F
rontiers in Plant Science
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*Additive marker effect and additive & dominance marker effect separated by forward slash, respectively.
A

B

FIGURE 3

Five-fold cross-validated prediction accuracy, r (ĝ, g), of sorghum hybrid performance considering additive marker effects alone versus additive and
dominance marker effects: (A) panicle characteristics, and (B) phenology, plant height, grain yield and seed weight. Prediction accuracy was assessed
using 163 and 41 F1 hybrids as the training population (TP) and validation population (VP), respectively.
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lines to determine the genetic structure of the lines before genomic

prediction analysis was performed. The results show that the

parental lines are structured into three subgroups (G1, G2 and

G3 in Figure 3) to some extent based on the maternal lines.

Following the PCA results, an alternative cross-validation was

considered in which the prediction accuracy of hybrid

performance was assessed by assigning F1 hybrids in the TP and

VP either with common male or female parents.

In this study, prediction accuracy was markedly different for

different traits with grain yield having more than 50% accuracy and

thousand kernel weight consistently the lowest. Increase in TP size

improved prediction accuracy for all traits but the extent of the

increase was different for different traits. Similar results have been

reported in previous studies in other crops (Asoro et al., 2011;

Heffner et al., 2011; Lorenz et al., 2012; Crossa et al., 2014; Jan et al.,

2016). Jan et al. (2016) reported increased prediction accuracies in

canola with increase in TP size and no significant increase in

accuracy was observed after assigning more than 70% of hybrids

in the TP.

Again, grain yield consistently had the highest five-fold CV

prediction accuracy among the traits assessed in this study. This

result corroborates previous studies that have also reported high

prediction accuracy of grain yield in wheat (Crossa et al., 2010;

Heffner et al., 2011; Heslot et al., 2012; Zhao et al., 2013) and

biomass yield for maize hybrids (De los Campos et al., 2009; Crossa

et al., 2010; Albrecht et al., 2011; Crossa et al., 2011; Gonzaıĺez-

Camacho et al., 2012). Furthermore, higher prediction accuracies of

hybrid performance were observed for many of the traits with the

full model (both additive and dominance effects) than with the

reduced model (additive effects only). The result agrees with

previous simulation study on maize (Technow et al., 2012) where

higher prediction accuracy was reported when dominance effects of

the markers were considered in the model. Contrasting results were

reported in hybrid wheat by Zhao et al. (2013) where higher

prediction accuracies of hybrid performance was observed when

dominance effects were not considered in the model. They

attributed this to small population size (90 hybrids) used in their

study arguing that dominance model is more sensitive to the size of

available data for training, suggesting that the dominance effects on

prediction accuracy can be better captured when the population size

is large. In the present study, 204 F1 sorghum hybrids were used,
Frontiers in Plant Science 08
substantially higher than 90 hybrids studied by Zhao et al. (2013),

and perhaps that has contributed to higher prediction accuracies

when dominance effects were considered in the model, at least for

some of the traits. But perhaps due to the same reseaon for wheat

(Zhao et al., 2013), the full model resulted in reduced prediction

accuracy for panicle length, days to flowering and plant height in

the current study.
Conclusion

This study has shown that it is possible to predict the

performance of untested sorghum hybrids for important

agronomic traits such as grain yield solely based on the genotype

information by using a genomic prediction model. Thus, GS may

become a viable tool for predicting the performance of sorghum

hybrids prior to committing resources for expensive phenotyping.

This intern may help to significantly reduce the number of hybrids

to be evaluated and costs associated with phenotyping a large

number of hybrids in the field. The fact that genotyping and

sequencing costs have been decreasing and knowledge of

computational biology expanding, it is becoming possible that

public breeding programs can affordably deploy genomic

selection platforms to add efficiency and reduce the overall cost of

developing a hybrid technology.
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