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Shoot-root signal circuit:
Phytoremediation of heavy metal
contaminated soil

Shiyan Bai1†, Xiao Han1† and Dan Feng2*

1College of Biological Science and Engineering, Fuzhou University, Fujian, China, 2Biotechnology
Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
High concentrations of heavy metals in the environment will cause serious harm

to ecosystems and human health. It is urgent to develop effective methods to

control soil heavy metal pollution. Phytoremediation has advantages and

potential for soil heavy metal pollution control. However, the current

hyperaccumulators have the disadvantages of poor environmental adaptability,

single enrichment species and small biomass. Based on the concept of

modularity, synthetic biology makes it possible to design a wide range of

organisms. In this paper, a comprehensive strategy of “microbial biosensor

detection - phytoremediation - heavy metal recovery” for soil heavy metal

pollution control was proposed, and the required steps were modified by using

synthetic biology methods. This paper summarizes the new experimental

methods that promote the discovery of synthetic biological elements and the

construction of circuits, and combs the methods of producing transgenic plants

to facilitate the transformation of constructed synthetic biological vectors.

Finally, the problems that should be paid more attention to in the remediation

of soil heavy metal pollution based on synthetic biology were discussed.
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Introduction

The global soil heavy metal (HM) pollution is increasing (Outridge et al., 2018). Heavy

metals in the environment enter organisms along the food chain, causing harm to

organisms and human bodies (Moynihan et al., 2017). For example, “Minamata disease”

in Japan is caused by Hg pollution (Eto, 2000). Both physical remediation and chemical

remediation have the disadvantages of high treatment cost, large treatment project

(Ferrucci et al., 2017; Mu'azu et al., 2018; Asadollahfardi et al., 2021), and disturbing the

soil microenvironment (Zhou et al., 2015). Although microbial remediation can effectively

deal with heavy metal pollution in soil, it also has some shortcomings such as demanding

environmental conditions (such as specific pH, temperature, etc.) (Cabral et al., 2013).

Nanomaterials have excellent adsorption properties for heavy metals (Marques Neto et al.,

2019), but the interaction mechanism between them remains to be studied (Hizhnyi et al.,
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2017; Zhang et al., 2021), so there are limitations when they are used

to remove heavy metals. It is urgent to find appropriate methods to

control soil heavy metal pollution.

Phytoremediation has low cost and simple operation, which is

suitable for dealing with heavy metal pollution in large areas of soil.

It is expected to reduce the content of heavy metals in contaminated

soil to a safe level for a long time, so as to eradicate the problem of

heavy meta l po l lu t ion in so i l (P i lon-Smi t s , 2005) .

Hyperaccumulators are commonly used in phytoremediation (Li

et al., 2018). However, the discovered hyperaccumulators have poor

environmental adaptability and enrichment specificity and are lack

of critical biomass for effective phytoremediation (Mijovilovich

et al., 2009). Synthetic biological methods to improve plant

tolerance and toxic metal accumulation have great potential

in phytoremediation.

The behavior of these pathways in plants can be predicted,

regulated and finally programmed (Schwille, 2011). Unlike

traditional method, synthetic biology is a new way to build

modules with new functions (Liu and Stewart, 2015). In this

paper, the comprehensive process of soil heavy metal pollution

control and the strategies of synthetic biology involved are

proposed, and the latest progress of experimental technologies

that contr ibute to synthet ic biology and plant gene

transformation is summarized. This review also discusses the

potential chal lenges of applying synthetic biology to

phytoremediation. Efforts should be made to formulate breeding

plans to improve the characteristics of natural hyperaccumulators,

and cultivate these characteristics into non-food, high

accumulation, high biomass plants for phytoremediation of

heavy metals.
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Synthetic biology devotes to
intelligent improvement of ideal traits

Synthetic biology combines biotechnology and engineering

ideas to connect genes into a network, enabling cells to complete

various tasks of artificial design (Khalil and Collins, 2010; Cameron

et al., 2014). Compared with bacteria, yeast and mammalian cells,

plant synthetic biology is still in its infancy (Liu and Stewart, 2015).

Moreover, phytoremediation of heavy metal contaminated soil also

has some problems, such as mixed heavy metal pollution. Thlaspi

caerulescens, a cadmium/zinc hyperaccumulation plant, is sensitive

to Cu toxicity, which is a problem in the application of this plant to

the remediation of cadmium/zinc contaminated soil with Cu

(Mijovilovich et al., 2009).

Although plant sensors have been developed to use chlorophyll

destruction to achieve visualization (Antunes et al., 2011), due to

the limitations of plants, such as their bright colors and

spontaneous fluorescence, and in view of the large variety of

heavy metals, we propose to implement the strategy of “microbial

biosensor detection-phytoremediation-heavy metal recovery” for

soil heavy metal pollution (Figure 1). Synthetic biological elements

are constantly added to the gene circuit of microbial biosensors and

phytoremediation, so that their functions are more and more

abundant and their performance is constantly improved.

Heavy metal microbial biosensor

Whole cell microbial biosensor refers to using microbial cells as

sensing elements to convert the collected molecular information to
FIGURE 1

Strategies for phytoremediation of heavy metal contaminated soil.
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light, electricity and other signals. The signal intensity is

proportional to the content of the substance to be measured (Du

et al., 2019), so as to achieve quantitative and qualitative dynamic

monitoring of the substance to be measured. The diversification of

detection targets is one of the development trends of microbial

biosensors. In order to achieve functional integration of multi target

detection, more gene elements must be installed in the gene loop of

microbial biosensor, which leads to increasingly complex gene

loop. Synthetic biology provides theoretical and technical support

for the integration and optimization of gene circuits to ultimately

achieve programmed/customized sensitivity, specificity, and

dynamic ranges of sensors to meet their real world detection

requirement (Figure 2).

The first reported gene engineering cell biosensor was

responsive to aromatic hydrocarbon contamination (King et al.,

1990). After that, many heavy metal microbial biosensors were

developed. AND, OR, NOR, NAND, XOR and other complex

modular logic gate structures are designed and constructed, and

used for the development of multi-level gene circuit type whole cell

microbial biosensors (Wang et al., 2013; Saltepe et al., 2018). The

whole-cell-based biosensor consists of sensing elements and

reporting elements, all of which are located in the chassis cell to

realize the designed gene circuit (Harms et al., 2006).

The microbial biosensor uses autologous cells as sensing units

to sense the measured objects and convert them into recognizable

signals according to certain rules (Yagi, 2007). Due to the easy

culture, rapid reproduction and relatively simple metabolism of

microorganisms, microbial biosensors have natural advantages.

However, the microorganisms commonly used to construct

microbial biosensors are limited to bacteria, yeast, cyanobacteria,

green algae and other microorganisms (Ma et al., 2022).

The sensing elements of heavy metal microbial biosensor

mainly include heavy metal responsive transcription factor/

transcription regulator (Brown et al., 2003; Busenlehner et al.,
Frontiers in Plant Science 03
2003; Fang and Zhang, 2022), two-component system

(Leonhartsberger et al., 2001) and riboswitch (Cromie et al.,

2006). The regulatory structure of transcription factors/

transcription regulators is the most widely studied and applied

gene circuit sensing element at present. These proteins have two

functional domains, namely ligand-binding domain (LBD) and

DNA-binding domain (DBD). The LBD is the signal receiving

module of the sensing element, which determines the specificity and

diversity of the ligand. The DBD is a signal conversion module,

which can specifically identify transcription factor/transcription

regulator binding sites. Metal responsive transcription regulators

(i.e. metalloregulators) have different families: ArsR/SmtB, MerR,

CsoR/RcnR, CopY, DtxR, Fur, NikR, etc (Pennella and Giedroc,

2005; Osman and Cavet, 2010). At present, MerR family proteins

and ArsR/SmtB family proteins are mainly used in the construction

of microbial biosensors. Transcription factors/transcriptional

regulators have clear functional domains, which can be separated

and recombined in a modular way to a certain extent. Based on the

modular structure of natural transcription factors/transcriptional

regulators, artificial transcription factors/transcriptional regulators

(ATF/ATR) can be designed and constructed. ATF/ATR integrates

different LBDs and DBDs and directly targets key gene regulatory

networks that govern intended downstream application (Tungtur

et al., 2007). Promoters containing transcription factor binding sites

are also the focus of research. The response performance can be

adjusted by changing the strength of promoters (Xu et al., 2020), the

location (Dabirian et al., 2019)and number (David et al., 2016) of

transcription factor binding sites.

The report element is a report gene that can be monitored. At

first, luciferase was used to construct the microbial biosensor. Later,

fluorescent protein became the mainstream reporting element, and

the programmable design of heavy metal microbial biosensor was

realized. A series of constitutive promoters are used to regulate the

expression level of MerR family proteins, which are used as
FIGURE 2

Signal transduction in cell.
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regulators in the genetic circuit to regulate the detection sensitivity

to control the expression of fluorescent protein eGFP. Based on this,

a heavy metal microbial biosensor with adjustable sensitivity is

designed (Guo et al., 2019). The concentration of heavy metal ions

in the environment can be converted by measuring the fluorescence

intensity of microbial biosensor cells (Du et al., 2019). However, as

far as the sensitivity to heavy metals is concerned, the performance

of luciferase is better than that of fluorescence (Huang et al., 2015).

Pigment genes are also used to construct microbial biosensors

(Fujimoto et al., 2006).

Integrated with micro/nano technology, some systems have

been developed to optimize microbial biosensors and make them

easy to use (Rothert et al., 2005; Buffi et al., 2011; Kim et al., 2015).

With the discovery of new mechanisms of recognition and allosteric

of metalloregulators (Liu et al., 2019; Fang et al., 2021), microbial

biosensors are easy to use and have higher sensitivity and faster

detection speed.
Phytoremediation

Hyperaccumulator

Hyperaccumulator is the basis of phytoremediation.

Hyperaccumulator can grow normally in the soil with high

concentration of heavy metals, and accumulate heavy metals in

the aboveground parts with a concentration hundreds or even

thousands of times as high as that of ordinary plants (Sytar

et al., 2021).

In 2015, the online Global Hyperaccumulator Database

(www.hyperaccumulators.org) was established (Reeves et al., 2018;

Sytar et al., 2021). The word heavy metal hyperaccumulator first

appeared in 1976, when Sebertia acuminata was discovered, which

can absorb and enrich nickel (Ni) in soil (Jaffré et al., 1976). Later,

many hyperaccumulator were found, such as Arabidopsis halleri

(Briskine et al., 2017), Alfalfa (Wang et al., 2021), and Sedum

alfredii (Qiong et al., 2021). Pteris. Vittata L is the first reported

hyperaccumulator of As in the world, and also the first reported fern

with super enrichment function. Unfortunately, the website does

not provide services at present.

It is necessary to continue and accelerate the discovery of heavy

metal hyperaccumulator. As heavy metal hyperaccumulators only

exist or mainly exist on metal bearing soil, they are threatened by

habitat loss with the reduction of mineral resources (Lange et al.,

2017). Therefore, it is necessary to continue to identify

hyperaccumulator species and other metal tolerant plants in order

to study and utilize their unique physiological mechanisms and

provide a basis for the practical application of phytoremediation

technology. However, we advocate that native plant species should

be used as much as possible to avoid the possible spread of

invasive species.

Some crops can enrich heavy metals. As and Pb exceeding the

standard were detected in the harvestable part of corn growing near

the tailings (Armienta et al., 2020). Brassica juncea L. showed the

ability to enrich copper, cadmium and lead from soil (Goswami and

Das, 2015; Gonzaga et al., 2018; Gurajala et al., 2019). The edible
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part of rice contains a lot of arsenic (Meharg, 2004; Dolphen and

Thiravetyan, 2019). When wheat and some vegetables are planted in

arsenic contaminated farmland, a large amount of arsenic is

accumulated in their edible parts (Saeed et al., 2021; Shukla et al.,

2022). However, we emphasize that the synthetic biological chassis

carrier for phytoremediation should not use existing crops to ensure

that the products produced do not enter the food chain.

Application of synthetic biology to the
improvement of existing
hyperaccumulators

At present, more than 700 species of hyperaccumulators have

been found, but the popularization of phytoremediation technology

in practice is still restricted by many aspects. Each plant often

accumulates only one or a few heavy metals, and shows some

poisoning symptoms for other heavy metals with high

concentrations in the soil. There are great limitations in the

treatment of soil contaminated by multiple heavy metals (Wilson-

Corral et al., 2012). The poor enrichment ability of heavy metals in

soil, slow growth rate and small dry matter weight per plant bring

great difficulties to the practical application of production (Bian

et al., 2020).

The response of hyperaccumulators to heavy metals is closely

related to a variety of genes, whose expression products mainly

include metal transporter (Pence et al., 2000), phytochelatin

synthase (PCS), metallothioneins (MTs) and metal reductase

(Ellis et al., 2006). These proteins play an important role in the

absorption, transport and partition of heavy metals in plants

(Milner et al., 2013). The high level expression of TgMTP1 gene

in the heavy metal hyperaccumulator Thlaspi goesingense is the

reason for its strong ability to accumulate metal ions in vacuoles

(Persans et al., 2001).

Genetic engineering tools have been successfully used to

develop transgenic hyperaccumulators. By overexpressing

metallothionein, phytochelatin, metal transporter and antioxidant

enzymes in plants, it has been successfully demonstrated that the

ability of phytoremediation is improved (Zanella et al., 2016;

Balzano et al., 2020). Transferring genes responsible for

hyperaccumulative phenotypes to plants with higher aboveground

biomass is considered to be a feasible potential way to enhance

phytoremediation (Brown et al., 1995; Rugh et al., 1998). However,

the response of plants to heavy metals involves various proteins,

amino acids, citric acid (Lu et al., 2013), etc. These substances are

interrelated and interact to form a complex and huge signal network

to regulate the whole growth and development process of plants.

Only operating on individual genes can not create ideal

hyperaccumulators, and even cause plants to be highly sensitive

to heavy metals (Wojas et al., 2008). In addition, a single element

can only enable transgenic organisms to obtain one of the functions

of absorption, transport and transformation, while the synergy of

multiple gene elements can obtain more potential repair species.

The most important core idea of synthetic biology is

standardization. Different genes are designed into modular

engineering elements. Through the design and assembly of the
frontiersin.org

http://www.hyperaccumulators.org
https://doi.org/10.3389/fpls.2023.1139744
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Bai et al. 10.3389/fpls.2023.1139744
elements, a circuit that functions with time and space can be

obtained (Endy, 2005). Synthetic biology of higher plants is

emerging. The synthetic biology resource library iGEM (https://

pa r t s . i g em .o rg /Ma inPage ) , Synb ioML@TJU (h t tp : / /

www.synbioml.org/), Registry and database of bioparts for

synthetic biology (https://www.biosino.org/rdbsb/), etc. constantly

updated and supplemented the tested plant elements. SBOL has

been updated to version 3.0 (Baig et al., 2020). Plant MoClo Syntax,

a plant cloning system that can easily assemble complex vectors, has

been established (Engler et al., 2014; Hussey et al., 2019).

Complex synthetic gene circuits have been achieved in plants.

Recently, the first stable reprogramming synthetic gene circuit in

plant cells has been realized. In this system, a series of key gene

circuit functions were first established. Then, using recombinase

and plant control elements, a series of operational logic gates were

developed. The YES, OR and gates were used to activate transgenes,

and the NOT, NOR and NAND gates were used to inhibit

transgenes; A NIMPLY B gate combining activation and

suppression is also realized. Through the use of gene

recombination, these circuits have produced stable long-term

changes in the expression and recording of past stimuli, proving

the practicability of programmable manipulation of transcriptional

activity in complex multicellular organisms (Lloyd et al., 2022).

Gene circuits used to change root structure predictably have also

been developed, which based on a series of synthetic transcriptional

regulators developed for plants (Brophy et al., 2022). The

application and development of hyperaccumulator in

Phytoremediation will be promoted by using synthetic biological

techniques to design and develop ideal hyperaccumulator with

strong enrichment capacity.
Heavy metal recovery in
phytoremediation

Phytoremediation uses phytoextraction. If the plants that have

absorbed heavy metals are not properly treated, the problem of

environmental pollution still exists (Zhong et al., 2015). Research

shows that plants are “bio factories” of metal nanoparticles. Brassica

juncea can reduce silver ions and gold ions to form silver

nanoparticles and gold nanoparticles with a particle size of 2~100

nm, and the output of the nanoparticles is affected by the amount of

reducing sugar (Beattie and Haverkamp, 2011). After soybean

(Glycine max) and rice (Oryza sativa L.) were exposed to silver

ions, silver nanoparticles were also detected in plants, indicating

that they were formed in vivo (Li et al., 2017). A variety of metal

nanomaterials can be synthesized by genetically engineered

microorganisms (Kang et al., 2008; Choi et al., 2018). MTs and

PCS are commonly used in these modifications (Kang et al., 2008;

Choi et al., 2018). Therefore, based on the development of

sequencing technology and the application of synthetic biology in

phytoremediation, it is possible to build a circuit in plants to

generate metal nanoparticles at room temperature and pressure to

achieve the classified recovery of heavy metals after adsorption.
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New technologies for developing
synthetic biology modules

Synthetic biology technology may strongly support the

development of phytoremediation. There are a lot of undeveloped

element resources in plants. At present, most of the regulatory

elements verified by experiments and characterized by functions

come from rice, Arabidopsis and other model plants. There are still

a large number of regulatory elements in non model plants waiting

for further exploration and development.

In the past decades, although some progresses have been made

in studying the mechanism involved in the interaction between

organisms and heavy metals using molecular biological techniques

(Hu et al., 2005; He et al., 2011; Hossain and Komatsu, 2012;

Muralidharan et al., 2012), the potential of phytoremediation has

still not been fully exploited. Many emerging biotechnologies help

to identify components and redesign circuits.
Third-generation sequencing

The third generation sequencing technology (TGS), also known

as single molecule sequencing, has the advantages of long reading,

single molecule and real-time sequencing (Schadt et al., 2010). At

present, the mainstream platforms are single molecule real-time

sequencing (SMRT-seq) and nanopore sequencing. Nanopore

sequencing has been applied to DNA (Clarke et al., 2009; Manrao

et al., 2012) and RNA (Wanunu et al., 2010) sequencing at the single

molecular level, and has rapidly become the preferred technology

for new genome assembly and structural variation identification

(Schmidt et al., 2017; Fuselli et al., 2018; Tan et al., 2018). It can

greatly improve the quality and integrity of sequencing data (Ding

et al., 2020) and identify splice isoforms (Byrne et al., 2017;

Depledge et al., 2019). The third generation of long reading

sequencing enables us to obtain epigenome/epigenetic

transcriptome data with single nucleotide resolution, which can

be used to directly detect DNA and RNA modifications (Zhu et al.,

2018; Tellgren-Roth and Couturier, 2022), and has become a

common method to identify epigenetic modifications in plants

(van Dijk et al., 2018; Zhao et al., 2020). This technology can

accelerate the discovery of functional genes and can be used to

manufacture biological components used in synthetic biology.
Single-cell omics

In the past ten years, the methods of single-cell omics have

completely changed our understanding of the cell and molecular

composition of life systems. The sequence and structure analysis of

genome (Luo et al., 2019), transcriptome (Tang et al., 2009),

epigenetic modification (Zhu et al., 2019; Luo et al., 2020),

chromatin accessibility (Marand et al., 2021) and 3D genome

structural characteristics (Zhou et al., 2019; Ulianov and Razin,

2022) under single cell resolution are helpful to explain biological
frontiersin.org
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development laws and physiological mechanisms. Smart-seq2 is one

of the most widely used single cell full-length transcriptome

sequencing technologies (Picelli et al., 2014). Combined with

Nanopore long-read sequencing, scRNA-seq has been improved

to flsnRNA-seq, which can analyze large-scale full-length RNA at a

single-nucleus in a protoplasting-free manner (Long et al., 2021).

Based on TGS platform, scNanoATAC-seq technology was

developed, which is a long-read single-cell ATAC sequencing

method on Nanopore sequencing platform for simultaneously

detecting chromatin accessibility and genetic variation in a single

cell (Hu et al., 2022). Live-seq technology enables a single cell to

maintain cell viability after transcriptome sequencing, which is the

first time to achieve continuous observation of the whole gene

expression in living cells (Chen et al., 2022). Single cell multiomics

sequencing directly relates different omics information at the same

time, and further studies single cell status and molecular regulation

mechanism (Guo et al., 2017; Lee et al., 2020; Thibivilliers and

Libault, 2021).

Spatial transcriptomics uses in situ capture technology (Ståhl

et al., 2016), which can reveal the spatial distribution of various cell

types in tissues, the interaction between various cell populations,

and map gene expression in different tissue regions (Chen et al.,

2021; Liao et al., 2021). Stereo-seq is the technology with the highest

spatial resolution at present (Chen et al., 2022). DBiT-seq realizes

the joint measurement of spatially distributed mRNAs and proteins

(Liu et al., 2020). Spatial profiling of chromatin accessibility

(spatial-ATAC-seq) (Deng et al . , 2022b) and histone

modifications (Spatial-CUT&Tag) (Deng et al., 2022a) provides

new opportunities for understanding life activities. In a word, the

methods of single-cell omics enable people to accurately analyze

various genetic variations and provides a basis for designing and

manipulating various mechanisms. However, the application of

these technologies in plants needs further exploration.
Genome editing technology

CRISPR–Cas-mediated genome editing efficiently and

accurately simplifies, inserts or reconstructs the synthetic circuits

and the genome of chassis organisms (Esvelt and Wang, 2013),

providing strong support for the development of synthetic biology.

It has been widely studied in many plants (Jiang et al., 2013; Li et al.,

2013; Hu et al., 2017; Rodrıǵuez-Leal et al., 2017). In addition, it has

been able to replace large fragments of more than 100 kb (Wang

et al., 2016) and knock out and knock in multiple genes at the same

time at multiple targets (Jiang et al., 2016).

Based on dCas9 (Cas9 with H840A and D10A mutations) and

different transcriptional regulatory domains, CRISPRi (CRISPR

interference) and CRISPRa (CRISPR activation) achieve the goal

of gene expression regulation without changing the target sequence

(Maeder et al., 2013; Qi et al., 2013). dCas9 has also been developed

as a tool for regulating gene expression at the level of epigenetic

modification (Hilton et al., 2015). Based on the SunTag-dCas9-

TET1cd system of Arabidopsis thaliana, an epigenetic editing

system targeting the removal of rice genomic DNA methylation
Frontiers in Plant Science 06
was constructed, which successfully reduced the DNA 5mC level of

OsFIE1 gene and caused dwarfing phenotype (Tang et al., 2022).

Base editing technology allows the direct and stable conversion

of target DNA or RNA bases into substitutes in a programmable

manner, without the need for nucleic acid strand breaks and donor

templates. The emergence of CBE (C•G to T•A base pair

conversion) marks the birth of this technology, and it is found

that the efficiency of nCas9(Cas9 with D10A mutation) is higher

than that of dCas9, which is currently commonly used (Komor

et al., 2016). ABE (adenine base editor) mediates the transformation

from A•T to G•C in genomic DNA (Gaudelli et al., 2017). There are

numerous SNP (Single Nucleotide Polymorphism) in plants, which

are closely related to plant disease resistance and growth (Henry

and Edwards, 2009; Malmberg et al., 2019). Plant base editing tools

have been developed, and different CBEs may have different editing

efficiency for the same region of the genome. Multiple CBE-ABE

plant double base editors can edit different bases at the same time

(Xiong et al., 2022). In plant epigenetics, APOBEC3BCtd-nCas9, a

single base editor with high efficiency for editing methylcytosine,

has been obtained (Liu et al., 2022).

At present, Prime Editor (PE) has realized free conversion of all

12 single bases and precise insertion/deletion of specific base

sequences without relying on DNA templates (Anzalone et al.,

2019). This method has been applied to some plants (Butt et al.,

2020; Hua et al., 2020; Li et al., 2020; Lu et al., 2021), and has

obtained tools with higher prime-editing efficiency (Jiang et al.,

2020; Lin et al., 2021). The establishment of STEME (saturated

targeted endogenous mutagenesis editor) has realized the

directional evolution of OsACC gene in rice, thus obtaining

herbicide resistance mutation, which provides the possibility for

rapid acquisition of beneficial agronomic traits (Li et al., 2020).

The emergence of genome editing technology has accelerated

the development of synthetic biology, but there are still some

problems and room for improvement. At the same time, the

application of this technology in the field of synthetic biology also

needs further development.
Methods of plant genetic transformation

A series of plant transformation systems have been developed:

Agrobacterium-mediated method (Mayo et al., 2006; Zhang et al.,

2006; Bahramnejad et al., 2019), particle bombardment (Ueki et al.,

2009; Dong and Ronald, 2021), Electroporation (Furuhata et al.,

2019) and Pollen-tube Pathway (Nagahara et al., 2021). However,

these methods have some disadvantages, such as complex

operation, long experiment period and few stable transformed

species (Ramkumar et al., 2020). Due to the limitation of

genotype, the use of gene editing is also limited for plants without

a complete regeneration system. At present, most methods of plant

genome modification involve tissue culture. The low transformation

efficiency of plants is one of the bottlenecks in the development

of phytoremediation.

Nanotechnology helps to efficiently and accurately deliver the

required circuits to the chassis plants. Exogenous biomolecules can
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be internalized through the cell wall by nanomaterials without

mechanical or external force assistance. Nanocarriers can

effectively protect proteins, DNA, RNA and other biological

molecules, and easily introduce target molecules into different

tissues such as plant callus and endosperm. They have

successfully mediated DNA transformation or delivered RNA to

induce gene silencing in many plants (Pasupathy et al., 2008; Chang

et al., 2013; Mitter et al., 2017; Kwak et al., 2019; Demirer et al.,

2020; Lv et al., 2020; Schwartz et al., 2020; Zhang et al., 2021).

In the past ten years, through ectopic expression of

developmental regulators (DR) such as BBM and Wus2, somatic

embryo regeneration of some plants that cannot be transformed has

been achieved to a certain extent (Boutilier et al., 2002; Passarinho

et al., 2008; Che et al., 2022). Based on this, two methods based on

Agrobacterium tumefaciens were established: Fast-TrACC (fast-

treated Agrobacterium co-culture) and direct delivery (DD), which

were used in dicotyledon plants to induce meristems by delivering

Wus2 and BBM or other DRs involved in cytokinin synthesis to

achieve genetic transformation. The operation of Fast-TrACC and

DD is simple and time-consuming (Cody et al., 2022).

An extremely simple cut dip budding (CDB) system was

created, which can easily and quickly obtain transgenic and

genome editing plants without tissue culture under non sterile

condit ions . Based on root t i l ler ing, the system uses

Agrobacterium rhizogenes to infect the cut root and stem

junction to produce transformed roots, and then produces

transformed buds through root transformation. This method

realizes genetic transformation of multiple plant species.

Moreover, this method has no genotype dependence.
Challenges

Conduct basic research to reveal the mechanism
controlling important processes

The accumulation of heavy metals in phytoextraction mainly

includes the following processes: absorption of heavy metal ions by

roots, transportation by apoplast and symplast, loading from root

cells to xylem, long-distance transportation of xylem, unloading

from xylem and transmembrane transportation of cells. It has been

found that many genes are involved in different processes of the

interaction between plants and heavy metals, including Heavy

Metal ATPase (Huang et al., 2016), CDF (Cation Diffusion

Facilitator) protein family (Yuan et al., 2012), phytochelatin

synthase, metallothionein (Cobbett and Goldsbrough, 2002), etc.

Plants activate various signaling pathways in response to heavy

metal hazards (Mourato et al., 2015). The coating protein complex

component Sec24C mediates the localization of the transporter

ABCC1/2 to the vacuole through a Golgi-independent pathway,

enabling it to play the role of vacuolar compartmentalization, and

enhancing the tolerance of plants to heavy metal cadmium and

arsenic stress (Wu et al., 2011). At present, the detoxification

mechanisms of hyperaccumulators to heavy metals generally

include the chelation of heavy metals by cytoplasmic substances,

the repair of stress damage and the compartmentalization of
Frontiers in Plant Science 07
vacuolar (Hall, 2002), but the detoxification mechanisms need to

be further explored. Moreover, plants such as Viola baoshanensis

(Shu et al., 2019), Sedum alfredii (Chen et al., 2020; Niu et al., 2021),

Leersia hexandra Swartz (Liu et al., 2011), and Pteris vittata (Han

et al., 2022) have the ability to repair heavy metal pollution, but few

studies have been done on their specific regulatory mechanisms.

The response mechanism of plants to heavy metals is complex, so

we should deeply study the uptake, translocation, chelation and

other mechanisms of super enriched plants to further promote the

development of phytoremediation.

At present, the understanding of the process of plant synthesis

of metal nanoparticles is still limited. Most studies are based on

plant extracts, that is, the preparation of metal nanoparticles uses

the method of plant tissue homogenate reacting with metal ions

under certain environmental conditions. The results showed that

the main substances related to plant synthesis of metal

nanoparticles are organic acids, reducing sugars (Beattie and

Haverkamp, 2011), proteins (Xie et al., 2007), amino acids

(Shankar and Rhim, 2015) and peptides (Tan et al., 2010).

However, the formation mechanism of metal nanoparticles

cannot be fully revealed at the level of living plants.

Biosafety
With the rapid development of synthetic biology, it is becoming

easier and easier to artificially transform or create life systems, and the

biosafetyof artificial life systemshas become increasinglyprominent. It

is necessary to inhibit the escapeofnatural environmentandmalignant

rapid growth of synthetic organisms, avoid gene invasion caused by

horizontal transfer of artificial biological elements, and prevent

artificial biosynthesis of toxic metabolites. Therefore, it is urgent to

strengthen the research on the safety prevention and control of

synthetic biology, so as to realize the knowability and controllability

of the whole process of artificial life system, and provide security

guarantee for the application of synthetic biology in the environmental

field. In order to avoid the risk of integration of foreign fragments into

the genome, Cas9 protein and gRNA were assembled into a

ribonucleoprotein (RNP) in vitro for DNA-free genome editing,

which has been successfully tested in many plants (Metje-Sprink

et al., 2018).
Conclusions and opinions

Phytoremediation is an effective method to control soil heavy

metal pollution, but it is difficult to complete the remediation of

complex pollution by a single plant at present. We propose that the

remediation of soil heavy metal pollution should apply synthetic

biology strategy, and the treatment process should use a

comprehensive process of “microbial biosensor detection -

phytoremediation - heavy metal recovery”. The heavy metal

microbial biosensor should be integrated with microfluidic

technology. The identification of hyperaccumulator species and

other metal tolerant plants should continue, but local plant

species should be used as much as possible to avoid the possible

spread of invasive species. Moreover, chassis plants should be
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different from crops. The application of new experimental

techniques will help to identify elements and redesign gene circuits.

The rapid development of synthetic biology has provided us

with new technologies for creating modular and biological control

systems. Accelerating the discovery of genetic elements and the

artificial construction of gene circuits can improve the control effect

of phytoremediation on soil heavy metal pollution.
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