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Due to the unique structure of coconuts, their cultivation heavily relies on

manual experience, making it difficult to accurately and timely observe their

internal characteristics. This limitation severely hinders the optimization of

coconut breeding. To address this issue, we propose a new model based on

the improved architecture of Deeplab V3+. We replace the original ASPP(Atrous

Spatial Pyramid Pooling) structure with a dense atrous spatial pyramid pooling

module and introduce CBAM(Convolutional Block Attention Module). This

approach resolves the issue of information loss due to sparse sampling and

effectively captures global features. Additionally, we embed a RRM(residual

refinement module) after the output level of the decoder to optimize

boundary information between organs. Multiple model comparisons and

ablation experiments are conducted, demonstrating that the improved

segmentation algorithm achieves higher accuracy when dealing with diverse

coconut organ CT(Computed Tomography) images. Our work provides a new

solution for accurately segmenting internal coconut organs, which facilitates

scientific decision-making for coconut researchers at different stages of growth.

KEYWORDS

coconut, CT images, semantic segmentation, DASPP, CBAM, RRM
1 Introduction

As a plant native to tropical environments, coconuts not only serve as distinctive

landscape trees for tourism, but also contribute significantly to the local economy as a pillar

industry. The various structures within coconuts are essential materials in other industries

and closely linked to people’s lives (Arumugam and Hatta, 2022). As a result, the

development of the coconut industry has garnered high attention and research efforts

worldwide. However, the unique growth environment of coconuts, coupled with factors

such as extensive farming practices, limited processing enterprises, weak risk resilience, low

technological content, and backward deep processing capabilities, have led to insufficient
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raw materials and severe homogeneity issues in coconut products.

Currently, the global coconut market is facing a severe supply-

demand imbalance, with a significant shortage of high-quality

coconuts. Consequently, the cultivation of superior coconut seeds

has become a research hotspot in order to provide higher-quality

seedlings and resources for the coconut industry. Real-time

monitoring of the internal structural growth during the

cultivation process has become the key to addressing this issue.

Currently, growers can only resort to destructive methods, such as

cutting open coconuts for observation and documentation, which

not only hampers the normal growth of the coconut but is also

unsuitable for large-scale cultivation research. However, the use of

X-ray imaging methods can be effectively applied in this scenario.

Computed tomography (CT) imaging, widely used in clinical

medicine, provides clear visualization of internal structures in the

human body, aiding doctors in obtaining crucial information for

diagnosing organs or tissues. It holds significant importance in

quantitative pathological assessment, treatment planning, and

disease progression monitoring. By applying this method to

agricultural research, utilizing the penetrating characteristics of X-

rays, we can obtain clear internal organ images of coconuts without

disrupting their normal physiological structure and growth (Zhang

et al., 2023).

For image segmentation tasks, traditional segmentation methods

suffer from poor robustness, low efficiency, and low accuracy. With

the development of deep learning techniques, image segmentation

can be achieved without relying on manually designed features, as

neural networks can automatically learn the features required for

segmentation tasks. Therefore, methods based on deep learning have

become the primary choice for researchers in various image

segmentation tasks (Suk et al., 2023). However, existing deep

learning-based image segmentation algorithms have significant

limitations when it comes to organ segmentation tasks in coconut

CT images, failing to meet the high-precision segmentation

requirements in agriculture. In response to these issues, this paper

proposes corresponding improvement methods and validates the

effectiveness and superiority of the proposed methods through

ablation experiments and comparative experiments. The model

proposed in this paper can obtain higher-precision semantic

information when facing coconut CT images, facilitating a more

detailed analysis and evaluation of coconut development and growth.

Our work has made the following main contributions:
Fron
1. We conducted non-destructive observations of coconuts at

different stages and with different characteristics through

CT scanning. We obtained internal images of coconuts at

multiple time periods and multiple categories. Based on the

growth conditions of coconuts, we classified and labeled the

internal organs of coconuts, establishing a CT-based

coconut organ image dataset named “CIDCO.” These

data were used for training and testing the network

model we constructed and also provided image resources

for coconut research.

2. To achieve precise segmentation of the internal structure of

coconuts, we proposed an improved image segmentation

method based on the modified Deeplab V3+ network.
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Through model comparison, we demonstrated that the

improved network achieves higher segmentation accuracy

and can be effectively applied to coconut image

segmentation and growth development research.
The structure of this paper is as follows: In Section 2, we introduce

and analyze relevant research on non-destructive observations and

image segmentation for agricultural applications. In Section 3, we

summarize the research methods used in this work. Section 4 presents

the experiments we designed and compares the results with other

models. In Section 5, we provide a summary of the entire work and

discuss future directions and ideas.
2 Related work

The use of non-destructive methods to acquire images of target

objects has been receiving increasing attention and gradually being

applied in various research fields. CT, ultrasound, infrared laser,

nuclear magnetic resonance, and other methods have been used for

image scanning. For example, Yu et al. (2022) employed electron

microscopy CT for non-destructive observation of coconut variations,

aiming to explore growth and development. Li et al. (2020) conducted

terahertz imaging to observe changes in leaf water content in their

research on crop water status monitoring and diagnosis. These studies

demonstrate the feasibility of obtaining images of target objects

through non-destructive means. Regarding image segmentation,

traditional methods include threshold determination, region-based

similarity aggregation, edge operator calculations, and energy-

minimizing active contour-based approaches to accomplish various

segmentation tasks. For instance, Thorp and Dierig (2011) presented a

color image segmentation method to monitor the flowering status of

Lesquerella. This method converts the RGB color space to the HSI

color space and utilizes histogram equalization to enhance image

contrast. Then, threshold segmentation is used to separate the flower

parts from the background, and morphological operations and region-

growing algorithms are employed to remove noise and connect

discontinuous flower parts. Finally, the number of flowers is counted

based on the segmentation results, achieving automatic monitoring of

Lesquerella flowering. Xiang (2018) introduced an image segmentation

method for nighttime identification of the entire tomato plant. This

method first converts the image to the HSV color space and then

separates the plant from the background using threshold segmentation.

However, these traditional methods perform reasonably well when

dealing with images with simple linear features. But once other factors

increase, they can greatly affect the segmentation results. With the rise

of deep neural networks, various neural network methods have been

quickly applied to various image segmentation tasks. Deep learning-

based methods fundamentally transform semantic segmentation into

an image per-pixel classification problem. Van De Looverbosch et al.

(2021) proposed a non-destructive internal defect detectionmethod for

pears using deep learning techniques. X-ray CT scanning is employed

to acquire images, and semantic segmentation techniques are used for

internal defect detection and recognition. Ni et al. (2020) utilized deep

learning techniques to segment and extract features from blueberry

fruit images in order to better predict the harvest period and yield of
frontiersin.org
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blueberry fruits. This research provides a new method for accurately

predicting fruit harvest and yield. Sun et al. (2021) employed semantic

segmentation networks and shape-constrained level set methods to

detect and segment images of apple, peach, and pear flowers. The

research results demonstrate that this approach can more accurately

detect and segment the contours of flowers. Turgut et al. (2022)

proposed a deep learning architecture called RoseSegNet for plant

organ segmentation. This model, based on attention mechanisms, can

identify different organs of a rose, including petals, stamens, and leaves,

providing a new tool for botanical research. Singh et al. (2022)

proposed a method for semantic segmentation of cotton structures

from aerial images using deep convolutional neural networks. This

research achieved automatic identification and segmentation of cotton

bolls from the sky using deep convolutional neural networks. This

method can improve cotton harvesting efficiency, reduce costs, and

provide new technological support for modern agriculture. The

introduction of deep learning networks has brought faster and more

accurate solutions to image segmentation tasks. However, due to the

unique characteristics of coconuts, there is still limited research on the

application of high-precision semantic segmentation models in

coconut CT images. Therefore, our focus is on addressing this issue.
3 Method

3.1 Coconut data collection and scanning

Considering the suitable average temperature for coconuts to be

maintained between 24 to 27°C, with ample precipitation and an annual
Frontiers in Plant Science 03
sunlight guarantee of more than 2000 hours, and in order to obtain

richer raw material resources in large-scale cultivation areas, after careful

consideration, the experimental fields of Wenchang Coconut Research

Institute and the coconut plantation in Leiming Town, Ding’an County

were selected as the collection sites. The experimental fields adopted a

triangular planting pattern to achieve higher yields per unit area, mainly

consisting of green coconuts, red coconuts, and yellow coconuts,

covering an age range of 3 to 12 months. The coconut trees in the

plantation are approximately 20 years old, with a height of 10meters and

30 leaves. The majority of coconuts produced are green coconuts at the

stage of 7 to 12 months. Refer to Figure 1 for illustration.

In the aforementioned field conditions, a total of 104 coconuts

were collected, categorized into different groups based on color,

type, and age. The coconuts were numbered according to their

growth months in sequential order. Using the anatomical scanning

of the human body as the reference position, they were scanned

using a Siemens 256 dual-source CT machine. X-rays were used to

obtain cross-sectional images in three directions: axial, coronal, and

sagittal. This process resulted in complete multi-angle sliced images

of each coconut. Considering that a single image may contain more

than one complete target coconut, additional coconuts with varying

representations were also included in the CT scan images. The

number of images obtained from each coconut scan ranged from

170 to 220, with approximately one-fourth of the images capturing

the complete structural information. An example of the coconut

scanning process is shown in Figure 2.

Each image is labeled in the format of “color_month_id” to

facilitate quick and accurate searching. The labeled images are then

stored and organized according to the major coconut varieties, with
FIGURE 1

Coconut collection area situation.
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corresponding annotation folders created. Coconut researchers and

project members were involved in the annotation process. The four

main organs of the coconut that are most relevant to its development

and growth are the absorber, solid endosperm (coconut meat), liquid

endosperm (coconut water), and embryo. These four organs were

annotated, with the background represented in black by default. The

absorber was annotated in yellow, the solid endosperm in red, and the

liquid endosperm in blue. Coconut CT images can be seen in Figure 3,

and the corresponding annotation results are shown in Figure 4.
3.2 Design of segmentation model

Given the limitations of the original Deeplab V3+ network, such

as insufficient utilization of inter-level feature information leading

to unclear segmentation boundaries and lack of detailed feature

map information, resulting in poor final results, we propose a new

semantic segmentation model for coconut CT images. The

improved model builds upon the advantages of the original

framework’s encoder-decoder architecture and enhances the

feature recognition and capture capabilities through module

replacement and addition.
Frontiers in Plant Science 04
After the input of the task image, the Deeplab V3+model first uses

a deep convolutional network (DCNN) to extract features from the

input image, dividing them into two categories: high-level semantic

features and low-level semantic features. Some of the low-level features

directly enter the decoder, while other information enters the encoder

stage. At this point, the Atrous Spatial Pyramid Pooling (ASPP)

module is introduced to capture coconut organ features and requires

a sufficiently large receptive field. However, increasing the dilation rate

leads to sparser pixel sampling compared to traditional convolution,

resulting in more loss of detail information. As a result, the original

ASPP module experiences attenuation in the effectiveness of dilated

convolutions, and the effectiveness of atrous convolutions gradually

decreases, ultimately affecting the model’s capabilities.

Furthermore, the original network employs a 4x upsampling in

the decoder stage. For coconut organs, large-scale upsampling

adversely affects edge segmentation. Moreover, the fusion with only

low-level features from the base network may result in the loss of

some information, thus affecting the final segmentation accuracy.

To address these issues, the Dense Atrous Spatial Pyramid

module is used to replace the original ASPP module. The input-

output dense connections are established between each atrous

convolution layer, allowing for the coverage of multi-scale range
FIGURE 2

Example of coconut scan.
FIGURE 3

Example of CT image of coconut.
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feature information using appropriate dilation rates. Additionally, a

convolutional attention module is introduced to enhance effective

feature information, suppress irrelevant information responses, and

improve feature extraction and representation capabilities. Finally, a

residual refinement module is embedded after the decoder to map

the significant information transmitted from the upper layers,

optimizing organ boundaries and improving segmentation

accuracy. The improved model is illustrated in Figure 5.
3.3 Principle of the improvement module

3.3.1 DASPP module
DASPP stands for “Dense Atrous Spatial Pyramid Pooling.” In

the structure of the DASPP module, atrous convolutions are

combined into a cascaded fusion operation. The dilation rate
Frontiers in Plant Science 05
increases layer by layer, with layers having lower dilation

rates placed in the lower-level parts and layers with higher

dilation rates placed in the higher-level parts. The subsequent

layers share information with the preceding layers, using their

features for information sharing. This dense connectivity allows

for more intensive pixel utilization. Each atrous layer concatenates

the input with the output of the previous lower-level layer as its

input, ultimately producing a feature map generated by multi-scale

atrous convolutions.

Compared to traditional ASPP, DASPP utilizes dense

connections to establish interconnections between layers with

different dilation rates. Each set can be considered as a

convolutional kernel of a different scale, representing different

receptive fields. This change brings about a denser feature

pyramid and a larger receptive field, allowing for better

recognition and integration of semantic features of target organs
FIGURE 4

Example of the corresponding labeled diagram.
FIGURE 5

Diagram of the improved model structure.
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of various scales. The structure of the module is illustrated

in Figure 6.

3.3.2 CBAM attention mechanism
CBAM is a lightweight and versatile module for feed-forward

convolutional neural networks. It concentrates attention resources

more on the key target areas in coconut image, allocating different

weights to information and background. It enhances the network’s

expressive power without significantly affecting its efficiency and

facilitates information propagation. CBAM consists of two main

parts: Channel Attention Module and Spatial Attention Module.

The input features pass through the Channel Attention Module and

the Spatial Attention Module sequentially, resulting in

recalibrated features.

In the Channel Attention Module, both average pooling and

max pooling are applied to the features. The pooled features are

then fed into a shared multi-layer perceptron with shared weights.

The output of the MLP is multiplied element-wise with the original

feature map after a sigmoid operation. In the Spatial Attention

Module, the feature map outputted by the Channel Attention

Module serves as the input. Two pooling operations are

performed along the channel dimension, resulting in feature maps

of size h * w * 1 each time. The feature maps from the two poolings

are then concatenated along the channel dimension, resulting in a

feature map of size h * w * 2. This feature map undergoes a

convolution operation with a kernel size of 7 * 7 and a convolutional

kernel count of 1 (channel compression). The result is then passed

through a sigmoid function and finally subjected to matrix

multiplication. The working principle of the entire CBAM

module is illustrated in Figure 7.

3.3.3 RRM module
The Residual Refinement Module (RRM) is a commonly used

module in deep neural networks that incorporates the idea of an

excellent encoder-decoder architecture (Qin et al., 2019). Its main

purpose is to refine the details in the optimized results that deviate

from the ground truth by learning to integrate features from both
Frontiers in Plant Science 06
high and low layers. The RRM consists of four stages each for the

encoder and decoder. Each stage involves a convolution operation

to extract image features. Each layer has a set of 64 3×3

convolutional filters to capture specific feature information. Batch

normalization and ReLU activation functions are applied after each

convolution. The bridge connection layer follows the

same structure.

Upon receiving the fused feature map from the original

network’s decoder, the encoder utilizes non-overlapping max

pooling for downsampling to preserve global texture information.

The decoder employs up-sampling with bilinear interpolation to

restore the fine features to the original size. Finally, the module

outputs the result of the saliency feature map. This design enables

the continuous capture of detailed information at different scales

and enhances the completeness of boundary semantic features. The

structure of RRM is depicted in Figure 8.
3.4 CT image segmentation method based
on improved Deeplab V3+ network

After making improvements to the network model, and based

on the established dataset, the two main components are integrated

into the entire segmentation method. The logical flow of the process

is designed as shown in Figure 9. The diamond boxes represent the

results obtained before and after algorithm training and testing,

while the rectangular boxes represent the operations during the

training and testing process.

A self-built dataset of coconut CT images is used, including the

original images and the corresponding ground truth segmentation

images. The types and quantities of images can be selected and

divided into training and testing sets as needed. For network model

training, the original coconut CT images are used as inputs to

the entire model, with the ground truth segmentation images as the

supervision. The training process is end-to-end. After training,

the improved Deeplab V3+ model for coconut CT image

segmentation is obtained.
FIGURE 6

Diagram of DASPP module.
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FIGURE 8

Structure diagram of RRM module.
FIGURE 7

The structure of CBAM attention mechanism.
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Then, in the segmentation stage, a given original coconut CT

image from the testing set is used. With the trained improved

segmentation model, specific target organs can be segmented from

the image. If it is necessary to view a specific organ separately, the

pixel color values can be traversed to detect and extract the target

region. Since the CT scanner has a fixed scale set when generating

slice images, the values obtained from the semantic image can be

transformed according to the scale to obtain actual quantified data

of the target organ. Subsequently, segmentation experiments and

validations will be conducted using this method.
4 Experiment

4.1 Experimental environment

The CT images were captured using a dual-source CT scanner

(Somatom Definition Flash, Siemens, Germany). Each time, the

coconut was placed uniformly with the top facing upwards and the

bottom placed on a fixed mold. They were sequenced according to

the month of growth, and positions were marked with a marker on

both the fixed mold and the coconut to ensure data uniformity and

completeness throughout long-term scanning. The CT scan

parameters were as follows: slice thickness/increment = 0.6mm/

75%, tube voltage 120kV, tube current 250mAs, field of view (FOV)

400mm×400mm, gantry rotation speed 0.5s/rotation.

Model training was conducted on a Dell workstation with the

Ubantu 20.04 operating system. It includes 24G of video memory,

an RTX3090 graphics card, an Inter i7 CPU, and was developed on

the Pycharm platform. The version of Pytorch used was torch1.10,

with cuda version 11.4. The model was trained using our own

constructed Coconut CT Imaging Dataset (CIDCO).Since the

previously established coconut CT dataset was categorized and

stored in separate folders according to coconut variety and

growth stage, to ensure comprehensive training data, images were

randomly selected from each category. Five categories were chosen

for semantic segmentation: absorber, solid endosperm, liquid

endosperm, embryo, and background. Due to the large differences
Frontiers in Plant Science 08
in the internal organs of coconuts at different developmental stages,

some organ categories were missing.Taking into account the

prevention of an excessive number of images with the same stage

and same features, in order to maintain a relatively balanced

number of categories in the experimental dataset, the number of

pictures containing various organs was adjusted flexibly. In the end,

a total of 1470 images were confirmed as experimental data and

were divided into a training set and a test set at a ratio of 8:2.
4.2 Training parameters and
evaluation metrics

The improved semantic segmentation algorithm adopts a fully

supervised learning approach during training. All methods are

conducted on the same hardware. The hardware environment for

this experiment consists of a workstation based on a 64-bit Ubuntu

20.04 operating system, Intel i7-1050H CPU, 16GB of RAM, 24G of

video memory, and an NVIDIA GeForce GTX3090 graphics card.

The software environment includes the Pytorch 1.1.0 framework,

CUDA version 11.4, Python 3.6, and the Pycharm development

platform. The input images are uniformly adjusted to a size of

256×256 pixels. The hyperparameters for the training of the

coconut CT image segmentation model are as follows: The Adam

optimizer is used with a learning rate of 0.0001, a training batch size

of 4, momentum set to 9, a weight in the loss function of 0.7, and the

loss function being a combination of Dice loss and focal loss. The

total number of training epochs is set to 150.

To validate the effectiveness and robustness of the improved

network model, we use IoU (Intersection over Union) and PA (Pixel

Accuracy) to measure the segmentation results of individual organs.

mIoU (mean Intersection over Union), mPA (mean Pixel

Accuracy), and F1_score are used to evaluate the model’s overall

semantic segmentation capability for coconut CT images. These are

commonly used evaluation metrics in semantic segmentation

tasks.IoU refers to the ratio of the intersection and union of the

model’s prediction results and actual values for a single category of a

coconut organ. PA refers to the proportion of correctly predicted
FIGURE 9

Flow chart of CT image segmentation based on improved Deeplab V3+ network.
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pixels in a single organ category to the total number of pixels. mIoU

represents the average of the ratios of intersections and unions of

prediction results and actual values for each category of coconut

organs. mPA is calculated by first computing the PA for each organ

class of the coconut, and then taking the average of the PAs for all

classes.F1_Score represents a comprehensive score for the

correctness of the final results. Thus, the larger the value of these

indicators, the better the segmentation effect of the model. Their

calculation formulas are as per Equations 1–7, where TP represents

the number of correct detections, FP is the number of false

detections, FN is the number of undetected quantities, k

represents the number of categories, pii indicates the number of

correctly classified pixels; pij is the number of pixels of class i

predicted as class j, Precision(i) represents the precision of class i,

Recall(i) represents the recall rate of class i, and ri represents the

proportion of the number of samples of class i in the total samples.

 Precision  =
TP

TP + FP
(Eq: 1)

Recall = Sensitivity = TPR =
TP

TP + FN
(Eq: 2)

F1−S core =
2∗ Precision  ∗  Recall
Precision  +  Recall

(Eq: 3)

PA =
o
k

i=0
pii

o
k

i=0
o
k

j=0
pij

(Eq: 4)

mPA =
1

k + 1o
k

i=0

pii

ok
j=0pij

(Eq: 5)

IoU =
o
k

i=0
pii

o
k

i=0
o
k

j=0
pji +o

k

j=0
pijpii

 ! (Eq: 6)

mIoU =
1

k + 1o
k

i=0

pii

ok
j=0pij +ok

j=0pji − pii
(Eq: 7)
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4.3 Ablation study and model comparison

4.3.1 Module ablation study
To verify the effectiveness of our proposed improvements, we

designed an ablation study in which we run the model on the same

dataset, subtracting one of the three modules from the improved

model. ‘All’ represents the complete modules that we have added.

The training process uses the same parameter configuration, and

the final results are shown in Table 1.

According to the data in the table, the network structure

improved by the three modules shows the best overall

performance. When focusing on individual organs, the improved

new network has a higher pixel accuracy than the other comparative

modules. When faced with complete organ images showing

different features, the model’s mIoU, mPA, and F1_Score all

outperform structures missing a module. For the task of semantic

segmentation of coconut organs, focusing on the entire target area’s

features and supplementing with local boundary information is the

optimal solution. Thus, it is confirmed that this point of

improvement can significantly enhance the robustness and

accuracy of the segmentation method.

4.3.2 Comparison of segmentation results from
different models

In the same dataset, we compare our proposed model with

commonly used segmentation models to verify our model’s

excellent segmentation capability. We selected five models,

namely Basnet, Unet, Transfuse, MANet, and Deeplab v3+, using

IoU, PA, mIoU, mPA, and F1_Score as evaluation metrics. We

compare and analyze the results from both qualitative and

quantitative perspectives, as shown in Figure 10 and Table 2.

From Table 2, it is clear that the improved model performs better

than the majority of models in terms of Intersection over Union (IoU)

and Pixel Accuracy (PA) when facing segmentation of individual organ

classes. This is especially apparent for liquid endosperm and embryos.

Other models are only comparable to the improved model in one or

two data points. For the semantic segmentation of the entire image, the

improved model has a clear advantage in terms of mean Intersection

over Union (mIoU), mean Pixel Accuracy (mPA), and F1_Score. These

three metrics show that the values have improved compared to the

comparison models, proving the effectiveness of the improvement

method proposed in this chapter. Apart from quantitative results,
TABLE 1 Module ablation data table.

Keep the module Background Solid
Endosperm

Embryo Haustorium Liquid
Endosperm

mIoU mPA F1_Score

IoU PA IoU PA IoU PA IoU PA IoU PA

DASPP+CBAM 0.99 0.99 0.82 0.92 0.74 0.85 0.84 0.88 0.71 0.93 82.46 91.86 90.09

RRM+CBAM 0.99 0.99 0.82 0.92 0.75 0.85 0.85 0.90 0.72 0.91 82.99 92.02 90.43

DASPP+RRM 0.99 0.99 0.82 0.92 0.67 0.72 0.85 0.90 0.62 0.94 79.43 89.98 87.93

ALL(D+C+R) 0.99 0.99 0.82 0.93 0.75 0.85 0.84 0.89 0.72 0.92 83.10 92.05 90.50
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Figure 10 shows the segmentation effects of each model at the image

level, demonstrating that the improved model still has a higher

accuracy in segmentation at a qualitative level.
4.4 Organ extraction

Considering that in actual scenarios, it may be necessary to

extract a particular organ for analysis, we set up an organ extraction

and data quantification section. After inputting the images to be
Frontiers in Plant Science 10
operated on into the model, we obtain the semantic images of

coconuts. We then create a corresponding number of blank images

of the same size, traverse all pixels in the semantic image, and follow

the principle of point-to-point correspondence in the target organ

based on the RGB value in the semantic image to make the

corresponding points in the blank image the same value. This

way, we can obtain the image of the target organ alone. In terms

of determining the growth and development quality of the coconut,

quantitative data of the organs is one of the reference pieces of

information, in addition to making judgements in the form of two-
FIGURE 10

Semantic segmentation effect of different models.
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dimensional images. Whether it’s the complete semantic image of

the coconut or a particular organ that has been extracted, data can

still be obtained through the RGB value of the pixel points. For

example, the height of the embryo can be determined because, in

the semantic image, the embryo is characterized by the color green.

One can start from the top of the image and gradually traverse

downwards in the form of a horizontal line. When the RGB value of

a pixel point becomes (0, 255, 0), it is marked as point A. Then,

using the same method, traverse from the bottom of the image

upwards, and when you encounter a pixel point with the same

value, mark it as point B. The distance between points A and B is the

height of the embryo. When dealing with an embryo with a

significant curvature, it can be rotated to be relatively parallel to

the y-axis, and then the point traversal method can be used.

Figure 11 shows an example of the extracted image results.
Frontiers in Plant Science 11
5 Conclusion and prospects

This chapter starts from the perspective of the black box

phenomenon present in the development process of the coconut

fruit. We used CT non-destructive observation to acquire images of

coconuts at various stages and of various varieties, thus establishing a

CT image dataset for coconuts. This work fills the gap in image

resources for coconuts. On this basis, we addressed the issue of

traditional semantic segmentation models not performing well on

coconut CT images. We replaced the original Atrous Spatial Pyramid

Pooling (ASPP) block with a Dense Atrous Spatial Pyramid Pooling

(DASPP) module, resolving information loss due to sparse sampling.

Then, we added the Convolutional Block Attention Module (CBAM)

to the network, enabling it to better capture the features of coconut

organs and reduce the interference of irrelevant redundant

information. Finally, a residual refinement module was embedded

after the decoder to enhance the boundary information between

closely connected organs. This allows the network to acquire richer

global feature information and optimize boundary details, thereby

improving the semantic segmentation accuracy of coconut CT

images. During the model training process, we used multi-state

feature coconut images to improve the model’s robustness. Finally,

detailed model comparisons and ablation experiments were carried

out. The results of the evaluation indicators and the semantic

segmentation effect images both quantitatively and qualitatively

demonstrate the improved model’s high-precision segmentation

ability on coconut CT images. Furthermore, individual organ

morphology and quantitative data can be obtained from the

semantic segmentation images to increase reference information

during the development process of the coconut. This is beneficial

in assisting decision-makers to make scientific judgments on the

development status and growth stage of the coconut.

In our future research work, we will analyze the high-precision

organ morphology and quantitative data obtained from the

segmentation model to further mine the laws of coconut growth

and development. At the same time, we will incorporate image

morphology changes to construct a visualized standard

development process for the coconut, thereby making more

precise predictions of coconut intelligent development.

Furthermore, we aim to deploy our model on mobile devices to

provide more reference information and decision support for
TABLE 2 Model comparison table.

Network model Background Solid
Endosperm

Embryo Haustorium Liquid
Endosperm

mIoU mPA F1_Score

IoU PA IoU PA IoU PA IoU PA IoU PA

Basnet 0.99 0.99 0.84 0.93 0.39 0.41 0.84 0.89 0.48 0.93 71.30 83.69 81.00

Unet 0.99 0.99 0.82 0.91 0.46 0.50 0.85 0.89 0.51 0.91 72.80 84.57 82.55

Tranfuse 0.99 0.99 0.83 0.92 0.46 0.54 0.84 0.89 0.55 0.88 73.94 84.92 83.49

MANet 0.99 0.99 0.83 0.92 0.65 0.76 0.85 0.90 0.74 0.94 81.75 90.82 89.54

Deeplab v3+ 0.99 0.99 0.79 0.92 0.65 0.70 0.84 0.90 0.64 0.88 78.47 88.34 87.36

Improved model 0.99 0.99 0.82 0.93 0.75 0.85 0.84 0.89 0.72 0.92 83.10 92.05 90.50
FIGURE 11

Example of single class organ extraction.
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optimizing coconut breeding. This will aid coconut cultivators in

better managing their cultivation practices, with the goal of

achieving and continuously surpassing targets for high yield and

high-quality coconuts.
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