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The contribution of vine cultivation to humanwelfare as well as the stimulation of

basic social and cultural features of civilization has been great. The wide

temporal and regional distribution created a wide array of genetic variants that

have been used as propagating material to promote cultivation. Information on

the origin and relationships among cultivars is of great interest from a

phylogenetics and biotechnology perspective. Fingerprinting and exploration

of the complicated genetic background of varieties may contribute to future

breeding programs. In this review, we present the most frequently used

molecular markers, which have been used on Vitis germplasm. We discuss the

scientific progress that led to the new strategies being implemented utilizing

state-of-the-art next generation sequencing technologies. Additionally, we

attempted to delimit the discussion on the algorithms used in phylogenetic

analyses and differentiation of grape varieties. Lastly, the contribution of

epigenetics is highlighted to tackle future roadmaps for breeding and

exploitation of Vitis germplasm. The latter will remain in the top of the edge

for future breeding and cultivation and the molecular tools presented herein, will

serve as a reference point in the challenging years to come.

KEYWORDS
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1 Introduction

Grapevine (Vitis vinifera L.) is one of the oldest and most important cultivated plants in

the world (Myles et al., 2015; Laucou et al., 2018) and is believed to include between 6,000

and 10,000 cultivars worldwide. Although most of the evidence supports the appearance of

domesticated vines dates eight thousand years back to theWestern Asia region (McGovern,

2013), a recent article supported the hypothesis of the concurrent domestication of

grapevine in Western Asia and the Caucasus (Dong et al., 2023). In the late Neolithic
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period, the Western Asia domesticates diffused throughout Europe,

introgressed with old wild western ecotypes and diversified to give

western wine ancestry.

Vitis vinifera L. is a dicotyledonous, multi-annual plant species

that is mainly asexually propagated. Its cultivated varieties are

diploid with a relatively small genome (Myles et al., 2010) that is

particularly characterized by a high degree of heterozygosity (Hyma

et al., 2015; Yang et al., 2016). Moreover, a plethora of Vitis

genomes have been sequenced to-date (Jaillon et al., 2007;

Velasco et al., 2007; Magris et al., 2021), providing the sequence

chassis for subsequent bioinformatics analyses. Evidence shows that

before its domestication, Vitis species were dioecious, which led to

outbreeding and promoted heterozygosity. Heterozygosity was

further resulted due to somatic variation (Laucou et al., 2018),

which occurs in somatic cells during mitosis, usually in the form of

simple nucleotide mutations that are responsible for a series of

phenotypic changes such as hormone response (Vondras

et al., 2019).

As a result of this centuries-long evolution, modern viticulture

has been looking for suitable techniques to characterize the genetic

material of the genus Vitis as an essential prerequisite to produce

certified propagating material. In the beginning, the first attempts to

discriminate cultivars have been based on phenotypic markers,

though they present significant disadvantages, since they are

prone to changes in environmental conditions (Nadeem et al.,

2018) or are influenced by the developmental stage. Later on,

biochemical markers were invented and in 1997 used to

distinguish eight varieties grown is Spain (Royo et al., 1997).

Nevertheless, due to the limited number and low resolution of

isoenzymes the method did not get popularity (Mondini et al.,

2009). In a similar concept, the analysis of complex chemical

compounds, such as flavonoids, have also been used in Vitis but

provided good discrimination power only among cultivated

varieties of interspecific hybrids like those between V. ficifolia and

V. coignetiae (Koyama et al., 2017). The above-mentioned

techniques (morphological, biochemical) are influenced by sample

manipulations (e.g. extraction process), by the developmental stage

of the tissues under investigation (Nadeem et al., 2018), as well as by

the environmental conditions of plant growth. Consequently, the

development of genetic markers was a big step forward, mainly

because they are not influenced by the environmental conditions

(Royo et al., 1997; Nadeem et al., 2018), nor the developmental stage

or the type of the sample, while they are abundant in the genome

(Vezzulli et al., 2019).

Molecular markers used for genetic identification of Vitis

varieties need to comply with several main characteristics: They

should be polymorphic, the data produced should be publicly

available to allow comparative analyses (Cabezas et al., 2011), and

should produce consistent and reproducible results even after

repeated propagation especially in older vine cultivars that may

accumulate extensive number of mutations.

The demand for molecular markers became a necessity since the

market needed tools to massively distinguish genotypes, relying on

the per se genomic (e.g., DNA markers) or expressed genetic
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variability (e.g., protein markers) (Schlötterer, 2004). Although

the embarking research in this field does not go back many years,

its development was rapidly assisted by the parallel technological

advancements concerning the invention of various next-generation

sequencing approaches. PCR-based genetic analyses with molecular

markers are among the most extensively used methods for the

identification of Vitis plants or for phylogenetic studies. The most

popular markers which have been used are the Simple Sequence

Repeats (SSR) and the Single Nucleotide Polymorphisms (SNP)

(Mondini et al., 2009). Although the use of other markers, such as

Random Amplified Polymorphic DNA (RAPD) and Amplified

Fragment Length Polymorphisms (AFLPs) have been initially

applied, they failed to distinguish heterozygosity from

homozygosity due to their dominant nature. RAPDs and AFLPs

present lower reproducibility, in comparison to SSR and SNP and

thus are considered less appropriate for genetic analyses in

grapevine (Vezzulli et al., 2019). Furthermore, RAPDs and AFLPs

are prone to subjective evaluation when the evaluator comes to the

need to evaluate an increased number of bands of different intensity

(Mondini et al., 2009).

The current review focus and present available data on

molecular markers, epigenetic markers, DNA sequencing

techniques, and algorithms that are used to discriminate cultivars

and can serve as a reference point for the Vitis breeding programs.

Despite of the plethora of publications that deal with molecular

markers (Amiteye, 2021), we attempt to epigrammatically delimit

the field of molecular markers with brief historical references,

focusing on the technologies to come. The thorough review of the

literature produced a comprehensive list of primers used in SSR

analyses (Supplementary Table 1).
2 Epigenetics and Vitis vinifera

In the second half of the nineteenth century, grape phylloxera

(Daktulosphaira vitifoliae), a soil-borne aphid, destroyed millions of

own-rooted vineyards. To keep the cultivation alive, a rootstock

survival solution had to be found. A commercial rootstock derived

from a native American Vitis species, that co-evolved with the

disease of phylloxera, displayed a higher degree of resistance

(Granett et al., 1996). Studies show that the interaction of the

rootstock with the graft can significantly affect epigenetic alterations

and transcriptional reprogramming, and more interestingly, those

changes can be heritable and may affect many other cultivation

characters (Kapazoglou et al., 2021).

Epigenetics is the study of the heritable changes in gene

expression that occur without changes in the underlying DNA

sequence. In plants, such modifications can influence phenotypic

plasticity, which is the ability of a plant to change its phenotype in

response to changes in environmental conditions. Epigenetic

modifications include the DNA methylation or demethylation,

histone modification, the remodeling of chromatin organization,

and the action of specific classes of small RNAs and long non-

coding RNA (Fortes & Gallusci, 2017). Recently, Kapazoglou et al.
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(2021), reviewed these mechanisms and associated them with

grafting and rootstock interactions. Because of the existence of

sufficient phenotypic variation within clones of the same variety

that cannot be attributed to DNA differences, the grapevine could

serve as a plant model for studying epigenetic mechanisms in

perennial woody plants (Fortes & Gallusci, 2017).

Several studies discuss the role of DNA methylation in

phenotypic plasticity. For example, it was demonstrated that

phenotypic differences observed in Malbec clones grown under

two opposing environmental conditions (Varela et al., 2021) were

due to the different epigenetic profile of the clones. In another study,

Almada et al. (2011), found evidence that epigenetic repressor-like

genes were differentially regulated during grapevine development.

Tyunin et al. (2013) showed that the methylation on cytosine DNA

residues is crucial for the regulation of the resveratrol biosynthetic

pathway. Xie et al. (2017), observed that changes in DNA

methylation between vineyards or vineyard sub-regions cultivated

with the same Barossa variety were caused by both geographic

location and, to a lesser extent, by pruning strategy. Ocaña et al.

(2013), discovered stable methylation-sensitive amplification

polymorphism (MSAP) markers that effectively distinguished 40

clones of Pinot noir cultivar, demonstrating the use of this type of

methylation markers in genotyping. Similarly, Schellenbaum et al.

(2008), successfully exploited MSAP markers to distinguish

somaclones when SSR and AFLP failed. Interestingly, in another

study from Baránek et al. (2015), it was observed stable mitotically

inherited methylation diversity, that remained after plants were

stressed in-vitro. It was also shown that the atypical phenological

traits which were observed after somatic embryogenesis, on Sultana

variety, were associated with epigenetic factors (Franks et al., 1998).

In another study by Xie et al. (2017), it was reported that the global

DNA methylation patterns could explain the terroir influence in

grapevine, and that the epigenetic differences, highlighted byMSAP,

in samples from 22 vineyards and six sub-regions of the Barossa

Wine Zone, grouped vineyards based on their geographic location.

In contrast, Dal Santo et al. (2018), found that there was not any

fluctuation in DNA methylation profile or in gene expression in

grapes and plant genotype was the main factor of the methylation

variance between samples.

Recently, Lewsey et al. (2016), showed that mobile RNA may

regulate the DNA methylation landscape genome wide, that also

play important role in pathogen defense mechanism in crops.

Furthermore, it was showed that for kaolin particle film treated

plants, methylation of DNA was decreased in leaves, a response

that could be associated with the harsh environmental conditions

(Bernardo et al., 2017). Fabres et al. (2017), also pinpoint the

important factor of combination of epigenomics when integrating

omics data as epigenetic mechanisms can play a major role

between the genome and the environment in Vitis germplasm.

Therefore, the environment can have a long lasting phenotypic

effect on Vitis through epigenetic modifications, even on the same

genomic background. These modifications may work as

intermediaries between environmental variation and the plant

genome, and in this way, may potentially contribute to plant

phenotypic plasticity.
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3 Most commonly used genetic
markers: simple sequence repeats
Simple Sequence Repeats or Microsatellite Markers are a

category of abundant Short Tandem Repeats (STRs) scattered

throughout the genome that make up genomic repetitive regions

(Agarwal et al., 2008; Kantartzi, 2013; Tello and Forneck, 2019).

They usually concern 5-50 “monotonous” repetitions of the type

(GA)n, or (GATA)n or similar minute sequence repeat.

Indicatively, Velasco et al. (2007), estimated the number of SSR

in the genome of a highly heterozygous genome of Vitis vinifera, at

about 89.000. They are considered as evolutionarily neutral DNA

markers (Li et al., 2002) and tend to mutate at rates between 10-3

and 10-6 (Gemayel et al., 2012) that may reach the frequency rate of

10-9 (Madesis et al., 2013) per cellular generation in certain

circumstances. The latter means that it is up to ten orders of

magnitude larger than point mutations (Gemayel et al., 2012) and

thus, may be used for linkage mapping studies, association studies,

or identification of organisms.

Sweet et al. (2012), summarized the three proposed theories that

may explain the existence of SSRs. Firstly, they probably constitute a

kind of “junk DNA” that is present inside the genome having a

rather neutral role. A second interpretation states that their

presence ensures a source of genetic variation that helps

organisms to adapt to different environments, and thirdly, they

may possess a possible regulatory role in gene expression.

Nevertheless, the “junk DNA” term has been degraded since there

are evidence that SSR present actions on chromatin organization,

regulation of gene activity, recombination, DNA replication, cell

cycle, or mismatch repair system (Li et al., 2002).

SSR markers have been frequently used for genetic analyses of

Vitis individuals as it has been shown by the increased number of

publications (Bacu et al., 2015; Bitz et al., 2015; Dallakyan et al.,

2015; Ferreira et al., 2015; Maletic et al., 2015; Khadivi et al., 2017;

Popescu et al., 2017; Labagnara et al., 2018; Karatas, 2019). They are

frequently used to analyze the grapevine germplasm due to their

multiallelic nature and may be used to solve homonym and

synonym issues, to determine genetic variability among Vitis

vinifera cultivars as well as to establish pedigree analysis (De

Lorenzis et al., 2015b). A broad collection of the SSR markers

showed in the literature along with a detailed compilation of related

data, are shown in Supplementary Table 1.

Each SSR primer pair has a different ability to detect

polymorphism within a population. Two parameters linked with

diversity measures are the Heterozygosity (H) (Nei and

Roychoudhury, 1974; Botstein et al., 1980; Nagy et al., 2012) and

the Probability of Identity (Pi), a measure of the probability that two

randomly chosen individuals in a population have identical

genotypes (Emanuelli et al., 2013). Polymorphic markers are

considered those that present at least two different alleles, whose

frequency is lower than 100% (Serrote et al., 2020). The bigger the

PIC number is, the greater the variety of alleles in the studied place

will be. According to Supplementary Table 1 the SSR loci proposed

by the OIV are very informative and are suitably used in technical
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protocols for genetic analyses. On the opposite side, SNP are also

useful for management of Vitis germplasm. The latter are getting

more attention although SSR are more informative than SNP

mainly because of their abundance. In the same work they

concluded that one SSR locus provides the same information as

2,5 SNP loci. Cabezas et al. (2011), developed a protocol for the

detection of 48 SNP that provided increased discrimination power

partially due to even genome distribution (2-3 markers per

chromosome). This protocol was successfully used for the genetic

analyses of 200 Vitis varieties.

Similarly, the selection and cultivation of clones provides an

exceptional opportunity to modern viticulture since they contribute

to the diversity of germplasm and subsequently to breeding and the

development of new varieties. The differentiation of Vitis clones is

not always straight forward. When different clonal genotypes were

analyzed with a small number of markers, differentiation was

unsuccessful (Vignani et al., 1996; Silvestroni et al., 1997). This

agrees with the findings who reported that SSR are inappropriate for

Vitis clone identification especially when they are closely related.

One of the first successful attempts is that of Jahnke et al. (2011),

who claimed to have successfully differentiated varieties and clones

of various types of Pinot cultivars with SSR markers. However, the

success could be due to the wide geographical distribution of

the clones.

There is a plethora of publications where SSR markers are

utilized for either identification or phylogenetic analyses of Vitis

cultivars. Recently, concluded that the utilization of 20 SSR markers

is sufficient to distinguish existing cultivars or to solve synonym and

homonym issues (Stavrakaki et al., 2020). A common criterion for

the eligibility and appropriateness of a marker is the degree of

polymorphism that can highlight differences between cultivars and

ideally clones (Jahnke et al., 2011). The International Organisation

of Vine and Wine (OIV) attempted to harmonize the international

criteria for grapevine cultivar identification, to provide a protocol

for official recognition and registration of a variety (OIV, 2019).

Nowadays, the basis for differentiation between cultivars is the

utilization of the nine OIV SSR loci (OIV, 2019; Supplementary

Table 1), as they have been proposed to offer the necessary

resolution, although less than nine have been also used (Stajner

et al., 2015). Nevertheless, there are groups that have used custom

combinations of SSR markers to support their claims

(Supplementary Table 1). The utilization of SSR markers has been

expanded to include wild Vitis accessions like V. sylvestris or V.

sativa (Zdunic et al., 2017). The first six OIV markers (VVS2,

VVMD5, VVMD7, VVMD27, VrZAG62, VrZAG79) were

evaluated under the EU Project GENRES081 (This and

Dettweiler, 2003) and have been proved suitable for grapevine

variety characterization due to their ability to produce high

degree of allelic polymorphisms (13-23 alleles per locus) and

establishing high discriminatory power (Jung et al., 2008). The

remaining three (VVMD32, VVMD25, VVMD28) were evaluated

under the program GrapeGen6 (GrapeGen6, 2012) and produced

highly frequent alleles among 2901 Vitis accessions. However,

argued that at least twenty SSR markers are needed to efficiently

distinguish/identify each vine variety and proposed the set

consisting of VVS2, VVMD5, VVMD7, VVMD21, VVMD24,
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VVMD25, VVMD27, VVMD28, VVMD32, VMC4f3, VVIn73,

VVIp31, VVIp60, VVIQ52, VVIV37, VVIV67, VVIn16, VVIh54,

and VMC1b11 (Supplementary Table 1).

While SSR are highly polymorphic and widely distributed

throughout the genome, theoretically, they could be used to assess

genetic diversity even among individuals with subtle genomic

differences. Despite the widespread use to identify genomic

diversity among varieties, they are incapable to resolve close

genetic differences. In a study by Imazio et al. (2002), they used

three different types of markers, SSR among them, to differentiate

between 24 clones of the grape variety Traminer. They found that

SSRs were not a powerful tool for clonal distinction and that clonal

identification could be greatly improved using AFLP or MSAP. In a

similar study, concluded that although SSR markers are adequate

for cultivar identification, they are definitely not well suitable for

clonal identification.

Among the advantages of SSR is the use of species-specific primers,

and the presence of increased variability and reproducibility (Núñez

et al., 2004). Data from SSR analyses may be stored in publicly available

databases. Since they exert co-dominancy (Núñez et al., 2004; Meudt

and Clarke, 2007; Nadeem et al., 2018), SSRs can be used to

differentiate homozygous from heterozygous individuals (see detailed

data in Supplementary Table 1). Their presence in expressed sequence

tags (EST) allows not only the discrimination of Vitis cultivars but also

to point-out the association with genes of interest for the creation of

genetic maps (Núñez et al., 2004).

SSRs are abundant covering the entire genome (Qin et al., 2015)

and they appear to be an important tool for almost any problem

requiring Mendelian genetic markers. The results from SSR-PCR

analyses are easily assessed, consistently scored and thus, they can be

exchanged between different research evaluations. Furthermore, their

detection is based on simple PCR-amplifications, offering great

practical advantage over other methodologies (AFLP, RFLP,

VNTR, etc.). Even poorly preserved specimens may be valuable

sources of material, since SSR analysis may be applied to samples

with degraded DNA (Queller et al., 1993; Qin et al., 2015).

In contrast, the SSRs’ main drawbacks are the difficulty to

detect new SSR loci, the laborious nature of this process until they

reach to a detection protocol, and eventually the cost (Madesis

et al., 2013). The development of NGS technology will serve as a

helpful alternative. Nevertheless, once found, microsatellites are

easily utilized to generate abundant and unambiguous genetic data

that are likely to become an indispensable part of many

evolutionary studies (Queller et al., 1993). Although, in general,

SSRs are reproducible, technical difficulties may arise when

amplifying SSR loci, particularly in the detected length of

amplicons that differ in only one or two base pairs (Madesis

et al., 2013; Laucou et al., 2018).
4 Single-nucleotide polymorphisms:
simple and abundant

Single-nucleotide polymorphisms or SNPs are currently the

most widely used markers mainly because of their wide distribution

in the genome (Broccanello et al., 2018). They are single base pair
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positions in genomic DNA, where the allele with the lowest

incidence is found in an abundance of at least 1% or more (Jehan

and Lakhanpaul, 2006). SNPs are considered the basis of

phenotyping diversity as they can affect the gene or protein

expression. It is estimated that they account for more than 80

percent of all polymorphisms observed in an organism (Komar,

2009). Among the main characteristics of SNP are a) the very large

number of loci can be surveyed simultaneously, especially coupled

with next-generation sequencing platforms, and b) the relative ease

of scoring and analysis of data.

SNP may have up to four alleles per locus but usually only two

are present due to low mutation rates (Glaubitz et al., 2003).

Although SNP are less informative than microsatellites, they are

abundant in the genomes and tens of thousands of SNPs may be

detected quickly and cheaply via microarrays (Marrano et al., 2017;

Laucou et al., 2018) or may be exploited by High-Throughput

Sequencing (HTS) automation (Salmaso et al., 2004; Mammadov

et al., 2012; Yang et al., 2016; Marrano et al., 2017). Thus, they show

a higher ability to detect genetic variability due to abundance and

whole-genome localization. Moreover, they provide better

resolution to elucidate the relationships between the samples at

the population level, as well as they can be applied for parentage

analysis. It is worth noting that SNP profiles from one laboratory

can be easily compared with those generated from other

laboratories (De Lorenzis et al., 2015a).

They also have co-dominant nature (Salmaso et al., 2004;

Zyprian et al., 2015) and may be used for association studies

between alleles and phenotypes (Rafalski, 2002). Furthermore,

SNP present higher degree of reproducibility and reliability

among different laboratories (Vezzulli et al., 2008; Laucou et al.,

2018). SNPs are more advantageous over SSR mainly due to their

abundance in the genome and thus are suitable for parentage or

kinship analysis (Laucou et al., 2018). It has been shown that SNP

polymorphisms are very useful to understand population structure,

perform clone identification, conduct segregation and phylogenetic

analyses (Nicolas et al., 2016; Li et al., 2019), assist plant breeding, or

manage genetic resources in germplasm collections (Kumar et al.,

2012a). Also, SNPs constitute the basic markers in Genome Wide

Association studies (GWA), while they allow high-throughput

automation (Marrano et al., 2017). A summary of the main

properties (advantages and disadvantages) of SSR and SNP used

in genetic analyses of Vitis cultivars is given in Table 1.
5 Other type of markers

In addition to the use of SSRs and SNPs, other types of

molecular markers have been applied (ISSR/Inter Simple

Sequence Repeats, AFLPs, M-AFLPs) but are generally

laborious, costly, time consuming and difficult to apply in low-

skilled laboratories. However, the development of Next

Generation Sequencing technologies may assist towards the

reliable detection of grape genetic diversity even among clones

of the same variety.
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6 Algorithms and software packages
to infer phylogenetic relationships
among cultivars

Algorithms are utilized to infer the evolutionary connections

between a group of organisms or sequences based on molecular or

morphological data. The outcome of a phylogenetic analysis is a

tree, which displays the putative evolutionary connections among

the sequences. The construction of the tree is an essential step in

phylogenesis because it is the process of finding the tree that best

explains the data according to a specific criterion, such as maximum

likelihood or maximum parsimony, that reflects the most likely

evolutionary history of the sequences or organisms under study.

This can be performed using different algorithms and models,

depending on the nature of the data and the assumptions

underlying the analysis.

Regardless of the methodology that is being utilized to reveal

grapevine genetic or genomic variability (SSR, SNPs, etc.), the

selection of the algorithm or method to infer the clustering analysis

of populations and cultivars, is critical. Algorithms are, essentially, the

equations that various statistical software use to quantify variability

and finally present it as a branched tree (dendrogram or phenogram

as in Lefort and Roubelakis-Angelakis (2001); Karatas ̧ et al. (2007);
Alifragkis et al. (2015)). In the case of molecular marker analysis there

is a plethora of different algorithms or methods that may be utilized

and can be classified into three main groups, distance methods,

parsimony methods and maximum likelihood methods (Nei and

Kumar, 2000; Ochieng et al., 2007).

In the distance methods the evolutionary distances (or pairwise

differences) and the construction of phylogenetic trees are put

together by grouping individuals (or genotypes) that are most

similar (Uncu et al., 2015). Examples of distance-based methods

include Neighbor Joining (Saitou and Nei, 1987; Pardi and Gascuel,

2012; Doulati-Baneh et al., 2013) and Unweighted Pair Group

Method with Arithmetic Mean (UPGMA, Sneath and Sokal,

1973). Parsimony-based methods identify the tree topology that

requires the fewest number of evolutionary changes (such as

substitutions, insertions, and deletions) to explain the observed

variation in the sequences analyzed. The method assumes that the

evolutionary changes occur independently and equally likely at each

site. Maximum likelihood methods estimate the likelihood of

observing data under different models of evolution and tree

topologies. The likelihoods are then used to identify the tree

topology that is most likely to have generated the observed data.

Maximum likelihood methods typically use complex models that

account for variations in the rates and patterns of evolutionary

changes across sites and branches of the tree.

Abovementioned methods can be a useful and informative

approach for reconstructing the evolutionary history in

populations and identifying patterns of genetic variation among

individuals or groups by the application of any type of molecular

data, including SSR (Uncu et al., 2015). Each method has its own

advantages and disadvantages and is suited for different types of
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data and research questions. Distance methods are computationally

efficient and can be used for large datasets, but they do not account

for variations in the rates and patterns of evolutionary changes.

Parsimony methods are simple and intuitive, but they may not be

the most accurate method when the evolutionary changes are
Frontiers in Plant Science 06
complex and varied. Maximum likelihood methods are more

complex and computationally demanding, but they can account

for complex evolutionary models and provide more accurate

estimates of the phylogeny (Nei and Kumar, 2000; Uncu

et al., 2015).
TABLE 1 Basic features of SSR and SNP molecular markers used for the identification of Vitis cultivars.

Dominant
Marker/
Codominant
Marker

SSR Codominant Marker (Nadeem et al., 2018)

SNP Codominant Marker (Nadeem et al., 2018)

Biallelic/
Multiallelic

SSR Multiallelic (Cabezas et al., 2011)

SNP Biallelic (Cabezas et al., 2011)

Discrimination
ability

SSR

○ Difficulty separating electrophoretic bands that differ in only one or two
base pairs (Madesis et al., 2013)
z Due to their multiallelic nature they show increased genetic information
compared to SNP (Kantartzi, 2013, Zyprian et al., 2015)
○ Miscalling difficulties when di-nucleotide repeats are utilized
○ Frequent addition of an Adenine nucleotide by DNA polymerases
(Cabezas et al., 2011)

SNP

○ SNP show a higher ability to distinguish especially between close
relatives than SSR. Due to their biallelic nature, SNP show reduced genetic
information compared to SSR but this disadvantage is offset by their
abundance in the grapevine genome (Zyprian et al., 2015)
○ In the kinship analysis a main advantage of SNP markers (in relation to
SSR), is that due to the increased number of available SNP markers, lead to
an increased LOD score and therefore to a greater chance of
discrimination in first degree relatives with second degree relationships
(full-sibling vs. second-degree) (Laucou et al., 2018)

Monolocus
marker/
Multilocus
marker

SSR Monolocus marker (Khlestkina and Salina, 2006).

SNP Monolocus marker (Khlestkina and Salina, 2006)

Competent to
sequencing

SSR Yes (Nadeem et al., 2018)

SNP Yes (Nadeem et al., 2018)

Level of
Detection of
Polymorphisms
in the
Grapevine

SSR

○ In the primer recognition site, some individuals will have only one allele
amplified or fail to amplify the genetic loci
○ In different species, alleles of the same size may be created but not
identical [homoplasy (Sweet et al., 2012)]
○ The mutation rate of SSR loci varies at a rate between of 10-9 to 10-3 per
cell generation (Gemayel et al., 2012; Madesis et al., 2013)
○ Average PIC (Polymorphism Information Content or Gene Diversity
Index): 0.63 ± 0.15 (Khlestkina and Salina, 2006)

SNP
○ They show reduced genetic information compared to SSR,
○ Average PIC (Polymorphism Information Content or Gene Diversity
Index): 0.27 ± 0.23 (Khlestkina and Salina, 2006)

Abundance
SSR

○ The number of SSR primers is limited and it is difficult to develop new
primers, as many sequences need to be cloned and only a small number of
them will be useful for developing SSR markers. In addition, only some of
these markers will provide useful information, especially for species with
large genomes (Kantartzi, 2013, Madesis et al., 2013)

SNP ○ Abundant (Marrano et al., 2017)

Transferability

SSR
○ Not as useful as SNP in improving the traceability and identification of
germplasm (Marrano et al., 2017)

SNP
○ Existence of doubts about the transferability between varieties, hybrids
or clones (Zyprian et al., 2015)
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Besides the different algorithms that have developed to infer

phylogeny, there are also different software packages that may assist

the calculation of the genetic distances or perform clustering

analyses based on the specified algorithms. A commonly used

criterion or clustering algorithm is the UPGMA. The UPGMA, a

simple bottom-up hierarchical clustering method, was utilized by

Zoghlami et al. (2013), to evaluate the genetic structure of a wild

Vitis population. Data were fed to the Darwin software program

with a matrix of pairwise FSt values. Darwin was also used by

Goryslavets et al. (2015), to study the diversity of ancient grape

cultivars of the Crimea region. They also utilized the weighted

version of Neighbor-Joining method that was similarly used by

employing the simple matching distances (Bowcock et al., 1994).

Moreover, Moreno-Sanz et al. (2011), also utilized UPGMA, based

on Jaccard’s similarity coefficient and cophenetic correlation

coefficient but instead worked with WinBoot software.

Additionally, they performed a Bootstrap analysis with 1.000

replicates. The latter is critical since it provides a way to estimate

the standard error as well as the confidence intervals of the analyses

but unfortunately is not widely used. Martıńez et al. (2006),

highlighted the diversity in Peruvian and Argentinean genotypes

employing the NTSYSpc (Rohlf, 2008), similarly to De Lorenzis

et al. (2013), who studied the diversity of a group of Vitis genotypes

from Italy, Slovenia and Ionian islands along with the package

PHYLIP (Felsenstein, 2004). In general, NTSYSpc is a popular

software package for analyzing multivariate data. It has been used in

several studies on grape inter-varietal genetic diversity (Santiago

et al., 2005; Meneghetti et al., 2009; Castro et al., 2011), though it

was loaded with different types of similarity matrices (allelic data as

squared distance matrices, simple matching coefficient, proportion

of shared alleles or DICE coefficient).

MEGA software (Tamura et al., 2021) is another widely used

software package for molecular evolutionary analyses that was

used to study the diversity of selected grape genotypes from the

island of Crete and from Iran (Doulati-Baneh et al., 2013), based

in SSR markers. In a similar work, utilized SSR markers and

then applied the Jaccard index (Jaccard, 1908) to highlight the

genetic similarity, which was used for cluster analysis to

discriminate Hungarian Vitis varieties. This is also known as

nearest-neighbor approach.

It is evident that there is a plethora of algorithms and software

packages to study phylogenesis and interpret phylogenetic

relationships between cultivars. Therefore, it is important to

carefully consider the strengths and limitations of each method

when selecting an appropriate approach for analyzing data to

adequately compare Vitis varieties. Until today, there is no

formula or recommendation about the optimum algorithm that

can be used to adequately compare Vitis cultivated material. The

choice of method depends on the specific research question, the

characteristics of the data being analyzed, and the assumptions that

are appropriate for the biological system under study. Often, it is

advantageous to compare the results of many methods to ensure

that the inferred tree is robust and not disproportionately

influenced by the selected method.
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7 High-Throughput strategies for
Genotyping of Vitis cultivars and
clones

7.1 Utilization of immobilized
oligonucleotides in microarray formats

Recently, diversity analysis of grapes was exploited by the use of

microarrays bearing immobilized oligonucleotide strings

representing a very large number of SNP from various species.

Myles et al. (2010) was the first to develop an array consisting of

9.000 SNP (Vitis9KSNP), which was proposed as an efficient way to

differentiate vine species and varieties that they could form the basis

for further use in Genome Wide Association (GWA) studies. Three

years later, another SNP array was developed (GrapeReSeq 18K Vitis

genotyping chip) that included 15.022 SNPs from Vitis vinifera, 1.000

SNPs from Vitis aestivalis, 1.000 SNPs from Vitis berlandierii, 1.000

SNPs from Vitis labrusca, 1.000 SNPs from Vitis cinerea, 400 SNPs

fromVitis lincecumï, and 578 SNPs from Vitis rotundifolia (Le Paslier

et al., 2013). The latter array was utilized by De Lorenzis et al. (2015a)

to highlight polymorphisms on Georgian vine samples and by

Laucou et al. (2018) who used a large amount of genotypic data to

refine the genetic diversity of grapes. Even further, Bianchi et al.

(2020) utilized the GrapeReSeq 18K Vitis chip to genotype non-V.

vinifera populations successfully.

Microarrays are characterized by “ascertainment bias” which

result in reduced “flexibility” and “transferability”; markers useful

for one family are not always transferable to related families (Hyma

et al., 2015). The utilization of NGS offers an alternate approach to

SNP microarrays for high-throughput genotyping (Yang et al., 2016).

The advent of the former technology bearing the ability to find

thousands of SNP per assay has subsequently increased the ability to

analyze genomes in cost-effective manner (Marrano et al., 2017).

One of the limitations that the microarrays present is that a

prior knowledge of the genome sequence is needed to detect and

validate polymorphisms (Marrano et al., 2017), while the cost

remains high (Yang et al., 2016) especially if the process is

outsourced (Thomson, 2014). On the other hand, NGS strategies

don’t need any prior knowledge of the genome as they utilize de-

novo sequencing (Gambino et al., 2017; Roach et al., 2018; Girollet

et al., 2019). Furthermore, no identification and validation of

polymorphisms is required in a panel, as it is possible to compare

all SNP markers either with respect to a draft reference genome or a

re-sequenced reference genome (Liang et al., 2019). Developing new

trait-specific SNP for known genes is time consuming, costly,

depending on the type of crop and the genetic architecture of the

traits (Thomson, 2014).

7.2 Next generation sequencing-based
strategies

New generation of sequencing (NGS) technologies significantly

changed phylogenetic analyses through the increase of the
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generated data focusing either in genomic level or at specific loci. In

any case, the vast array of generated data permits the increase of the

number of taxa that can be included in the analyses (Lemmon and

Lemmon, 2013). On the other hand, the advantage of higher

efficiency and lowered cost per data unit is coupled with the

demand for increased computer power for analyses and special

bioinformatics skills. Reduced-representation library sequencing

(Altshuler et al., 2000) and more specifically, single or double

digest restriction-site-associated DNA sequencing (Baird et al.,

2008; Peterson et al., 2012) are among the most common

work flows.

Such efficient NGS platforms can be used to detect SNP to

identify genetic differences not only between varieties but also

between clones. For example, Gambino et al . (2017),

discriminated V. vinifera cv. “Nebbiolo” clones after revealing

unique SNP markers while Roach et al. (2018), detected a set of

1620 markers (SNP and indels) that helped them to find differences

between 15 clones of the “Zinfadel” variety.

In most of the cases, NGS needs the recruitment of a reference

genome to highlight differences and relationships between

individuals. Roach et al. (2018) aimed to investigated the genetic

diversity in Chardonnay clones after created a high-quality reference

genome of the clone I10V1 utilizing the single molecule real-time

(SMRT) technology. They showed that Chardonnay contains

genomic regions with extensive similarity with Pinot Noir and

Gouais blanc leading to the conclusion that they are first degree

relatives. In another work, Liang et al. (2019), utilized paired-end re-

sequencing and reported the whole-genome analysis of 472 Vitis

accessions from a wide geographic distribution that helped to identify

certain relations between the domesticated grapevines.

The availability of a reference genome is of extreme importance

when NGS is in the foreground. It may be useful in the conservation

of genetic resources (Girollet et al., 2019) or genetic studies, but also

may be used for the provision of additional markers including the

development of dense SNP arrays (Roach et al., 2018). Moreover,

when the target requires a genome assembly of a heterozygous

species, the reference genome provides a secure framework to map

the generated reads that usually lead to a better assembly

(Dominguez Del Angel et al., 2018). The first two grape reference

genomes were created by Jaillon et al. (2007), from a highly

heterozygous Pinot Noir, and by Velasco et al. (2007), from a

highly homozygous clone of Pinot Noir. Though, the former

assembly was haploid with low coverage that does not represent

the typical complexity of the genome in commercially available vine

varieties while the latter, although diploid, remained highly

fragmented, setting difficulties in their use (Roach et al., 2018).

Since these first genome announcements, more than two hundred

of genomes have been published, readily utilized for reference

(Magris et al., 2021), including V. vinifera common and feral

accessions as well as other Vitis species. Among them, a de-novo

assembled reference genome of V. riparia has been created, utilizing

a third generation long read NGS technology (Girollet et al., 2019).

In combination with a second-generation short read technology,

Vondras et al. (2019), created a 225x reference genome for the clone

“Zin03” (originated from cultivar Zinfandel).
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7.2.1 High-Throughput sequencing of simple
sequence repeats

SSR analysis, as previously mentioned, has become a well-

established technology for Vitis phylogenetic analyses. Various

SSR database systems have also been established. Most of these

systems use a standard set of nine primer pairs that have been

proposed by OIV, although many more have been developed over

the years by various research teams (Supplementary Table 1). SSR

alleles are routinely evaluated using a single or multiplexed PCR

followed by capillary electrophoresis-based separation. Such

electrophoretic-based techniques for variable-length classification

offer sufficient time-and cost-effectiveness improvements but are

limited in that they have relatively low throughput and do not yield

nucleotide sequence information. Nucleotide variation among SSR

alleles may be useful for distinguishing alleles, resolving mixed

samples, or even to conduct kinship analyses. High-throughput

sequencing technology may provide a more robust platform but is

not currently routinely used.

High-throughput microsatellite genotyping came to improve

genotyping over classic SSR analyses since HTS gives direct access

to microsatellite sequences, allowing unambiguous allele

identification and enabling automation through bioinformatics.

HTS of microsatellites may provide accurate individual

identification and result in significant improvement of genotyping

process (De Barba et al., 2017). The main drawbacks of SSR relate to

low throughput and automation, difficulty of scoring, and lack of

transferability between platforms. PCR aberrations such as stutter

bands, exaplo degrees of PCR product adenylation, or uneven DNA

movement across runs, for instance, impede standardized and

automated allele calling that may produce genotyping mistakes

(Guichoux et al., 2011). HTS methods offer a solution to circumvent

most of these restrictions (Glenn, 2011).

Allele identification by both the nucleotide sequence and the

length of the microsatellite increases the accuracy of allele calling

because they are not affected by variation in experimental

conditions. Thus, allelic variations, including SNPs, indels, and

complex repeat structures, may be determined and described.

Moreover, bioinformatics permits the complete automation of the

genotyping process, and genotype data are platform independent

(Guichoux et al., 2011). Recently, a HTS approach has been used to

sequence SSR loci as an alternative method to the traditional

method of size analysis by Capillary Electrophoresis (CE), a

method that suffers from low data transferability between

laboratories. HTS SSR may identify sequence variants within or

proximal to SSR loci and sequencing of shorter DNA fragments.

Nevertheless, it is possible that SSR with compound repetitive

motifs cannot be distinguished (Bornman et al., 2012).

An HTS SSR approach was published by Sarhanova et al. (2018)

to genotype hundreds of individuals at several, custom-designed

SSR loci, employing multiplex PCR and barcoded primers to

separate sequence readings from different samplings. Their

primary targets were to generate nucleotide sequence data from

SSR loci for numerous non-model plant species as well as SNP and

indel variations that would lead to the estimation of genetic

diversity statistics. In general, the utilization of NGS allows the
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full reading of the amplified microsatellite loci and their flanking

regions (Vartia et al., 2016). This not only allows the estimation of

the size of fragments but also gives the advantage of knowing exactly

the microsatellite sequence and co-evaluate any mutations that are

located within the microsatellite loci.

By utilizing HTS to genotype microsatellite markers, it is

feasible to compare amplicon length and full amplicon

information allele calling procedures to determine changes in the

quantity of genetic information produced (De Barba et al., 2017).

Kunej et al. (2020), compared the two SSR approaches and stated

that the HTS, although there is space for improvements in terms of

speed, accuracy and price, HTS SSR can replace the CE approach in

the years to come. Such an HTS SSR approach may be

advantageous, particularly in the case of polyploid species, to

resolve allele dosage uncertainty, a problem in which it is

impossible to determine how many copies of the allele (one to

five) are present, for example, in a hexaploidy species (Cui et

al., 2022).

Although HTS SSR have limitations, it is one of the most

promising and apparent solutions for genotyping applications and

can overcome some of the limitations of conventional microsatellite

analysis (Curto et al., 2019). It is anticipated that their use will be

widespread for Vitis genotyping and identification.

7.2.2 Reduced representation sequencing
The advent of technical advances in genome sequencing allows

the efficient analysis of large numbers of loci dispersed across the

genome (Genotyping-By-Sequencing, GBS, Scheben et al., 2017)

enabling high-throughput analyses in population genetics (Wang

et al., 2020). However, plant genomes present challenges to

sequence and analyze especially because they are large and,

usually, full of repetitive DNA sequences. Reduced representation

sequencing approaches have been developed that offer a rapid,

comprehensive, and cost-effective alternative method for such

complicated genomes (Barbazuk et al., 2005). They refer to

subsets of the genomes to be analyzed that have been constructed

reproducibly and include a manageable number of loci. For

example, the methylation filtration and high Cot (HC) selection

methods were relative robust and efficient techniques of this

category that are based on gene enrichment. Additionally, there

are the bisulfite sequencing approaches that may also improve the

assessment of epigenetic diversity (Paun et al., 2019).

Restriction site associated sequencing (RADseq, Peterson, 2008)

is among the most common reduced-representation genotyping

approaches, where NGS is employed to a fraction of genomic data

in such a manner to combine simplicity and cost efficiency in library

construction and sequencing. The initial method utilizing a single

restriction enzyme (Miller et al., 2007) was followed by a

modification, where the sequencing library was constructed after

a dual selection of restriction enzymes (ddRAD, Peterson et al.,

2012). The NGS of such reduced representation libraries have been

successfully implemented for genome-wide SNP discovery in flax

(Kumar et al., 2012b).

These approaches lower the cost per-sample and the effort

required for analysis. Both RADseq and ddRAD protocols have
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been widely applied to SNP marker development and genotyping

on animals, while it is gaining extreme popularity in the plant

world. Ongoing optimization of library preparation has resulted in

an easy accessed and utilized way for most of angiosperms (Yang

et al., 2016). The ddRAD methods has been employed for the

construction of genetic linkage maps in cultivated species, Vitis

vinifera among them (Zhu et al., 2018; Han et al., 2022), and

phylogenomics analyses (Magris et al., 2021). Marrano et al. (2017)

aimed to find new SNP in the genome of vine via a new RADseq

protocol using an NGS platform. That protocol proved to be

suitable to detect heterozygosity and to discriminate the V. sativa

and V. sylvestris subspecies of V. vinifera.

Recently, a different approach was evaluated, the ISSRseq, in

which, the reduced representation sequencing library is constructed

by pooling multiple single primer PCR based amplicons (ISSR

fragments) from multiple samples (Sinn et al., 2022). ISSRseq

method represented a simple method to SNP genotyping of any

organism and may be exceptionally useful for population genomics

studies. Those who lack extensive experience in wet-laboratory

techniques or bioinformatics may benefit from the simplicity of

ISSRseq in comparison to other reduced representation

sequencing approaches.

7.2.3 Amplicon sequencing
Some years earlier, Yang et al. (2016) developed a new strategy

to find trait-associated polymorphic SNP markers in grapevine

using a low-cost genotyping workflow, called amplicon

sequencing (AmpSeq), aiming primarily at finding polymorphic

markers related with major phenotypic characteristics. AmpSeq

depends on the multiplexing and sequencing of multiple PCR-

amplified sequences, thus allowing genotyping of known and

unknown polymorphisms (Fresnedo-Ramı ́rez et al., 2017;

Fresnedo-Ramıŕez et al., 2019).

Although SSRs have been successfully adapted in DNA

fingerprinting (Yang et al., 2016), they present a degree of

inaccuracy generated by the limited number of the SSR loci

utilized, the erroneous amplification of the SSR alleles due to the

polymerase slippage during the PCR reaction (Li et al., 2017), or the

presence of homoplasy. To overcome the drawbacks of SSRs, a

hybrid methodology was developed called AmpSeq-SSR. It is an

NGS-based SSR genotyping that offers the parallel amplification of

several thousands of SSR loci, as reported for rice (Li et al., 2017).

According to this, multiple SSR primer pairs amplify the respective

microsatellite regions that are subsequently sequenced by NGS. In

the research of Fresnedo-Ramıŕez et al. (2019), 3105 SSR loci were

sequenced, a strategy that distinguished varieties and concluded

that AmpSeq is, among other, an accurate and low-cost SSR-

genotyping method. A similar approach was applied to genotype

cucumber cultivars, called Target SSR-seq, but instead of utilizing

thousands of SSRs only 16 were needed for the identification of 382

varieties of cucumbers (Yang et al., 2019). In both cases, the targeted

amplification of SSR loci requires the prior knowledge of the

flanking regions; an “easy” task for model species as the grape,

but difficult for non-model plants where bioinformatics should be

employed to extract new primer pairs (Lepais et al., 2020).
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AmpSeq is a promising method to make it an appropriate

genotyping tool for diverse species, including grape, since it offers

flexibility, high-throughput, low-cost, accuracy, and semi-

automated analysis (Fresnedo-Ramıŕez et al., 2019). In general, it

allows the investigation of hundreds of genetic markers on

thousands of environmental and experimental samples at a

greatly reduced level of time and resources.
8 Conclusions

In this review we presented the recent molecular methods which

have been used to characterize the germplasm of the genus Vitis. As

Vitis is being cultivated since ancient times a more precise and

detailed roadmap to fingerprint, conserve and protect the diversity

pool should be established. Results show that although a wide array

of molecular techniques or statistical methods have been employed,

there is no an established roadmap. In the face of climatic changes

and the increase of food demand across the globe the new

technologies should be incorporated with the human intelligence

to create a holistic for Vitis cultivation, adaptation, and protection.

Nonetheless, it’s always important to consider the limitations of any

marker system and to use multiple markers and methods to fully

characterize genomic diversity in grape populations.
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