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in China
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Fengying Guan1,2* and Shaohui Fan1

1International Center for Bamboo and Rattan, Key Laboratory of National Forestry and Grassland
Administration, Beijing, China, 2National Location Observation and Research Station of the Bamboo
Forest Ecosystem in Yixing, National Forestry and Grassland Administration, Yixing, China, 3Institute of
Forestry, Tribhuwan University, Kritipur, Kathmandu, Nepal
Bamboo crown width (CW) is a reliable index for evaluating growth, yield, health

and vitality of bamboo, and light capture ability and carbon fixation efficiency of

bamboo forests. Based on statistical results produced from fitting the eight basic

growth functions using data from 1374 Phyllostachys pubescens in Yixing,

Jiangsu Province, China, this study identified the most suitable function

(logistic function) to construct a two-level mixed effects (NLME) CW model

with the forest block and sample plot-level effects included as random effects in

the model. Four methods for selecting sample bamboos per sample plot (largest

bamboo, medium-sized bamboo, smallest bamboo, and randomly selected

bamboos) and eight sample sizes (1–8 selected bamboos per sample plot)

were evaluated to calibrate our NLME CW model. Using diameter at breast

height (DBH), height to crown base (HCB), arithmetic mean diameter at breast

height (MDBH), and height (H) as predictor variables, the model produced the

best fit statistics (Max R2, min RMSE, and TRE). This model was further improved

by introducing random effects at two levels. The results showed a positive

correlation of CW with HCB and DBH and a negative correlation with H. The

smallest two bamboo poles per sample plot used to estimate the random effects

of the NLMEmodel provided a satisfactory compromise regarding measurement

cost, model efficiency, and prediction accuracy. The presented NLME CWmodel

may guide effective management and carbon estimation of bamboo forests.

KEYWORDS

growth function, random effect, variance-stabilizing function, sampling strategy,
bamboo forest management
1 Introduction

Tree crowns represent a crucial site for material exchanges and energy conversions

between forests and the environment (Fu et al., 2017a; Fu et al., 2017b; Lei et al., 2018; Pan

et al., 2020). Variables related to tree crowns are important predictors of forestry models,

including those for crown length (Tahvanainen and Forss, 2008; Fu et al., 2017a; Fu et al.,
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2017b; Fu et al., 2017c), crown length to tree height ratio

(Tahvanainen and Forss, 2008; Leites et al., 2009; Fu et al., 2015),

height to crown base (HCB) (Fu et al., 2017c; Yang et al., 2020; Pan

et al., 2020; Zhou et al., 2022), and crown width (CW) (Bragg, 2001;

Sánchez-González et al., 2007; Stephanie and Stephen, 2011; Ma

et al., 2022). CW, which is half of the sum of crown radii and is

measured in four directions of south, east, north, and west (Fu et al.,

2017b; Fu et al., 2013; Paulo et al., 2015; Fu et al., 2017a; Lei et al.,

2018) reflects the vitality and competitiveness of plants. Analyzing

CW and understanding its relations to other factors will enable

predicting crown productivity (Larocque and Marshall, 1994),

forest mortality (Monserud and Sterba, 1996), and forest biomass

(Horntvedt, 1993; Hoffmann and Usoltsev, 2002). Crown diameter

is also an important parameter for stand visualization (Lei et al.,

2006). Detailed information on tree crowns can assist the

management of ecosystem characteristics, such as forest

productivity, biodiversity, and wildlife habitats.

Despite these benefits, measuring the CW of each tree in all

sample plots is time-consuming, laborious, and costly (Bragg, 2001;

Buchacher and Ledermann, 2020). CW measurements of

representative sample trees per sample plot from an adequate

number of sample plots allocated across forests are necessary to

build high-precision CW models.

Early studies on applying the CW model used the diameter at

breast height (DBH) as a predictor (Hetherington, 1967). Today,

researchers prefer to add additional factors to the CW model to

reduce potential bias. These factors may include tree size and stand

vitality (e.g., stand age, stand density, canopy density, tree height,

HCB), site quality (site index), stand competition factors (Fu and

Sun, 2013; Fu et al., 2013; Ma et al., 2022) and other environmental

factors such as slope, direction, and location (Zarnoch et al., 2004 ;

Fu et al., 2017b; Fu et al., 2017c; Fu and Sun, 2013; Fu et al., 2013; Fu

et al., 2017a; Lei et al., 2018).

CW data needed to build CW models are often acquired from

varying growth conditions within different forest stands, which

creates nested conditions. Thus, similar to other tree attribute

data, CW data are more or less hierarchically structured, and

observations are most likely correlated with each other. Using

ordinary least squares (OLS) regression to estimate the CW

models with the nested data structure will lead to a significant

bias (West et al., 1984; Zhang et al., 2017). Mixed-effects

modeling, which effectively addresses the aforementioned

observation dependence [the data are hierarchically structured

(a sample plot nested in the blocks)] problems, must be applied to

reduce potential bias (Fu et al., 2013; Yang et al., 2020; Pan et al.,

2020; Zhou et al., 2021a; Zhou et al., 2021b; Ma et al., 2022).

Mixed-effects modeling accounts for most of the heterogeneity

and randomness caused by known or unknown factors. Mixed-

effects models demonstrate a promising flexibility because only

the fixed effect part [M response model (without random effects)]

or both fixed and random effects parts following response

calibration can be applied (Fu et al., 2017c; Fu et al., 2013; Yang

et al., 2020; Zhou et al., 2021a). Most CW models have been based

on data from tree species (Fu and Sun, 2013; Fu et al., 2013; Fu

et al., 2017c; Lei et al., 2018; Ma et al., 2022). However, bamboo

CW modeling is limited.
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Because of the global climate warming, the concentration of

carbon dioxide in the atmosphere has reached the highest level of

410 ppm (Masson-Delmotte et al., 2021), carbon sequestration by

growing forests is a cost-effective option for mitigating CO2

emission caused by human activities. Thus, the carbon cycle

remains an important topic worldwide for research, and all green

plants, including bamboo, play major roles for carbon storage.

Although the world’s forest area has decreased continuously over

the past 30 years, the planet’s bamboo forest area has increased by

an average annual rate of 3% (FAO, 2010). Bamboo is an important

carbon sink that can accumulate a large amount of carbon in a short

period (Yen and Lee, 2011; Yen, 2016). Because bamboo forests are

important in mitigating climate warming, the relationships between

bamboo CW and various factors that influence CW should

be investigated.

Based on existing research problems such as the absence of

bamboo CW modeling, a hierarchical data structure, and

correlations among the observations, we used Phyllostachys edulis

(moso bamboo) as a target species in this study to (1) develop a two-

level nonlinear mixed-effects (NLME) CW model (NLME model)

through including multiple factors as predictor variables, (2) simulate

the impacts of those factors on CW, and (3) select the optimal

strategy to predict the random effects in the response calibration of

the NLMECWmodel. The NLMECWmodel presented in this study

can reduce the time and cost of CW measurements and help

formulate bamboo forest management plans.
2 Materials and methods

2.1 Study area and data collection

The study area is located in Yixing State, Forest Farm, Jiangsu

Province (Figure 1). This transitional zone is a typical

representation of the northern subtropical bioclimate, Jiangnan

bamboo area, and scattered bamboo area. The forest farm has a

subtropical monsoon climate, with high and low temperatures of

38.8 and -4.5 °C, respectively, an average annual temperature of 16.5

°C, and an average annual precipitation of 1229.9 mm. The main

tree species on forest farms are Cunninghamia lanceolata (Lamb.)

Hook., Pinus massoniana (Lamb.) var. massoniana, Parrotia

subaequalis (H. T. Chang) R. M. Hao & H. T. Wei, and Camellia

japonica (L.).

We used 35 temporary sample plots data of Phyllostachys edulis

(moso bamboo) forests in Yixing Forestry Farm, Jiangsu Province.

Each sample plot was 20 × 20 m (Figure 1). In July 2022, a total of

1,374 bamboo samples were collected from 4 blocks and 35 sample

plots (Table 1). The diameter at breast height (DBH), total height

(H), HCB (the height from the ground to the base of the first normal

green branch as a part of the crown, excluding secondary branches,

i.e., epicormic and adventitious), and CW in four perpendicular

directions (CWS, south; CWN, north; CWW, west; CWE, east) of all

living bamboos with a DBH > 5 cm were measured. Each

component of the bamboo crown was measured as the horizontal

distance from the center of the bamboo stem to the maximum range

of the bamboo crown (Marshall et al., 2003). The CWwas measured
frontiersin.org
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using a horizontal rangefinder and the average CW was calculated

as follows: (CWS + CWN + CWE + CWW)/2. DBH measurements

were performed using a diameter tape, and an ultrasonic altimeter

was used to measure H and HCB. The canopy density (CD) was

measured using fisheye lenses. Because of the unique growth

characteristics of moso bamboo forests with a vegetative cycle of

2 years (on- and off-year), stand age was expressed as “du” (Tang

et al., 2016). One “du” (I) represents 1–2 years, and 2 and 3 “du” (II

and III) correspond to 3–4 and 5–6 years, respectively (Tang et al.,

2016). Based on the locations of the sample plots and the growth

status of forests on slope and direction, we grouped the sample plots

into four blocks according to their slopes (Table 1). Data from the

bamboo individuals and stand factors investigated are summarized

in Table 2.
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2.2 CW models

2.2.1 Base function
In bamboo forests, DBH comprises an important factor

reflecting the growth of bamboo forests. DBH measurements are

accurate and represent a relatively reliable variable in bamboo forest

surveys. Our analysis started by fitting the eight commonly used

forest growth functions (Table 3) to the data and choosing the best

performing function based on major statistical indicators (Eqs. 9–

12). The best fit function was then used for further extension

and evaluation.

Four statistical indicators (MD, mean residual error; R2,

coefficient of determination; TRE, total relative error; and RMSE,

root mean square error; Eqs. 9–12), commonly used to evaluate the
TABLE 1 Division of bamboo forest area into four blocks and number of sample plots in each block.

Block Slope
(degree)

Slope direction Slope position Number of sample plots

1 0-3° East-west Downhill 9

2 15-20° East-west Mid slope 8

3 5-10° East-west Downhill 9

4 11-15° South-north Mid slope 9
FIGURE 1

Location of the study area.
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fitting behavior of models, were considered.

MD =
1
no

n
i=1(CWijk − dCW ijk) (9)

R2 = 1 −o
n
i=1(CWijk − dCW ijk)

2

on
i=1(CWijk − CWij)

2 (10)

TRE =o
n

i=1
CWijk − dCW ijk

��� ���=on
i=1

dCW ijk (11)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(CWijk − dCW ijk)

2

s
(12)

where CWijk and ^CW ijk are the measured and predicted CW for

the k bamboo in the j sample plot in the i block, respectively, and n

represents the number of CW observations.
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2.2.2 Factors affecting CW
In addition to DBH, other factors may significantly influence

CW and are related to stand variables, such as bamboo size and

stand vitality, site, and competition factors (Sánchez-González et al.,

2007; Sönmez, 2009; Fu et al., 2013). Thus, we evaluated the impact

of 12 variables on CW: total height (H), HCB, stand density (N),

CD, base area (BA) (bamboo size and stand vitality variables),

arithmetic mean diameter at breast height (MDBH), quadratic

mean diameter at breast height (QMD), the total base area of all

bamboo with diameters larger than that of the tested bamboo

(BAL), relative diameter (RD, ratio of individual DBH to DBH),

slope, slope position, and humus thickness (site condition factor).

We used graphical analyses and relevant statistical tests to select

significantly influencing variables (Uzoh and Oliver, 2008). RMSE

(Eq. 12) and Akaike Information Criterion (AIC) were used to

evaluate different combinations and logarithmic transformations of

the variables and identify the significant variables. We used the R nls
TABLE 3 Form of the base functions. CWijk is the crown width of the k bamboo in the j sample plot in the i block, DBH is the diameter at breast
height of the k bamboo in the j sample plot in the i block, b1−b3 : model parameters.

Specification of function Function form Source Eq.

CWijk=b1+b2DBHijk Linear Sánchez-González et al., 2007; Sönmez, 2009 (1)

CWijk = b1DBH
b2
ijk

Power Sánchez-González et al., 2007; Sönmez, 2009 (2)

CWijk=b1[1−exp(−b2DBHijk)] Monomolecular Sánchez-González et al., 2007; Sönmez, 2009 (3)

CWijk=[D B Hi j k/(b1+b2DBHijk)]
2 Hossfeld 1 Sánchez-González et al., 2007; Sönmez, 2009 (4)

CWijk=exp(b1+b2DBHijk) Growth Sönmez, 2009 (5)

CWijk=b1exp(b2DBHijk) Exponential Sönmez, 2009 (6)

CWijk=b1[1−exp(−b2DBHijk)]
b3 Richards Fu and Sun, 2013 (7)

CWijk=b1/[1+b2exp(−b3DBHijk)] Logistic Fu and Sun, 2013 (8)
frontiers
TABLE 2 Summary measurements of bamboo forest characteristics.

Variable Min Max Mean Std

DBH (cm) 5.00 15.60 10.45 1.5757

H (m) 5.00 17.90 11.88 1.9079

HCB (m) 1.40 14.30 6.75 1.8888

A (du) 1 5 1.78 1.6087

BA (m2/ha) 11.32 35.15 25.70 7.4553

MDBH (cm) 9.361 11.752 10.435 0.5861

BAL (m2/ha) 0 56.16 23.44 14.1470

QMD (cm) 9.512 11.825 10.543 0.5723

N (culm/ha) 1200 3750 2939 783.0678

CD 0.4 0.8 0.6292 0.1631

RD 0.4406 1.4384 0.9913 0.1402

CW (m) 2.027 4.862 3.091 0.3845
Min, minimum; Max, maximum; Mean, average value; Std, standard deviation; DBH, diameter at breast height; H, bamboo height; A, age; HCB, height to crown base; BA, base area; MDBH,
Arithmetic mean diameter at breast height; QMD, quadratic mean DBH; CD, canopy density; BAL, total basal area of all bamboos with diameter larger than that of the subject bamboo; N,
Number of culms per hectare; RD, elative diameter (ratio of DBH of individual to QMD); CW, crown width.
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function for fitting the models and selected the optimal model,

which was then used to construct a two-level NLME CW model.

2.2.3 Two-level NLME CW model
In the optimal model selected above, random effects were

introduced at the block and sample plot levels. The model with

the smallest AIC and largest log likelihood was selected for further

analysis (Yang et al., 2009). The likelihood ratio test was used to

avoid over-parametrization (Fang and Bailey, 2001). We reduced

the heteroscedasticity problem using the variance function in the

NLME CW model. Three variance-stabilizing functions were

evaluated: the exponential (Eq. 13), power (Eq. 14), and constant

plus power functions (Eq. 15) (Davidian and Giltinan, 1995;

Pinheiro and Bates, 2000). We included the best-performing

model in the final model. We used the AIC and likelihood ratio

test to select the best-performing function (Pinheiro and Bates,

2000; Fang and Bailey, 2001).

Var(xijk) = s 2 exp (2gMDBHij) (13)

Var(xijk) = s 2MDBH2g
ij

(14)

Var(xijk) = s 2(g1 +MDBH2g2
ij

)2 (15)

where MDBHij is the arithmetic mean diameter at breast height

(MDBH) of the j sample plot in the i block and g, g1, and g2 are

parameters to be estimated. s is the residual variance of the CWmodel.
2.3 Parameter estimation

All basic models were estimated using the R nls function, and

the NLME CW model was estimated using the nlme function

(Lindstrom and Bates, 1990; Pinheiro and Bates, 2000). The fitted

model variants were evaluated using the major statistical indicators

(Eq. 9–12).
2.4 Model prediction

The optimal NLME CW model selected above was used for

predictions, with and without the random effects considered. The

former and latter models are called the M-response model and

localized model, respectively; the latter is response calibrated with

the local measurements (before the measurement of a response

variable, in our case, CW) (Calama and Montero, 2004; Yang et al.,

2009). We applied the empirical best linear unbiased prediction

(EBLUP) to estimate the random effects and response calibration of

the NLME CW model.

û i = ŶZT
i (R̂ i + ZiŶZT

i )
−1ei

= ŶZT
i (R̂ i + ZiŶZT

i )
−1

yi − f(b̂ , u*i , xi) + Ziu*i
h i

(16)

Where û i is the estimated random effect for the i sample plot

(i = 1,…M); f(·) is the NLME CW model; b̂ is the vector of the

fixed effects b ; xi is the vector of the predictor variables; Ŷ Ŷ is
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the estimated variance-covariance matrix for the random effects

ui (i = 1,… M); R̂ i is the estimated variance-covariance matrix of

the errors ei ei ; and Zi is the f(·) ni×q design matrix of the partial

derivatives of the estimated NLME CW model f(·) ui with respect

to the random effects ui . The EBLUP theory was applied to

estimate random effects (Meng and Huang, 2009; Fu

et al., 2017a).
2.5 Prior measurement strategy

The mixed-effects model estimates the random effects and

response calibration using single or multiple samples measured in

each sample plot. Various sampling methods affect the random

effects differently, thereby affecting the prediction accuracy of the

NLME CW model. A few studies have evaluated the number of

sample trees necessary to predict the random effects of NLME CW

models and suggest the optimal numbers (Fu et al., 2013; Fu et al.,

2015; Fu et al., 2017a). However, based on our broad literature

review, no study of a similar type has been conducted on bamboo

forests. Therefore, to evaluate the variability of bamboo CW, we

used the following sampling methods and identified the

optimal strategy:

(1) 1–8 randomly selected bamboo(s) per sample plot;

(2) 1–8 bamboo(s) with the largest DBH per sample plot;

(3) 1–8 bamboo(s) with average DBH per sample plot, and

(4) 1–8 bamboo(s) with the smallest DBH per sample plot.

The RMSE and TRE statistics were used to evaluate the

prediction performance of the various sampling methods, and

each sampling method was repeated 100 times to obtain the

average statistics.

We used a three-step iterative algorithm proposed by Meng and

Huang (2009) that involves computing random effects at the block

and sample plot levels to calibrate the two-level NLME CW model

(Meng and Huang, 2009). The first step is obtaining the initial

(approximate) prediction of the random effects. The second step is

updating the estimation of the random effect values by adding the

estimated values of the model fitting parameters. The third step is

the repetition of Step 2 until the required accuracy is obtained using

iteration k. The precision was jm̂ k
i − m̂ k−1

i j < 0:0000001 and m̂ is the

estimated value of random effect). The computational process was

implemented in R software (version 3.4.2) using the nlme function.

Details on this process are available in modeling studies (e.g., Meng

and Huang, 2009, Fu et al., 2017a).
2.6 Model evaluation

The effectiveness of the NLME CWmodel can be evaluated using

an independent dataset. However, this data acquisition method

would be laborious and limited. Therefore, this study employed

leave-one-out cross-validation (LOOCV) to validate the CW

model. One sample plot was removed each time, and the

remaining sample plot data were used to fit the model. This step

was repeated 35 times. Next, the average statistical indicators (Eqs. 9–

12) were calculated using the difference between the predicted and

observed CW values.
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3 Results

We evaluated the model fitting performance using the LOOCV

method. Model 8 (logistic form) showed relatively better fit statistics

(Table 4) (Eq. 17). Therefore, Model 8 was selected for further

analysis, i.e., for developing a mixed-effects model.

CWijk = b1=½1 + b2 exp ( − b3DBHijk)� + xij (17)
3.1 Extension of base model

As previously mentioned, only the variables that contributed

significantly to CW variations were added to the optimal CWmodel

(Eq. 18). These variables were H, HCB, and MDBH. This model

performed satisfactorily (R2 = 0.5392, RMSE = 0.2611, and TRE =

0.7071).

CWijk =
(b1 + b2MDBHij)

½1 + (b3 + b4HCBijk)e
((b5+b6Hijk)DBHijk)� + xijk (18)

where b1−b6 are the parameters to be estimated. Hijk is the

height of the k bamboo in the j sample plot in the i block;MDBHij is

the arithmetic mean DBH of the j sample plot in the i block; DBHijk

is the diameter breast height of the k bamboo in the j sample plot in

the i block; and CWijk is the crown width of the k bamboo in the j

sample plot in the i block.

We evaluated the effects of HCB, H, and DBH on CW using Eq.

18 via graphical simulation (Figure 2). As DBH and HCB increased,

CW increased. However, CW decreased as H increased. DBH had

the greatest influence on the variation in CW, followed by HCB

and H.

By comparing AIC and log-likelihood values of different

parameter forms with random effects, only b1 and b2 in Eq. 19

were suitable for introducing block- and sample-plot-level

random effects , which resulted in Eq. 19. The model

produced minimum AIC (AIC = 189.7019), maximum log-
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likelihood (LL = -84.8509), and other fit statistics (R2 = 0.5724,

RMSE = 0.2515, TRE = 0.6560). The constant plus power

variance function (Eq. 15) accounted for heteroscedasticity

most effectively (Tables 4, 5; Figure 3). The final NLME CW

model is as follows:

CWijk =
½b1 + mi1 + (b2 + mi2 + mij1)MDBHij�
½1 + (b3 + b4HCBijk)e

((b5+b6Hijk)DBHijk)� + xijk (19)

where xijk eN(0,Ri = s 2G0:5
i GiG

0:5
i ),Gi = diag(s 2(g1 +MDB

H2g2
i1

)2,…,s 2(g1 +MDBH2g2
in

)2) , mi1, mi2 is forest block-level

random effect, and mi j1 is sample plot-level random effect.
3.2 Parameter estimation

The parameter estimates of Eq. 18 using the nls function and

those of Eq. 19 estimated using the nlme function were significantly

different from zero (p< 0.05). The estimated optimal CW model of

Eq. 18 is as follows:

CWijk =
(3:3385 + 0:0427MDBHij)

½1 + (5:2787 − 0:0583HCBijk)e
((−0:3151+0:0011Hijk)DBHijk)�

+ xijk
(20)

where xijk~N(0,0.2616) .
The estimated NLME CW model is shown in Eq. 21:

CWijk =
½3:4166 + mi1 + (0:0417 + mi2 + mij1)MDBHij�

½1 + (4:6803 − 0:0518HCBijk)e
((−0:2943+0:0012Hijk)DBHijk)�

+ xijk
(21)

where

mi =
mi1

mi2

" # eN 0

0

" #
, bY 1 =

3:08e-28 −0:949

−0:949 1:09e-29

 !( )
TABLE 4 Fit indicators of the basic models (Table 3).

Model fitting Model validation

Model MD RMSE R2 TRE MD RMSE R2 TRE

1 -1.72e-06 0.2694 0.5094 0.7531 -0.0004 0.2706 0.5048 5.6125

2 -0.0002 0.2669 0.5184 0.7392 -0.0005 0.2680 0.5141 5.5432

3 -0.0004 0.2644 0.5276 0.7251 -0.0005 0.2654 0.5234 5.4933

4 -7.08e-05 0.2644 0.5275 0.7252 -0.0001 0.2654 0.5236 5.4865

5 -0.0005 0.2741 0.4923 0.7797 -0.0010 0.2754 0.4868 5.8762

6 -0.0005 0.2741 0.4923 0.7797 -0.0010 0.2754 0.4868 5.8762

7 0.0001 0.2634 0.5310 0.7198 0.0002 0.2648 0.5257 5.5014

8 0.0002 0.2621 0.5356 0.7127 0.0003 0.2635 0.5305 5.4299
frontie
MD, mean residual error; RMSE, root mean square error; R2 coefficient of determination; and TRE, total relative error.
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mij = mij1 eN(0, 5:13e-05Þ

xijk eN(0,Ri = 4:70e-26G0:5
i GiG

0:5
i )

Gi = diag(4:70e-26(9:08e+11

+MDBH22:24
i1

)2,…, 4:70e-26(9:08e+11 +MDBH22:24
i1

)2)

Gi = Ii
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3.3 Model prediction

Four sampling methods were evaluated to predict the random

effects of the NLME CW model (Figure 4). The RMSE and TRE of

the four sampling methods exhibited the same trend: the prediction

accuracy of the model gradually increased as the number of samples

increased. When the minimum DBH was used, the model generated

the minimum RMSE and TRE, indicating the suitability of the

minimum DBH for calibrating and predicting bamboo CW. The
A B

FIGURE 3

Residual distribution of Model 19 (A) and Model 19 + Eq. 15 (B).
FIGURE 2

Effects of H, HCB and DBH on the CW. The curves were produced using the logistic model, i.e., Eq. 18.
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decline rates of RMSE and TRE were the largest when the two

bamboos with the smallest DBH were used for the random

effects estimation.
3.4 Model evaluation

Using the LOOCV method, we evaluated the performance of

the OLS CW, NLME CW, and M responses of the latter model. The

prediction accuracy of the NLME CW model (Eq. 19) was higher

than that of the other two model variants (Eq. 18, M-response of Eq.

19) (Table 6), thereby confirming that the block and sample plot

level random effects were substantial.
4 Discussion

Research on the CW model has mainly focused on tree species

and rarely on bamboo forests (Fu et al., 2017b; Fu and Sun, 2013; Fu

et al., 2013; Fu et al., 2017a; Lei et al., 2018). Researchers select an

appropriate model through the functional relationship between CW

and DBH and then utilize the tree size vitality, site condition, and

stand competition factors to develop their model. The factors used

in most models reflect the site quality level (dominant height) (Fu

and Sun, 2013; Fu et al., 2013; Lei et al., 2018). However, bamboos

grow only in the first stage, after which their height does not change

(Yen and Lee, 2011; Yen, 2016). Therefore, only using DH to reflect

the site quality level is not appropriate. Therefore, in this study we

considered the slope, slope direction, and slope location as the site

quality levels of bamboo forests and used the mixed effect method to
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introduce the random effect of the group level to reflect the site

quality level of bamboo forests. This method provides reliable

technical support for CW calculations in bamboo forests.

Among the eight commonly used CW-DBH models evaluated

in this study, the logistic form (i.e., Model 8) was used as the

optimal basic model because it is superior to the other models,

especially in flexibility. The logistic model is widely used to fit forest

growth data, including DBH growth (Fu et al., 2018), survival

(Buchman et al., 1983; Xie et al., 2022), mortality (Zhou et al.,

2021b; Glover and Hool, 1979; Zhou et al., 2021a), tree CW (Fu and

Sun, 2013; Fu et al., 2013; Lei et al., 2018), and HCB (Yang et al.,

2020; Pan et al., 2020; Zhou et al., 2022). These examples show that

the logistic model is sufficiently flexible in detailing potential tree

growth variations, including bamboo CW variations.

Factors that potentially affect the crown should be considered

(Davies and Pommerening, 2008; Uzoh and Oliver, 2008; Sönmez,

2009). We therefore evaluated the impact of 12 variables on bamboo

CW. However, only HCB, H, MDBH, and DBH significantly

affected CW. Thus, these factors included in modeling may

significantly improve the model’s accuracy. Studies conducted on

tree species have also found a positive correlation between CW and

DBH and a negative correlation between CW and HCB (Fu et al.,

2013; Sharma et al., 2016; Sharma et al., 2017; Ma et al., 2022). HCB

and DBH are closely related to the size of the bamboo crown; thus,

they may explain the significance of impacts on CW (Hasenauer

and Monserud, 1996; Sharma et al., 2016; Zhou et al., 2022). MDBH

describes the degree of bamboo crowding in a forest and explains

the effects of competition on CW (Timilsina and Staudhammer,

2013). However, unlike the other studies on tree species (add

relevant references here), CW was negatively correlated with H in
FIGURE 4

Root mean square error (RMSE) and total relative error (TRE) for the ordinary least squares (OLS) Model 18, Model 19 with the mean response (M
response), and Model 18 with four sampling methods and sample sizes utilized within each sample plot, used to estimate the random effects
(random: randomly selected DBH, largest: the largest DBH, medium: medium DBH, and smallest: the smallest DBH).
frontiersin.org

https://doi.org/10.3389/fpls.2023.1139448
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Zhou et al. 10.3389/fpls.2023.1139448
this study. This may have resulted from the different growth

characteristics of bamboo from those of other tree species, i.e.,

bamboo usually grow only within the first growth stage (Yen and

Lee, 2011; Zhou et al., 2022). Bamboos with a smaller size were

usually located in the lower layer of the stands with larger growth

space and lower competition, which represents conditions most

suitable for CW growth. Research has shown that relative spacing

influences tree height and CW relationships (Saud et al., 2016; Pan

et al., 2020). However, this study excluded this indicator because the

stand density of trees will not change within a certain period. For

bamboo, the annual number of bamboo shoots leads to changes in

stand density, and bamboos are cut approximately 4–6 years after

they emerge; thus, this index is not appropriate for use in modelling.

Age is an important variable in bamboo forests. Bamboos of

different ages have different abilities to compete for resources.

Generally, bamboos in the mature or overmature stages are less

competitive than those in the immature stages (Tang et al., 2016). In

the study area, the bamboos were in the rapid growth stage, and few

were larger than 3°, resulting in age having a minimal impact.

Therefore, we replaced the age variable with MDBH and random

effects in this study.

Various predictor variables affect CW differently. As DBH and

HCB increased, CW increased, but it decreased with increasing H

(Figure 2). In this study, the fitting effect did not change

significantly after other variables were added to the model.

Moreover, a model with too many variables and parameters may

lead to over-parameterization and non-convergence (Fu et al.,

2017b; Fu et al., 2017c; Fu et al., 2017a). In addition, including

several stand or tree variables may increase the cost and time of an

inventory. Therefore, determining an appropriate number of

variables with the high accuracy required by forest managers

would be difficult in forest modeling (Calama and Montero, 2004;

Ademe et al., 2008). A simple model with a reliable prediction

accuracy is therefore a desirable choice for effective forest

management (Kiernan et al., 2008). Therefore, we retained only

four variables in the final CW model (see Eq. 18), which are easily

obtained from forestry databases.
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The fitting accuracy of the model significantly improved after

including the two level random effects. This is because the

random effects parameters accounted for the difference in DBH

changes in the different blocks within the bamboo forests and

different sample plots within the blocks. The stand density of the

studied bamboo forests ranged from 1,200 to 3,750 plants/ha,

which largely affects CW variability (Essery et al., 2008). Because

the effects of MDBH was assumed to be reacted in that of

crowding degree or stand density, we did not consider

introducing the number of bamboos per sample plot into the

CW model.

To reduce inventory costs, the mixed-effects model estimates

the random effects using as few samples as possible (Liu and Cela,

2008; Fu et al., 2017c). A small number of samples may capture the

unobserved influence of stand variables on CW. Researchers have

discussed the sample size necessary to predict random effects

with reasonable accuracy (Fu et al., 2017b; Yang et al., 2020; Zhou

et al., 2021a; Ma et al., 2022; Zhou et al., 2022). In this study, we

evaluated the impact of four sampling methods on the prediction

accuracy of the NLME CW model. Increasing the number of

samples resulted in the statistical indicators (RMSE and TRE)

showing a downward trend (Figure 4), which is more or less

similar to results of studies on tree species (add relevant references

here). A reasonably high prediction accuracy was achieved for the

NLME CW model using the random effects estimated with only

the smallest two bamboos per sample plot. Two bamboo poles

were considered the optical number to predict the random effects

of the NLME CW model from the perspective of the affordable

sampling cost and prediction accuracy of the model. Similar

empirical results have been reported in other modeling studies

(Zhou et al., 2022).

The data used in this study were acquired from field surveys,

and CW was calculated from four azimuth angles; this approach

may lead to substantial errors in predicting CW and the crown area

(Bragg, 2001; Marshall et al., 2003). These errors can be reduced by

considering the geometric mean (Gregoire and Valentine, 1995).

Because all the sample plots were distributed across pure bamboo
TABLE 6 Statistical indicators of different forms of CW models using LOOCV methods (OLS-Eq.18; M-response-Eq.19; NLME-Eq.19).

Model(?) MD RMSE R2 TRE

nls -0.0028 0.2438 0.4082 5.3300

M response -0.0012 0.2440 0.4075 5.3945

nlme 0.0001 0.2066 0.5724 4.7927
frontie
MD, mean residual error; RMSE, root mean square error; R2 coefficient of determination; TRE, total relative error.
TABLE 5 Comparison among three variance functions (Eqs. 13–15) of NLME CW model (LL, logliklihood; AIC, Akaike Information Criterion; and L-
Ratio, log-likelihood ratio test).

Variance function AIC LL L-Ratio P

Not added 189.7019 -84.85093

Power 154.1289 -66.06443 39.07836 < 0.0001

Exponential 152.6235 -65.31175 37.57299 < 0.0001

Constant plus power 148.3223 -62.16113 45.3796 < 0.0001
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forests, differences in the orientation of the crown diameter of

bamboos in the sample plots were ignored. Therefore, the potential

errors introduced by the arithmetic mean (CW) may be minimal

and insignificant. Currently, remote sensing techniques are widely

used in forestry research (Garcıá et al., 2010; Fu et al., 2018; Yang

et al., 2020). Moreover, the factors influencing CW can also be

estimated using remote sensing images, which can be largely

supportive in constructing CW models and reducing

investigation costs.
5 Conclusion

The nonlinear mixed effect CW model, which was developed

using the DBH, HCB, arithmetic MDBH, bamboo height (H), and

forest block- and sample plot-level random effects, demonstrated a

promising precision level. Even with an increase in the number of

samples, the prediction statistics gradually decreased, and the two

bamboos with the smallest DBH per sample plot were used to

calibrate the nonlinear mixed-effects CW model. This approach

may therefore substantially reduce measurement costs and provide

an acceptable accuracy. The model established in this study can be

applied to bamboo CW predictions in forests similar to those in this

study and may provide a basis for bamboo forest management.
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