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Application of antimicrobial
peptides in plant protection:
making use of the
overlooked merits

Rui Tang, Hui Tan, Yan Dai, Lin’ai Li , Yan Huang, Huipeng Yao,
Yi Cai and Guozhi Yu*

College of Life Sciences, Sichuan Agricultural University, Yaan, China
Pathogen infection is one of the major causes of yield loss in the crop field. The

rapid increase of antimicrobial resistance in plant pathogens has urged

researchers to develop both new pesticides and management strategies for

plant protection. The antimicrobial peptides (AMPs) showed potential on

eliminating plant pathogenic fungi and bacteria. Here, we first summarize

several overlooked advantages and merits of AMPs, which includes the steep

dose-response relations, fast killing ability, broad synergism, slow resistance

selection. We then discuss the possible application of AMPs for plant protection

with above merits, and highlight how AMPs can be incorporated into a more

efficient integrated management system that both increases the crop yield and

reduce resistance evolution of pathogens.
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Introduction

Since 1950s, antibiotics have been used to control bacterial and fungal pathogens in the

crop field. The crisis of antibiotic resistance in agricultural system is looming. Overuse of

antibiotics in crop production has dramatically accelerated the evolution of antibiotic

resistance of phytopathogen (McManus et al., 2002). The bacterial genera of plant

pathogen, which includes Erwinia, Pantoea, Pseudomonas, Xanthomonas, acquired high

resistance to streptomycin and oxytetracycline during the past decades (Sundin and Wang,

2018). The increasing resistance of pathogens indirectly plied up overall cost for plant

protection. It also raised great concern that resistant bacterial mutants will fail the clinical

treatment. For example, several phytopathogenic fungi have evolved high resistance to

azole, a class of anti-fungal drug used both in farmland and hospital (Dunne et al., 2017).

In order to suppress the increasing trend of antibiotic resistance in plant protection,

researchers have focused on either discovering new antimicrobials or developing new

strategies for fighting against plant pathogens (Marcos et al., 2008; Lindsey et al., 2020). In
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recent years, a large number of natural and synthetic new chemicals

are discovered and used in plant protection. Among them, AMPs

are good candidates for fighting against phytopathogen (Amso and

Hayouka, 2019). Moreover, new ways of drug application with

existing antibiotics were also developed based on precisely

quantitative methods, which significantly enhanced treatment

efficiency and delayed the resistance evolution. For example,

streptomycin is re-registered for treating Huanglongbing in the

citrus grove. With methods analogues to the pharmacokinetics in

pharmacology, recent studies have determined its spatial and

temporal variation of drug concentration inside the plant. This

helps to identify effective concentration range and duration of

effectiveness inside citrus trees (Li et al., 2021). In addition, the

patterns of killing of antibiotics are also critical for evaluation of

field efficacy of antibiotics. It has been suggested that benchmark

dose modeling can be applied to determine the killing effect of

pesticides both in laboratory and field in the framework of the dose-

response relation (Jensen et al., 2019, Jensen et al., 2022). In fact,

this method is akin to pharmacodynamics in pharmacology.

Pharmacodynamics of antibiotic provide information on how fast

a given drug kills bacteria with respect to the dose. Moreover, dose-

response relation also characterizes the ability of resistance selection

of the antimicrobials (Yu et al., 2018). Overall, integration of new

drug and novel methods of application facilitate the development of

integrated pest management, reducing resistance evolution and

cutting the total cost of agricultural production.

AMPs have long been proposed as a potential anti-bacteria and

anti-fungi reagents in agriculture (Van der Biezen, 2001;

Montesinos, 2007; Marcos et al., 2008; Montesinos and Bardajı,́

2008; Wang et al., 2018; Lobo and Boto, 2022), medicine (Zasloff,

2002; Harris and Coote, 2010; Tam et al., 2015; Hayouka et al., 2017;

Annunziato and Costantino, 2020), food industry (Gupta and

Srivastava, 2014; Sibel Akalın, 2014; McNulty et al., 2019; Lima

et al., 2021; Liu et al., 2021). Here we briefly summarize the general

information of AMPs and provide references for readers that are

not familiar with AMPs. Most of the AMPs are usually composed of

10 to 50 amino acids with a total net positive charge in the working

environments. These amino acids form different secondary

structures, namely a-helix, b-sheet, macrocycles and residual-

modified structures, which are the important bases of AMPs’

classification (Zasloff, 2002). Also, classification of AMPs in

plants is characterized by the disulfide bonds and tertiary

structures (Tam et al., 2015). In addition, other standards, such as

pathogens that AMPs target, also can be applied to categorize

AMPs, i.e. antifungal AMPs and antiviral AMPs (Benfield and

Henriques, 2020). AMPs from different origins share similar killing

mechanisms when targeting bacterial and fungal pathogens. As

summarized by many previous reviews (Zasloff, 2002; Brogden,

2005; Melo et al., 2009; Bocchinfuso et al., 2011; Sibel Akalın, 2014;

Benfield and Henriques, 2020; Huan et al., 2020), most of AMPs

directly target and rupture the cell membrane to kill pathogens, only

a few AMPs enter the cytoplasm to interrupt the cellular

physiological process (Rahnamaeian et al., 2015). In general, the

membrane-targeting mechanisms of AMPs can be characterized by

carpet models, toroidal pore models and barrel-stave models

(Epand and Vogel, 1999; Zasloff, 2002; Benfield and Henriques,
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design, classification, physical structures and chemical properties,

as well as killing mechanism of AMPs, which are generally shared

by many different AMPs for various usages. We, however, propose

that more information and properties of AMPs should be

considered especially when using AMPs for plant protection. In

this minireview, we attempt to discuss some of the overlooked

properties of AMPs including steep dose-response relations, fast

killing, slow resistance selection, broad synergism. It should be

noted that many of these properties are not discovered in the field of

plant protection. For example, the fast killing property of AMPs was

revealed by researchers who study biological nano-materials

(Fantner et al., 2010), and the slow resistance selection property

was discovered by research groups that study ecology and evolution

(Perron et al., 2006; Yu et al., 2018; Lazzaro et al., 2020). These

properties directly relate to the dosing strategy and effectiveness in

different scenario of application (Jensen et al., 2022). We therefor

also highlight how these distinctly overlooked properties can be

exploited and integrated into the pathogen management protocols

(See Figure 1).
AMPs protect plant from infections
both inside and outside

The immune repository of higher plant contains a group of

antimicrobial peptides. Most of the plant AMPs are cystine-rich

peptides and cross-linked by disulfide bonds (Tam et al., 2015;

Sathoff and Samac, 2019). These plant AMPs, in general, are not

structurally different from those from animals. Based on differences

in disulfide bonds and tertiary structures, these peptides can be

classified into several families, which includes thionins, defensins,

hevein-like peptides, knottin-like peptides, lipid transfer proteins

and snakins (Tam et al., 2015). Plant antimicrobial peptides widely

expressed in variety of plant organs at different developmental

stages (Silverstein et al., 2007; Tesfaye et al., 2013), which can be up-

regulated upon pathogen infection. AMPs isolated from immune-

activated plant showed robust killing effect towards various fungi

and bacteria (Segura et al., 1999; Kovalskaya and Hammond, 2009).

Overexpression of several defensin-like peptides in plants confer

stronger antifungal and antibacterial effect. Moreover, plant

defensin peptides both in model and crop plants have shown

enhanced and long lasting disease resistance.

Heterologous expression of AMPs in plant using transgenic

technologies is one of the efficient and powerful practices to improve

plant’s resistance to phytopathogens. The full-length of cDNA of target

AMPs was fused to the carrier plasmid, such as pMON22659 and

pSAI4 and then transformed in to target plant using Agrobacterium.

With this method, researcher integrated alfalfa antifungal peptide

(alfAFP) defensin into potato and achieved robust resistance to

fungal pathogens Phytophthora cactorum and Fusarium solani, the

bacterium Erwinia carotovora both in greenhouse and field (Gao et al.,

2000), where the transgenic plant had sixfold lower fungal load.

Expression of a variety of plant and animal peptides in plant also

confers both bacterial and fungal resistance in different families of

plant, including potato (Gao et al., 2000; Osusky et al., 2000), tomato
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(Chan et al., 2005), rice (Kanzaki et al., 2002), tobacco (Chakrabarti

et al., 2003; Swathi Anuradha et al., 2008; Khademi et al., 2020; Zhou

et al., 2021), banana (Chakrabarti et al., 2003; Ghag et al., 2012), cotton

(Gaspar et al., 2014), and many more other plants in earlier reviews

(Keymanesh et al., 2009; Iqbal et al., 2019). This method can potentially

reduce the infection and transmission of plant pathogens, and also

decrease the incidence of pathogen infection of co-planted non-

transgenic plants. Expression of heterologous AMPs in plants

requires extra energy and resources and often trade-off with other

traits of the plant, such as the yield vegetative growth (Van der Biezen,

2001; Jin et al., 2005). Therefore, it is still awaiting to evaluate that how

the environmental factors, such as drought, temperature and many

other biotic factors, affect the overall and long-term effect regarding

disease resistance in transgenic plants. In addition, evolutionary theory

predicts that enhanced host immunity selects more virulent pathogens

(Antia et al., 1994; Cressler et al., 2014). Pathogens can evolve, if not

direct resistance to host immune effectors, higher virulence and

pathogenicity to reduce the expression of immune functions, and

eventually break down the disease resistance (Sacristán and Garcıá

Arenal, 2008; Fleming-Davies et al., 2018). Such breakdown of disease

resistance has occurred in the cultivars that integrated R genes (Dodds

et al., 2006; Peressotti et al., 2010). It remains elusive that if the

transgenic plant with enhanced AMPs expression select virulent

pathogens strains that compromises the durable resistance.

In-vitro application of AMPs can be also an effective way to

control plant disease. Due to the costly production of AMPs at the

moment, large scale field studies and applications of AMPs are rare

(Table 1). The synthetic antimicrobial peptide BP15 showed great

potential in controlling brown spot disease of pear, showing a

disease reduction of about 42%-60% in the serial trials (Puig et al.,

2015). Hayouka et al., 2017 synthesized 20-amino-acid-length

peptides chain mixture with only two kinds of amino acids with

relatively low cost. Those random peptides mixtures are able to

rapidly eradicate pathogenic bacteria in plants (Topman et al., 2018;

Amso and Hayouka, 2019). Foliar spray of these peptides

significantly reduces disease incidence and index, which is almost
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as effective as commercial copper-based bactericide. In addition,

these AMPmixtures showed no toxic effect on beneficial insects and

mammalian cells. These studies show that synthesized AMPs have

great potential in plant protection. Another possible way is to apply

those widely used AMPs to control plant pathogens. For example,

the widely-used food preservative, ϵ-poly-L-lysine (ϵ-PL), can
successfully control grey mould on tomato in the field (Sun et al.,

2017; Sun et al., 2018). Application of peptaibol trichogin with very

low concentration (100 µM/129.3 g/ha) in vineyard has significantly

reduced the incidence and severity of grapevine downy mildew

caused by Plasmopara viticola (Bolzonello et al., 2023). Moreover,

the peptide has no phytotoxicity on the plant.
AMPs rapidly kill pathogens in
concentrations above the threshold

The fast-killing property of AMPs is vital for its application and

often overlooked. Boman firstly recorded that the fast elimination of

bacterial pathogens in immune-activated Drosophila (Boman et al.,

1972). They found that the “vaccinated” flies with frozen bacteria

can kill more than 99.9% of bacteria cells within 7 min after the

second infection, then reduce the bacterial load for several orders of

magnitudes in next few minutes. Boman and colleagues later proved

that the fast killing is mainly achieved by AMPs that expressed by

the insect’s immune system (Hultmark et al., 1980). Similar fast-

killing property was constantly observed in later isolated AMPs,

such as Magainins, the peptide isolated from frog skin (Zasloff,

1987). High-speed atomic force microscope allows one to observe

the killing process of AMPs in real time (Fantner et al., 2010). In

sufficient high concentrations, AMP can kill bacteria within 30

seconds. Similar fast killing rate was also observed using time-lapse

fluorescence microscopy (Barns and Weisshaar, 2013). In contrast,

antibiotics take much longer to kill bacteria. For example,

bactericidal beta-lactam antibiotics take nearly one hour to kill a

single bacterium (Yao et al., 2012). The killing time of many other
BA

FIGURE 1

The merits of AMPs and their application in plant protection. (A) An brief illustration of AMPs’ merits. AMPs are able to rapidly kill bacteria within
minutes. Due to distinct killing mechanism, they can deactivate non-growing bacterial and fungal spores. In addition, they also broadly synergize
with other AMPs and antibiotics. Last, resistance evolution of pathogens to AMPs are particularly slow with high fitness cost. (B) AMPs with above
merits can play an important role in integrated pathogen management. An integrated management methods includes endogenously expressing
AMPs in plant to directly kill invading pathogens and to regulate symbiosis and root microbiome. Also, spraying AMPs in crop field with conventional
antibiotic can form a synergistic effect that more efficiently eliminates pathogens, reduces the use of conventional antibiotics as well as delays
pathogen resistance.
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TABLE 1 The peptides used for controlling plant pathogens and their scale of testing.

Peptides Origin Targeting pathogens Methods
of testing

Scale of
testing

Refs

Cecropin A Hyalophora
cecropia

Fusarium oxysporum,
Dickeya dadantii,
Fusarium verticillioides

In-vitro
killing assay,
Transgenic
expression,

lab scale,
Green house
scale

(Cavallarin et al., 1998; Bundó et al., 2014; Montesinos et al., 2016)

Snakin-1 Potato Clavibacter michiganensis,
Botrytis cinerea

Transgenic
expression

lab scale (Segura et al., 1999)

MsrA1 Synthetic Phytophthora cactorum,
Fusarium solani,
Erwinia carotovora,
Alternaria brassicae,
Sclerotinia sclerotiorum

Transgenic
expression

Lab scale,
Greenhouse
scale

(Osusky et al., 2000; Rustagi et al., 2014)

alfAFP alfalfa Verticillium dahliae, Transgenic
expression

Lab scale,
Greenhouse
scale,
Field scale

(Gao et al., 2000)

MSI-99 Synthetic Fusarium oxysporum,
Sclerotinia sclerotiorum,
Alternaria alternata,
Botrytis cinerea

Transgenic
expression

Lab scale,
Greenhouse
scale

(Chakrabarti et al., 2003)

Thionin Arabidopsis
thaliana

Ralstonia solanacearum,
Fusarium oxysporum

Transgenic
expression

Lab scale (Chan et al., 2005)

BP/BPC
serial
peptides

Synthetic Erwinia amylovora,
Xanthomonas vesicatoria,
Pseudomonas syringae,
Fusarium oxysporum,
Penicillium expansum,
Aspergillus niger,
Rhizopus stolonifer,
Stemphylium vesicarium

In-vitro
killing assay,
Foliar spray,
Transgenic
expression

Lab scale,
Greenhouse
scale,
Field scale

(Monroc et al., 2006; Badosa et al., 2007; Badosa et al., 2009; Güell et al.,
2011; Nadal et al., 2012; Puig et al., 2014; Puig et al., 2015; Montesinos
et al., 2017; Mariz-Ponte et al., 2021; Montesinos et al., 2021)

NmDef02 Nicotiana
megalosiphon

Peronospora hyoscyami In-vitro
killing assay,
Transgenic
expression

Lab scale,
Greenhouse
scale,
Field scale

(Portieles et al., 2010)

hCAP18/
LL-37

Human Pectobacterium
carotovorum

In-vitro
killing assay,
Transgenic
expression

Lab scale (Jung et al., 2012; Holásková et al., 2018)

Thanatin Podisus
maculiventris

Fusarium graminearum,
Botrytis cinerea

In-vitro
killing assay,
Transgenic
expression

Lab scale (Koch et al., 2012)

Tachyplesin
I

Horseshoe
crab

Pectobacterium
carotovorum

In-vitro
killing assay,
Transgenic
expression

Lab scale (Lipsky et al., 2016)

Melittin Apis
mellifera

Xanthomonas oryzae In-vitro
killing assay

Lab scale (Shi et al., 2016)

Tannins Sapium
baccatum

Ralstonia solanacearum, In-vitro
killing assay,
Foliar spray

Lab scale,
Greenhouse
scale

(Vu et al., 2017)

ϵ-poly-L-
lysine

Synthetic Botrytis cinerea In-vitro
killing assay,
Foliar spray

Lab scale,
Greenhouse
scale,
Field scale

(Sun et al., 2017; Shu et al., 2021)

(Continued)
F
rontiers in Plan
t Science
 04
 frontiersin.org

https://doi.org/10.3389/fpls.2023.1139539
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Tang et al. 10.3389/fpls.2023.1139539
antibiotics in bulk bacterial culture can range from 12 hours to

several days (Ferro et al., 2015; Yang et al., 2018; Vaddady et al.,

2019). It’s thus evident that the killing rate of AMPs is order-of-

magnitude faster than that of antibiotics.

In addition, AMPs show striking inoculum effect (Nannini

et al., 2013; Lenhard and Bulman, 2019; Loffredo et al., 2021). In

other words, the killing effects of AMPs depends both on the

bacterial density and AMP concentration, i.e. a minimal number

of AMPs molecules is required to kill a bacterium (Huang, 2006;

Melo et al., 2009). According to quantitative estimation, it requires

approximate 107 peptides per cell for PMAP-23 to kill bacteria in

bulk culture (Roversi et al., 2014). Moreover, AMPmolecules can be

unevenly absorbed by bacterial population, which results delayed

population growth (Snoussi et al., 2018). Dead bacteria can even

bind AMPs molecules and cause the same effect (Wu and Tan,

2019). This indicates that fast depletion of AMPs molecules by some

bacterial cells results decreased free AMPs molecules in solution,

and protect other bacteria from killing.

The fast-killing and inoculum effect altogether shapes the

steep dose-response curve (Yu et al., 2016). It is notable that the

concentration range from no effect to full killing is roughly 10

times in various AMPs (Steiner et al., 1981; Zasloff, 1987;

Thevissen et al., 1999; Yu et al., 2016; Savini et al., 2017; Savini

et al., 2020). This implies that we need to quantitatively evaluate

the effective concentration when AMPs are applied in agricultural

practice (Mercer et al., 2020; Jensen et al., 2022). Very recently,

researchers have borrowed the methods in pharmacokinetics to

quantify the spatial and temporal dynamics of antibiotic

concentrations used to treat Huanglongbing in citrus (Li et al.,

2019; Li et al., 2021). Moreover, the benchmark dose modelling

method has also been proposed to quantify the working

concentration of pesticides in the field (Jensen et al. ,

2022).These studies helped design proper dosing strategies in

plant protection, which is also applicable for using AMPs in

plant protection.
Frontiers in Plant Science 05
AMPs slowly select mutants with
large fitness cost

Bacteria evolve resistance to all antimicrobial agents, but the

evolution in AMPs is particularly slow. Experimental evolution

revealed that the resistance evolution in AMPs is averagely 10

times slower than in antibiotics (Dobson et al., 2013; Spohn

et al., 2019). This can be explained by the AMP’s steep

threshold-like dose-response curve (Melo et al., 2009; Yu

et al., 2018). When the concentration is higher than the

“threshold” , the exposed bacterial can be immediately

eliminated (Fantner et al., 2010). If the concentration is lower

than the “threshold”, AMPs neither impose physiological stress

on bacteria cells nor arrest their growth (Rodrı ́guez-Rojas et al.,
2014; Snoussi et al., 2018). It implies that the concentration

range that select resistant mutants is rather narrow (Yu

et al., 2018).

Moreover, resistance to AMPs often suffers significant fitness

cost in bacteria. Resistance to AMPs in bacteria is generally caused

by the loss of lipids or modification of lipid A on the membrane

(Pränting et al., 2008; Andersson et al., 2016; Gao et al., 2016),

which substantially impedes nutrition uptake and attenuate

bacterial growth. For example, Salmonella typhimurium strains

that resistant human peptide LL-37 suffers 25% of growth

reduction compare to the wildtype control (Lofton et al., 2013).

Colistin-resistant Acinetobacter baumannii strains have fitness cost

ranging from 10% to as high as 60% (Mu et al., 2016). High fitness

cost makes resistant strains less competitive in low or no antibiotic

condition. Bacteria harboring mcr-1 gene can be completely

removed within 20 days during thermophilic composting in

environment (Gao et al., 2019). Large scale epidemiological

survey showed that the frequency of bacteria carrying colistin-

resistant genes immediately decreased after banning of colistin in

feeding industry as well as in clinics (Shen et al., 2020; Wang et al.,

2020; Shen et al., 2021).
TABLE 1 Continued

Peptides Origin Targeting pathogens Methods
of testing

Scale of
testing

Refs

Random
peptides
mixture

Synthetic Xanthomonas perforans,
Xanthomonas campestris,

In-vitro
killing assay,
Foliar spray

Lab scale,
Greenhouse
scale

(Topman et al., 2018)

PAF26 Synthetic Penicillium digitatum In-vitro
killing assay

Lab scale (Wang et al., 2018)

NoPv1 Synthetic Plasmopara viticola,
Phytophthora infestans

In-vitro
killing assay,
Foliar spray

Lab scale,
Greenhouse
scale

(Colombo et al., 2020)

Ac-AMP2 Amaranthus
caudatus

Penicillium expansum In-vitro
killing assay,
Transgenic
expression

Lab scale (Huang Y et al., 2021)

SAMP Microcitrus
australiasica

Liberibacter crescens In-vitro
killing assay,
Transgenic
expression,
Foliar spray

Lab scale,
Greenhouse
scale

(Huang C et al., 2021)
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AMPs synergize with other
antimicrobials and plant
immune system

Higher plants deploy a combination of antimicrobial peptides

to combat the pathogen invasion. The cocktail of AMPs can be

synergistic at different organizational level. AMPs not only

synergize with themselves, but also interact with plant host

physiological process to eliminate pathogen infection. Here, we

categorize the synergism of AMPs into molecular synergism and

functional synergism.

Molecular synergism shows that AMPs directly cooperating

with other antimicrobials in killing pathogens. Plant AMPs 2S

albumins synergize with thionins in inhibiting fungal growth and

achieved 2- to 73-fold of increased killing effect compared to single

AMP (Terras et al., 1993). Similar synergistic effects among AMPs

from different organisms were further observed in eliminating

bacteria, fungi and parasites (Westerhoff et al., 1995; McCafferty

et al., 1999; Yan and Hancock, 2001; Marxer et al., 2016; Yu et al.,

2016). In addition, AMPs also synergize with other antibiotics and

fungicides (Arikan et al., 2002; Gonzalez et al., 2002; Mariz-Ponte

et al., 2021). Such synergistic combination effect among AMPs can

substantially reduce the total amount of molecules that required to

kill the pathogen. This implies that application of AMPs in plant

protection can reduce the use of agricultural antibiotics and

fungicides, as well as the total cost of crop production. Moreover,

the combination effect of AMPs can also delay drug resistance

evolution and prolong the duration of agricultural chemicals

(Maron et al., 2022).

Moreover, synergistic effect of killing can be also achieved by

targeting different development stages of pathogens. Most of the

agricultural antibiotics and fungicides only act on pathogens on the

growing stage, not on the non-growing stage, i.e. the dominant

spores. Previous researches showed that AMPs killed non-

germinating fungal spores (Levitz et al., 1986; Rioux et al., 2000;

Velivelli et al., 2020), thus can substantially reduce the transmission

of pathogens. Moreover, spore elimination is particularly important

in greenhouse agriculture. Air spora is the main source of plant

disease in greenhouse. High density of spore also threatens the

health of workers in greenhouse (Ercilla-Montserrat et al., 2017;

Madsen et al., 2021). AMPs can be used as a sporicidal to inhibit

transmission of plant disease and to protect the health of

greenhouse workers. Thus, AMPs can potentially synergize with

other antimicrobials, by eliminating the air spora, to reduce the

disease prevalence and health risks of agricultural workers.

Functional synergism of AMPs in targeting pathogen is the

result of complex interaction between AMPs and pathogen’s

physiology. The positively charged AMPs with membrane

permeability are able to not only attach on pathogens’ membrane

but also target intracellular components of pathogens, which

drastically accelerate the killing process. An insect antimicrobial

peptide, abaecin, can interact with chaperones in bacteria, which

can substantially dampen the bacterial stress response. It enhanced

the killing effect of hymenoptaecin for four-fold in terms of

inhibition rate, a strong synergistic effect in that combination
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(Rahnamaeian et al., 2015). In addition, in-vitro assay shows that

plant AMPs modulate cellular redox stress in fungi by inducing the

accumulation of ROS in vegetative cells and ultimately trigger

apoptosis (Van der Weerden et al., 2008; Mello et al., 2011).

Moreover, AMPs also activate the MAPK signaling cascade in

fungal pathogens to control its growth (Ramamoorthy et al.,

2007). Such synergism in fighting against pathogens can also be

achieved by AMPs in interacting with plant signal pathways. For

example, the cysteine-rich protein designated defensin, SPD1, in

sweet potato both regulates the redox status of ascorbate and inhibit

fungal and bacterial pathogens (Huang et al., 2008). Plant AMPs

also interact with many other regulating pathways to enhance the

plant defense and achieve synergism in controlling pathogens

(Bolouri Moghaddam et al., 2016).

AMPs directly interacting with plant immune system can be

defined as another functional synergism. However, experimental

evidence is rare. Previous studies showed that endogenously

expressed AMPs can bind with some transcription factors and

regulate many signaling pathways (Damon et al., 2012). The

consequence of these interactions is not revealed yet. Exogenous

expression of a designed AMPs in plant will not elicit the immune

response (Badosa et al., 2017; Montesinos et al., 2021), and the plant

immunity can only be elicited when that AMPs conjugated with

plant immune eliciting peptides, such as flg-15 and flg-22

(Montesinos et al., 2021). In a recent study, a stable antimicrobial

peptides from Microcitrus australiasica, the Australian finger lime,

was developed to treat Huanglongbing in citrus (Huang C et al.,

2021). This peptide, also named as MaSAMP, not only directly

target and kill the main pathogens Liberibacter crescens of citrus

tree, but also induce plant’s innate immunity to prevent and inhibit

infections. Both foliar spray and pneumatic truck injection of

MaSAMP to HLB-infected citrus trees significantly reduced

disease severity and bacterial load. Moreover, the authors found

that MaSAMP application can induce the expression of a set of

defense genes, such as pathogenesis-related proteins and the

enzyme of SA biosynthesis and phenyl propanoid pathways. This

peptide can broadly activate systemic defense responses in tobacco,

tomato and citrus trees. This study demonstrated that AMPs can

serve bifunctionally as both pathogen eliminators and stimulants of

plant immune responses. Such synergistic functions can better

protect plant from infections and shows great potential in

plant protection.
AMPs regulate symbionts of plant

The nodule-specific cysteine-rich (NCR) AMPs also play an

important role in mediating plant-microbe interaction inside the

legume plants. These antimicrobial peptides can both maintain and

eliminate the viability of nitrogen-fixing bacteroids. At the initiation

stage of root nodule, lytic AMPs kill most of the phytopathogenic

fungi and bacteria, and maintain the symbiotic bacteria inside root.

NCR211 expressed in the nodule interzone II-III promotes

differentiation of bacteroids and the formation of nodules.

Synthetic NCR211 was further proven inhibiting aggregation of

free-living S. meliloti (Kim et al., 2015). In legume plants, nitrogen-
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fixing symbiotic bacterioids with medium population size can

significantly promote the growth of host plant by fixing nitrogen

for the host plants. It, however, can also retard host’s growth when

the load of bacteroids is high (Sachs et al., 2018). Inside the roots of

host plants, a variety of nodule-specific cysteine-rich peptides are

secreted to regulate the population of nitrogen-fixing rhizobia (Van

de Velde et al., 2010; Wang et al., 2010). Knockout of host’s nodule-

specific cysteine-rich peptide demonstrated that these peptides may

serve as the extractors of the host plant to harvest nitrogen nutrients

synthesized by the bacteroids (Wang et al., 2017; Yang et al., 2017).

The direct killing effect of nodule-specific cysteine-rich peptides was

measured in vitro as well (Van de Velde et al., 2010). Moreover,

these peptides can enter bacterial cytosol and bind with intracellular

molecules to slow down the growth of these bacteroids. The balance

between plant host and symbionts may be the result of the complex

interaction between AMPs and other host peptides (Yang

et al., 2017).

All together, these evidence indicates that host plant may

harness host peptides to finely tune the symbiosis at different

temporal and spatial scale. It is also intriguing that whether these

antimicrobial host peptides can be genetically incorporated into

non-legume plants to develop symbiotic associations (Pankievicz

et al., 2019). In addition, it remains elusive that if these peptides can

be secreted by roots and released into soil for mediating broader

host-microbe interaction.
Challenges and perspective

Crop yield loss is mainly caused by plant pathogen and pests.

The total loss can reaches up to 40% of crop yield at the global level

according to a recent survey (Savary et al., 2019), which is

apparently far beyond the compensation of any advanced

breeding technologies that contributed the yield gain around only

1-3% per year (Tester and Langridge, 2010). This indicates that the

most efficient way to promote crop yield is to prevent it from the

loss caused by pests and pathogens. Due to the diversity of

pathogens at various levels, integrated management strategies are

urgently needed to protect the crop. In this short review, we propose

that AMPs with key merits can be harnessed as an important part in

the integrated strategy.
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In design of plant protection strategy, no single component or

method can accomplish all of the tasks. We argue that an optimal

and cost-effective method that makes full use of AMPs’merits can

form a better solution for plant pathogen management (Table 2).

With the fast-killing property, AMPs nearly take no time to kill

the pathogens. This makes AMPs quickly fulfilling their functions

before inactivated by environmental factors. Although the large

molecular weight of AMPs may weaken their systemic effects for

eliminating infection inside plants, One can combine AMPs with

conventional antimicrobials in order to achieve systematic

synergistic effect in control plant pathogens. In this case, AMPs

eradicate the planktonic bacterial pathogens and fungal spores on

the surface of plants in order to stop the spreed of plant disease in

the field. The conventional antimicrobials with stronger systemic

effects kill pathogen that grows inside plants. In addition,

heterologous express of AMPs using transgenic plants is also an

option for fighting against phytopathogens. Moreover, the sharp

dose-response relation of AMPs suggests that field application

with low concentrations may completely fail to kill plant

pathogen. It is important that the concentration of AMPs

sprayed on plant should be higher than the working

critical threshold.

Antibiotic resistance of plant pathogen is always a concern for

agricultural production as well as human health. The direct

evidence of transfer of resistance pathogen from farm to clinics is

rare (Chang et al., 2015). Both experiments and theories proved that

AMPs slowly select resistant pathogens with high fitness cost. This

indicates that resistant strains can be quickly out-competed by its

sensitive counterpart. Seasonal application of AMPs should be less

of a concern for the resistance evolution. We also argue that

combined application of AMPs with conventional antibiotics not

only adds up the overall effect controlling, but also slow down

pathogen’s resistance evolution towards conventional antibiotics

(Lazzaro et al., 2020)

Large scale application of AMPs requires highly cost-

effective production. Recently technological advancement

allows one to cheaply produce AMPs either through solid-

phase synthesis (Hayouka et al., 2017; Topman et al., 2018),

prokaryotic expression (Zhao et al., 2015; Schreiber et al., 2017)

and eukaryotic expression (Holaskova et al., 2015; Holásková

et al., 2018). Besides, some AMPs, such as Polylysine, that used
TABLE 2 The pros and cons of using antimicrobial peptides to treat plant pathogens.

Advantages Disadvantages

AMPs rapidly kill both fungal and bacterial pathogens of all stages
including spores.

AMPs have weakly systemic effect cannot eliminate pathogens inside host plant.

AMPs slowly select resistant pathogens. AMPs have strong inoculum effect, which means the working concentration need to be
carefully determined.

AMPs can be easily integrated into plant using transgenic
transformation.

Expression of AMPs in plant consumes the resources used for growth and reduce the yield.

AMPs synergize with many other antimicrobials. Production of AMPs is still relatively expensive.

AMPs manipulate the symbionts inside plant and promote plant growth. Long-terms of exposure of AMPs may select resistant pathogens.
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in food and livestock industry are also ready for plant

protection. Although many lab and greenhouse experiments

have proven that AMPs are effect ive against various

phytopathogens, one still anticipates large scale field tests in

various environmental conditions.
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