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Forests are suffering water stress due to climate change; in some parts of the

globe, forests are being exposed to the highest temperatures historically recorded.

Machine learning techniques combined with robotic platforms and artificial vision

systems have been used to provide remote monitoring of the health of the forest,

including moisture content, chlorophyll, and nitrogen estimation, forest canopy,

and forest degradation, among others. However, artificial intelligence techniques

evolve fast associated with the computational resources; data acquisition, and

processing change accordingly. This article is aimed at gathering the latest

developments in remote monitoring of the health of the forests, with special

emphasis on the most important vegetation parameters (structural and

morphological), using machine learning techniques. The analysis presented here

gathered 108 articles from the last 5 years, and we conclude by showing the

newest developments in AI tools that might be used in the near future.

KEYWORDS
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1 Introduction

Climate change has increased the frequency and duration of droughts around the world

(Cook et al., 2014). This has a special impact on ecosystems, where it is estimated by the

United Nations Convention to Combat Desertification (UNCCD) that in the last 40 years

the percentage of vegetated areas affected by droughts has doubled, and around 12 million

hectares of agricultural land have been lost due to desertification (UNCCD, 2022). Another

issue caused by intense droughts is the increase in wildfires. According to UNCCD (2022)

more than 84% of terrestrial ecosystems are in danger due to more frequent and intensive

fires. Forests are particularly affected by longer droughts due to water stress; the

relationship between forestry health and posterior forest recovery is still being studied

(Xu et al., 2018).
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Forest management plays a fundamental role in the analysis of

forest health. Its main target is to reduce risks or negative impacts

derived from external disturbances (Migliavacca et al., 2021)

including wildfires (Hillman et al., 2021; Reilly et al., 2021;

Rodrıǵuez et al., 2021; Wells et al., 2021; Trencanová et al., 2022),

atmospheric pollution, forest stress (Cężkowski et al., 2020; Huo

et al., 2021), pests (Huo et al., 2021), climate change, and forest

diseases (Lin et al., 2018; Sapes et al., 2022). The scientific

community has established the use of forest indicators to ease

forest health assessment (Trumbore et al., 2015; Cai et al., 2021;

Kopacková-Strnadová et al., 2021; Migliavacca et al., 2021; Neuville

et al., 2021). These indicators comprise in their nucleus, a previous

examination of factors associated with the physical and chemical

forest attributes, such as greenness of the leaves, nitrogen content,

tree height, canopy height, diameter at breast height, and others.

Their importance lies in the study of water absorption, drought

response, moisture content, changes in vegetation, and detection of

tree diseases (Abdollahnejad and Panagiotidis, 2020; Raddi et al.,

2021; Malabad et al., 2022; Zhuo et al., 2022).

Technological developments have allowed researchers to

process massive data and obtain measurements of large portions

of land. Unmanned aerial vehicles have been used in recent years as

mechanisms to gather massive information about various

ecosystems (Eugenio et al., 2020; Osco et al., 2021; Sangjan and

Sankaran, 2021). Coupling UAVs with computer vision systems

(RGB, multi-spectral, hyper-spectral and thermal cameras) and

other sensors as LiDAR has allowed researchers to estimate forest

parameters like height, canopy cover, DBH, vegetation indexes

(Abdollahnejad and Panagiotidis, 2020; Kopacková-Strnadová

et al., 2021; Raddi et al., 2021; Malabad et al., 2022; Zhuo et al.,

2022). The promising use of UAVs in the assessment of forest health

allows the experimentation with larger-scale satellite monitoring

systems, particularly LANDSAT, SENTINEL, and even Google

Earth (Ahmad et al., 2021).

Likewise, the use of remotely sensed imagery has contributed to

the study of vegetation indices (Becker et al., 2018; Gallardo-Salazar

et al., 2021; Rodrıǵuez et al., 2021; Zhang Y. et al., 2021; Fakhri et al.,

2022; Qiu et al., 2022; Talavera et al., 2022; Xu et al., 2022; Yang

et al., 2022), forest mapping (Lin Y. Z. et al., 2021; Onishi and Ise,

2021; Fakhri et al., 2022; Li et al., 2022; Nasiri et al., 2022;

Trencanová et al., 2022; Xu et al., 2022), evaluation and detection

of diseased forests (Lin et al., 2018; Sapes et al., 2022), canopy

characterization(Furukawa et al., 2021; Ribas Costa et al., 2022), tree

species classification (Liu et al., 2021; Mäyrä et al., 2021; Onishi and

Ise, 2021; Zhang C. et al., 2021; Hell et al., 2022; Yang and Kan,

2022), identification of fire-prone ecosystems (Trencanová et al.,

2022), prediction of chlorophyll and nitrogen content (Yao et al.,

2021; Narmilan et al., 2022; Wan et al., 2022), recognition of

intrinsic forest factors (Xu et al., 2019; Dainelli et al., 2021),

wildfire prevention (Trencanová et al., 2022), and so on. The

analysis of these applications guarantees a comprehensive

assessment of woodland features which determines the current

forest health status and allows for better forest management.

In accordance with the data gathered by the different robotic

platforms and sensors, it is essential to know how to treat the

information. Although traditional methods such as statistical
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analysis are a viable option for post-processing data, currently the

use of machine learning techniques has been chosen in order to

generalize models, increase the accuracy of parameters estimation,

and provide better feature prediction to the ecosystems variability

and forest species involved (Corte et al., 2020; Wells et al., 2021;

Zhang Y. et al., 2021; Ilniyaz et al., 2022; Narmilan et al., 2022;

Nasiri et al., 2022; Qiu et al., 2022). In addition, some works have

considered the use of deep learning strategies to further improve

forest health monitoring capabilities and obtain more detailed

individual tree features (Mäyrä et al., 2021; Onishi and Ise, 2021;

Zhang C. et al., 2021; Hell et al., 2022; Li et al., 2022; Trencanová

et al., 2022).

Machine learning (ML) models have been used as both

classifiers and predictors. Forest structure parameters and tree

phenotypic features are predicted using machine learning

techniques with input data gathered from LiDAR, RGB, and

Multi-spectral cameras (Shin et al., 2018; McClelland et al., 2019;

Puliti et al., 2019; Abdollahnejad and Panagiotidis, 2020; Fan et al.,

2020; Imangholiloo et al., 2020; Ahmad et al., 2021; Cai et al., 2021;

Neuville et al., 2021; Sangjan and Sankaran, 2021; Yu et al., 2021).

Predictions of leaf moisture, chlorophyll, and nitrogen content,

have been achieved using machine learning methods (Watt et al.,

2020; Lou et al., 2021; Raddi et al., 2021; Raj et al., 2021; Narmilan

et al., 2022; Zhuo et al., 2022). The most common predictor is linear

regression, but other common ones are support vector machine

regression, random forest regression, and gradient boost machines

(McClelland et al., 2019; Blanco-Sacristán et al., 2021; Fraser and

Congalton, 2021b; Yu et al., 2021; Torre-Tojal et al., 2022). Another

task that can be accomplished using ML methods is tree

classification, which is important for forest inventory and

mapping. The most common classifiers are random forests,

support vector machines, and artificial neural networks (Feng

et al., 2020; Guo et al., 2021; Hologa et al., 2021). Another use for

classifiers in forestry health assessment is the identification of live

trees and snags, the ratio between these two is an important

parameter to evaluate forest health (Shovon et al., 2022).

The use of high-resolution cameras has allowed researchers to

couple them with deep convolutional neural networks (Osco et al.,

2021). Using deep learning structures alongside high-resolution

aerial images has had good results in individual tree crown

segmentation (Lin and Chuang, 2021; Onishi and Ise, 2021; Li

et al., 2022). Other applications of deep convolutional neural

networks are tree identification from aerial RGB and multi-

spectral images, using temporal information has also been

explored by researchers with the aid of recurrent convolutional

neural networks (Feng et al., 2020). The most common deep

learning back-bones used to perform feature extraction are,

VGG19, RES-NET and Seg-Net (Pulido et al., 2020; Lin and

Chuang, 2021; Hao Z. et al., 2022). Other structures used in

semantic segmentation processes are U-NET and Mask-RCNN

(Pulido et al., 2020).

This work presents a systematic review of scientific articles from

the last five years (2017-2022) focused on forest health assessment

assisted by remote sensing and machine learning techniques. For

our analysis, we used Scopus (www.scopus.com) scientific database.

We intend to determine which forest properties are considered to
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assess forest health, and how remote sensing in conjunction with

machine learning strategies are used to estimate such features.

Other review works related to remote sensing for forestry

applications do not include information about the novel machine

learning algorithms to relate the data gathered by various sensors

and the expected metrics that are needed to evaluate forest health.

For example, (Torres et al., 2021) describes various applications of

remote sensing in the assessment of forest status and health

including stress factors, plagues, tree mortality, tree decline, and

tree health. However, there is no in-depth discussion about how the

data is processed in those studies. A similar case is the work

presented by (Guimarães et al., 2020), which covers other areas

for forest management including tree classification and mapping,

and tree parameter estimation; however, the processing techniques

are not addressed. In Eugenio et al. (2020) it is presented a similar

approach but focused on remotely piloted systems, and not

considering satellite platforms that are used for the assessment of

forests. A complete review of deep learning algorithms for forestry

was presented in Diez et al. (2021), focusing directly on the images

processing; however, such work does not present information about

machine learning for regression problems. A more complete review

including sensors and methods is discussed in Pérez-Cabello et al.

(2021); but it is limitedto the assessment of post-fire vegetation

recovery. To the best of our knowledge, our work is the only one

that offers a more in-depth discussion about machine learning

methods (including deep learning) and how they are

implemented alongside remote sensing techniques for the

assessment of forest health. Table 1 contains a comparison

between our work and previous reviews during the five-year

period under study.

This paper is organized as follows: Section 2 presents the main

issues and forestry problems studied using both remote sensing

techniques and machine learning methods. Section 3 presents the

hardware used in the assessment of forestry health, it includes both

sensors and platforms. Section 4 deals with the machine learning
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techniques that are used to process data. Section 5 includes the

discussion and the challenges that arise in the assessment of forestry

health using remote sensing aided by machine learning.
2 Vegetative problems

This section discusses the vegetative issues that are currently

being studied for forestry health assessment. In a broad sense,

Figure 1 shows the distribution of the prevalent issues that have

been studied the most in the reviewed articles; these were: tree

classification and identification, tree structure identification,

biomass estimation chlorophyll estimation, crown fuel estimation,

and water and moisture content prediction.

The first subsection is dedicated to Vegetation Indices

since they are one of the most important features that help

researchers predict forest and individual features from the
TABLE 1 Comparison between the present work and other similar reviews related to remote sensing in forestry applications.

Article Years Forest issue Sensors Platforms Methods

Our Work 2017-
2022

Vegetation indices, Biomass estimation, Tree structure
parameters, Tree identification, Tree recognition, Water

and moisture content, Chlorophyll estimation

Cameras (RGB, Hyperspectral,
Multispectral, Thermal); LiDAR;

TerrestrialLaser Scanning,
Spectrometer

UAV,
Satellite

Linear regression, Random
forest, SVM, K-nearest
neighbors, Deep learning

Pérez-
Cabello

et al. (2021)

N/A Post-fire vegetation recovery Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR,

Terrestrial Laser Scanning,
Spectrometer

UAV,
Satellite

Not Specified

Eugenio
et al. (2020)

2000-
2019

Forest parameter estimation, Fire monitoring, Pest and
disease detection, Natural conservation

Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR

UAV Not Specified

Torres et al.
(2021)

2015-
2020

Forest plague detection, Forest current health, Forest
health decline and mortality

Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR

UAV,
Satellite

Random forest, SVM, K-
nearest neighbors, Neural

networks

(Guimarães
et al., 2020)

N/A Forest parameter estimation, Tree classification and
mapping, Forest health monitoring

Cameras (RGB, Hyperspectral,
Multispectral, Thermal), LiDAR

UAV Not specified

(Diez et al.,
2021)

2017-
2021

Forest parameter estimation, Tree classification and
mapping, Forest health monitoring

Cameras (RGB, Multispectral) UAV Deep learning
FIGURE 1

Distribution of the main vegetative problems that were studied in
the reviewed articles.
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reflected electromagnetic spectrum. The following subsection

discusses tree classification and identification, tree structure

parameters, biomass estimation, chlorophyll estimation, crown

fuel estimation, and water and moisture content prediction.
2.1 Vegetation indices

A vegetation index is a mathematical transformation of two or

more spectral bands that are designed to enhance a specific property

or characteristic of the vegetation (Munnaf et al., 2020).

Recently, these indices have been used as input data for

prediction and classification purposes alike, the spectrum of tree

canopies can be considered a distinctive feature of the specific

vegetation, thus making VIs useful for both vegetation identification

in aerial photographs and for tree classification (Abdollahnejad and

Panagiotidis, 2020; Imangholiloo et al., 2020; Yang and Kan, 2020;

Guo et al., 2021; Arevalo-Ramirez et al., 2022; Cabrera-Ariza et al.,

2022; Shovon et al., 2022). Photosynthetic pigments have a

distinctive reflectance in some bands, thus the prediction of

chlorophyll content and other pigments is suitable with the
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appropriate VI (Watt et al., 2020; Kopacková-Strnadová et al.,

2021; Lou et al., 2021; Lu et al., 2021; Raddi et al., 2021; Raj et al.,

2021; Zhuo et al., 2022). Another application using VIs is the

prediction of biomass in different and (Morgan et al., 2021; Torre-

Tojal et al., 2022; Yan et al., 2022).

Tables 2A–D contain the main VIs used in different studies

regarding forest health, and their application; where R, G, B, NIR,

and RE denote the reflectance in the Red, Green, Blue, Near

Infrared, and Red Edge multi-spectral bands. Researchers focus

on these five bands since most of the reviewed works use

commercial infrared cameras that capture the radiation at these

wavelengths. Other indices take advantage of the full spectrum and

not only on specific bands but these indices are also obtained with

the aid of a hyper-spectral camera or by a laboratory or hand-held

spectrometer (Abdollahnejad and Panagiotidis, 2020; Watt et al.,

2020; Yang and Kan, 2020; de Almeida et al., 2021; Raj et al., 2021;

Villacrés and Cheein, 2022; Wan et al., 2022; Yang and Kan, 2022).

Li et al. (2021) uses spectral indices to estimate the leaf water

content. The authors specify five different indices: Simple Ratio,

Simple Difference, normalized difference, double difference index,

and difference ratio. Other indices are used to estimate the content
TABLE 2A Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Normalized Difference
Vegetation Index

(NVDI)

NIR − R
NIR + R

Predict forest vertical structure. Tree Recognition.
Chlorophyll Content Estimation. Fuel Content

Prediction.

Ahmed et al. (2021a); Raddi et al. (2021); Yu et al. (2021); Arevalo-
Ramirez et al. (2022); Qiao et al. (2022); Villacrés and Cheein

(2022); Zhuo et al. (2022)

Green normalized
difference vegetation
index (GNDVI)

NIR − G
NIR + G

Predict forest vertical structure. Soil Moisture Content
Prediction. Chlorophyll Content estimation. Fuel

Content Prediction

Yu et al. (2021); Raddi et al. (2021); Cheng et al. (2022); Arevalo-
Ramirez et al. (2022); Villacrés and Cheein (2022)

Normalized difference
red edge index (NDRE)

NIR − RE
NIR + RE

Predict forest vertical structure Yu et al. (2021)

Structure insensitive
pigment index (SIPI)

NIR − B
NIR − R

Predict forest vertical structure. Soil Moisture Content
Prediction. Chlorophyll Content Prediction

Yu et al. (2021); Cheng et al. (2022)

Normalized green blue
difference index

(NGBDI)

G − B
G + B

Tree Classification Guo et al. (2021)

Normalized green red
difference index

(NGRDI)

G − R
G + R

Tree Classification Guo et al. (2021); Cabrera-Ariza et al. (2022)

Green red difference
index (GRDI)

G − R Tree Classification Guo et al. (2021)

Normalized blue green
vegetation index

(NBGVI)

B − G
B + G

Tree Classification Guo et al. (2021)

Normalized excessive
green index (NEGI)

2G − R − B
2G + R + B

Tree Classification Guo et al. (2021)

Modified Green Blue
Vegetation Index

(MGRVI)

G2 − R2

G2 + R2

Biomass Prediction Morgan et al. (2021)

Modified Visible
Atmospheric Resistant

Index (MVARI)

G − B
G + R − B

Biomass Prediction Morgan et al. (2021)

Red-Green-Blue
Vegetation Index

(RGBVI)

G2 − B*R

G2 − B*R

Biomass Prediction Morgan et al. (2021)
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of phosphorus and nitrogen, which is related to photosynthetic

efficiency (Watt et al., 2020; Raj et al., 2021), the information

gathered by hyperspectral indices, allows the processing data

models to make more accurate predictions.

Comparisons between hyper-spectral information and multi-

spectral indices have been performed to evaluate drought responses

in various ecosystems (Raddi et al., 2021). Other studies show that

there is the possibility to recreate indices from hyper-spectral bands

with the information gathered from multi-spectral indices

(Villacrés and Cheein, 2022).

This section includes only a few of the most common VIs,

however, more extensive articles and reviews are available, and the

reader is encouraged to see (Tran et al., 2022).
2.2 Biomass estimation

From an ecological standpoint, biomass is defined as the mass of

living organisms in a determined area or ecosystem. Biomass

depending on the environment has multiple functions, for example,
Frontiers in Plant Science 05
to know about carbon sinks and it is important in water exchange

with the atmosphere. However, ecosystems are constantly changing

due to climate change has strengthened environmental stressors for

various ecosystems, changing the natural composition of biomass;

thus estimating its value is a strong indicator of how an ecosystem

responds to external changes. Biomass is also an indicator of

biological fuel present in environments (Morgan et al., 2021).
2.3 Chlorophyll estimation

Chlorophyll concentration (CC) indicates the physiological and

structural basis by which leaves drive photosynthesis (Narmilan et al.,

2022) and its relationship to soil respiration (Yao et al., 2021). Likewise,

studies evidence a strong connection with nitrogen content. As a

matter of fact, a deficiency in nitrogen content implies a reduction in

CC which improves leaf transmittance at visible wavelengths. Several

findings have demonstrated that this pigment has diverse spectrum

behavior with particular absorption properties at different wavelengths,

thus the electromagnetic leaf reflection is an indicator of chlorophyll
TABLE 2B Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Triangular Greenness Index (TGI) G − 0:39R − 0:61B Biomass Prediction Morgan et al. (2021)

Visible atmospheric resistant index
(VARI)

G − R
G + R − B

Tree Structure. Biomass Prediction. Leaf Nitrogen
Concentration

Lu et al. (2021); Morgan et al. (2021); Qiao
et al. (2022)

Green red ration index (GRRI) G
R

Leaf Nitrogen Concentration Lu et al. (2021)

Normalized redness intensity (NRI) R
R + G + B

Leaf Nitrogen Concentration Lu et al. (2021)

Green Red Vegetation Index (GRVI) G − R
G + R

Leaf Nitrogen Concentration. Biomass Prediction K.C. et al. (2021); Lu et al. (2021)

Atmospherical Resistant Vegetation
Index (ARVI)

G − R
G + R − B

Leaf Nitrogen Concentration Lu et al. (2021)

Simple Ratio (SR) NIR
R

Tree Classification. Chlorophyll Content Estimation Abdollahnejad and Panagiotidis (2020); Zhuo
et al. (2022)

Soil Adjusted Vegetation Index (SAVI)
1:5

NIR − R
NIR + R + 0:5

Tree Classification.Soil Moisture Content Prediction Abdollahnejad and Panagiotidis (2020); Cheng
et al. (2022)

Chlorophyll index (CI) NIR
RE

− 1
Tree Classification Abdollahnejad and Panagiotidis (2020)

Plant Sense Reflectance Index (PSRI) R − G
RE

Tree Classification Abdollahnejad and Panagiotidis (2020)

Modified canopy chlorophyll content
index (M3CL)

NIR + R + RE
NIR − RED + RE

Tree Classification Abdollahnejad and Panagiotidis (2020)

Shadow Index (SI) R + G + B
3

Biomass Prediction K.C. et al. (2021)

Modified Simple Ratio Index (MSR) NIR=R − 1

(NIR=R + 1)
1
2

Soil Moisture Content Prediction Cheng et al. (2022)

Optimized Soil Adjusted Vegetation
Index (OSAVI)

1:16(NIR − R)
NIR + R + 0:16

Soil Moisture Content Prediction. Forest Structure Arevalo-Ramirez et al. (2022); Cheng et al.
(2022)

Ratio Vegetation Index (RVI) NIR
R

Soil Moisture Content Prediction Cheng et al. (2022)

Ratio Vegetation Index 2 (RVI2) NIR
G

Soil Moisture Content Prediction Cheng et al. (2022)
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content. CC can be altered by natural or man-made noxious agents as

well as stress factors. Additionally, an accurate measurement of CC

involves a good examination of plant health, regulation of fertilizer

application, and so on. CC ground measurements are used as an

indicator of fertilizer status (Narmilan et al., 2022). Due to its

importance in the agriculture field, current remote sensing efforts

contemplate the blending of vegetation indices and machine learning

techniques in order to find a well-established model that accurately

defines CC (Yao et al., 2021; Narmilan et al., 2022).
Frontiers in Plant Science 06
2.4 Water and moisture content

Water and moisture content (WMC) is affected by tree species

type (Yao et al., 2021) and canopy cover attributes (Gale et al.,

2021). It is also a factor of soil respiration. In addition, WMC is

associated with the production of CO2 in soil and the transportation

of CO2 from soil to the atmosphere, so continuous or unexpected

changes in WMC can affect soil respiration behaviors (Yao et al.,

2021). Likewise, WMC is commonly used to assess wildfire risk in
TABLE 2C Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Triangular Vegetation Index (TVI) 60(NIR − G) − 100(G − R) Soil Moisture Content Prediction Cheng et al. (2022)

Enhanced Vegetation Index (EVI)
2:5

NIR − R
NIR + 6R − 7:5B + 1

Soil Moisture Content Prediction.
Forest Structure

Arevalo-Ramirez et al.
(2022); Cheng et al. (2022)

Green Index (GI) G
R

Soil Moisture Content Prediction Cheng et al. (2022)

Transformed Chlorophyll Absorption in
reflectance Index (TCARI)

3½(RE − R) − 0:2(RE − G)
RE
R
� Soil Moisture Content Prediction Cheng et al. (2022)

Simple Ratio Pigment Index (SRPI) B
R

Soil Moisture Content Prediction Cheng et al. (2022)

Normalized Pigment Chlorophyll Index (NPCI) R − B
R + B

Soil Moisture Content Prediction.
Chlorophyll Content Estimation

Cheng et al. (2022); Zhuo
et al. (2022)

Normalized Difference Vegetation Index 2
(NDVIGB)

G − B
G + B

Soil Moisture Content Prediction Cheng et al. (2022)

Plant Senescence reflectance Index 2 (PSRI) B − R
G

Soil Moisture Content Prediction Cheng et al. (2022)

Color Index of vegetation extraction (CIVE) 0:44R − 0:81G + 0:39B + 18:79 Soil Moisture Content Prediction Cheng et al. (2022)

Near Infrared Reflectance of Vegetation (NIRV) NIR*NDVI Chlorophyll Content Estimation Raddi et al. (2021)

Difference Vegetation Index (DVI) NIR − R Fuel Estimation Villacrés and Cheein (2022)

Modified Soil Adjusted Vegetation Index (MSAVI) ½2NIR + 1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2NIR + 1

p
− 8(NIR − R)�=2 Forest Structure Arevalo-Ramirez et al. (2022)

Chlorophyll Absorption Reflectance Index (CARI) RE − R − 0:2(RE − G) Forest Structure Arevalo-Ramirez et al. (2022)
TABLE 2D Common VIs used in the reviewed articles.

Vegetation Index Formula Application Reference

Red Edge Modified Simple Ratio (REMSR) NIR=RE − 1ffiffiffiffiffiffiffiffi
NIR

p
=RE + 1

Forest Structure Arevalo-Ramirez et al. (2022)

Red Edge Normalized Difference Vegetation Index (RENDVI) NIR − RE
NIR + RE

Forest Structure Arevalo-Ramirez et al. (2022)

Leaf Chlorophyll Index (LCI) NIR − RE
NIR + R

Fuel Estimation Villacrés and Cheein (2022)

Normalized Difference Red Edge (NDRE) NIR − RE
NIR + RE

Fuel Estimation Villacrés and Cheein (2022)

Red Edge Modified Simple Ratio (REMSR) NIR=RE − 1ffiffiffiffiffiffiffiffi
NIR

p
=RE + 1

Forest Structure Arevalo-Ramirez et al. (2022)

Red Edge Normalized Difference Vegetation Index (RENDVI) NIR − RE
NIR + RE

Forest Structure Arevalo-Ramirez et al. (2022)

Leaf Chlorophyll Index (LCI) NIR − RE
NIR + R

Fuel Estimation Villacrés and Cheein (2022)

Normalized Difference Red Edge (NDRE) NIR − RE
NIR + RE

Fuel Estimation Villacrés and Cheein (2022)
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forested areas, (Barmpoutis et al., 2020; Gale et al., 2021) and

knowledge of its behavior are necessary for land management

decision-making (Barber et al., 2021).

Parameters such as moisture of forest canopy are used jointly

with the moisture of the soil-litter layer and forest temperature for

the early detection of forest fires. Therefore the development and

usage of aerial remote sensing platforms including radiometer

sensors, which is useful for determining and classifying areas of

forests that are prone to wildfires (Varotsos et al., 2020).

The WMC is highly dependent on temperature changes, so

predictive models to estimate WMC are altered by meteorological

conditions (Gale et al., 2021). Current efforts are mainly focused on

establishing more accurate and affordable measure systems; the

most remarkable developments which have enabled effective

estimation of WMC are related to the improvement of processing

software/techniques and computational power and the availability

of aerial imagery from satellite data, airplanes, or unmanned aerial

vehicles (UAVs) (Forbes et al., 2022). Furthermore, recent studies

have shown that reflectance data in a variety of wavelengths is a

promising alternative for WMC estimation (Barber et al., 2021).
2.5 Tree recognition

The tree identification problem is to identify each individual

tree from an aerial image. Its importance relies on the fact that tree

recognition is a key factor when evaluating biodiversity evolution

due to external factors such as climate change and natural disasters

(Hologa et al., 2021). Another important application for tree

identification is to evaluate the survival rate of seedlings, which is

vital to assess the efforts of afforestation, identifying seedlings across

several seasons is a difficult task, given the fact that each individual

tree crown needs to be identified in a complex vegetation

environment (Guo et al., 2021). Forest inventory and mapping

are crucial for forest managers, to ensure the preservation of the

different habitats (Neuville et al., 2021).
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2.6 Tree structure

Tree and forest structure is related to forest biodiversity and

productivity (Bohn and Huth, 2017). Tree structure identification is

related to the measurement of parameters that help to characterize

both individual trees and forests alike. The most common

parameters used to characterize tree structure are tree height,

diameter at breast height, basal area, total stem volume, crown

cover, crown height, and crown area (Lin and Herold, 2016; Shin

et al., 2018; Fraser and Congalton, 2021b; Guo et al., 2021; Hologa

et al., 2021; Neuville et al., 2021; Terryn et al., 2022). These

parameters are strong indicators of forest vigor and forest health

when facing stress due to climate change (Fraser and Congalton,

2021b). Tree structure is essential in studies such as forest

meteorology, botany, and ecology (Lin and Herold, 2016; Terryn

et al., 2022). There is also a correlation between tree structure and

the exchange of energy, carbon, and water between the forest

canopy and its environment. Figure 2 indicates the most common

parameters that are used to assess forest structure
2.7 Tree classification

In the assessment of forested areas, tree species present distinctive

traits such as textural characteristics and a specific spectral

reflectance; these traits allow researchers to identify each tree

species (Zhang C. et al., 2021). One of the purposes of tree

classification is to know which tree species are able to regulate

temperature and relative humidity in a certain environment, a fact

that helps to better understand forested ecosystems (Liu et al., 2021;

Zhang C. et al., 2021). Tree species classification is a crucial research

topic for effective forest management (Onishi and Ise, 2021).

Nevertheless, the most predominant factors that prevent a well-

performed tree classification procedure are due to the diversity of

tree species and the complexity of land (Zhang C. et al., 2021). Thus,

gathering this data usually requires carrying out in situmeasurements
BA

FIGURE 2

Tree structure parameters used to assess forestry health. In (A) are shown the parameters from a frontal view, (B) shows the parameters from an
aerial point of view, focusing on the tree crown.
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from sample plots and extrapolating to larger scales (Hell et al., 2022).

Overall, this shallow or deep mapping is processed by hand-crafted

features or specialized methods (Mäyrä et al., 2021). Currently, there

are some new developments in this field, where researchers have

introduced novel techniques related to computing various vegetation

indices and textural features (Mäyrä et al., 2021), machine learning-

based models, deep learning methods to extract tree features (Liu

et al., 2021; Onishi and Ise, 2021) and the full use of forest spectral

information (Zhang C. et al., 2021). Moreover, sensors and platforms

used for this task, have become more specialized in order to capture

enough information to accurately assess the type of tree (Mäyrä et al.,

2021; Onishi and Ise, 2021; Zhang C. et al., 2021).
2.8 Crown fuel estimation

Several forest fire prediction studies rely on empirical models

(Barber et al., 2021) using site-specific information on climate,

topography, and fuels (Arkin et al., 2021). This information is

strongly important for fire-prone countries in order to predict the

impact of fire in certain scenarios. Fuel management programs

(Wells et al., 2021) have been considered to reduce fire risk. The

behavior of wildfires can be predicted by Crown Fuel Estimation

(CFE). CFE is the assessment of fuel hazard layers. CFE is the

assessment of fuel hazard due to the spatial arrangement of

vegetation elements (branches, leaves, etc.); thus CFE helps

researchers assess the severity of wildfires (Hillman et al.,

2021), this task plays a key role since canopy fuels are the

primary fuel layer of initiation and spread of crown fire (Arkin

et al., 2021). It is worth mentioning that an accurate CFE can

infer in the total or partial wildfire mitigation (Hillman et al.,

2021; Wells et al., 2021). However, to completely assess the risk

of wildfire; models including not only CFE but other tree
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structure parameters are needed; for example, the measure of

live crown base height is critical this metric helps to estimate the

likelihood of fire propagating from the surface into tree crowns

(Arkin et al., 2021).
3 Hardware for remote
sensing applications

In remote sensing applications, hardware fulfills vital roles in

the data acquisition process, and choosing the correct sensors is

critical to the success of the desired task (Müllerová et al., 2021).

This section describes the different sensors, imaging systems, and

platforms used in the reviewed articles.
3.1 Sensors

Remote sensing platforms include various kinds of sensors for

gathering information about the environment. The most common

sensors for forestry health assessment include the following: Visible

Light Cameras (RGB Cameras), multi-spectral cameras, hyper-

spectral cameras, thermal cameras, Laser imaging Detection and

Ranging (LiDAR) systems, terrestrial laser scanning systems (TLS),

and other common sensors. This section will discuss the working

principle of the most common sensors in remote sensing for forestry

health assessment. Figure 3, contains a visual representation of the

most common sensors used for forestry health assessment.

3.1.1 RGB cameras
RGB cameras capture spectral information in visible light (400-

700 nm), which is the same spectrum perceived by the human eye

(Idrissi et al., 2022), the working principle of this kind of camera is
FIGURE 3

Most common sensors used for forestry health assessment, each column represents the number of articles that used each sensor in the data
collecting process.
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visualized in Figure 4. These cameras are designed to represent the

real colors of objects and nature using trichromatic red (620 - 750

nm), green (495-570 nm), and blue (450 -495 nm) wavelengths.

Overall, RGB cameras provide two-dimensional images (Lin et al.,

2022), and their performance tends to decrease in the presence of

adverse atmospheric conditions (fog, haze, heat waves, etc.). The

quality of an RGB camera is expressed in megapixels, which

determine the number of pixels (i.e. length x height) of a static

photo (Linhares et al., 2020). RGB cameras have been used for the

study of vegetation indices based on RGB information (Ilniyaz et al.,

2022; Talavera et al., 2022; Yang et al., 2022), forest canopy mapping

and modeling (Nasiri et al., 2022; Suwardhi et al., 2022; Trencanová

et al., 2022), tree identification and characterization(Onishi and Ise,

2021), and among others.

3.1.2 Multi-spectral cameras
Multi-spectral cameras collect color data and spectral monitoring.

They capture two or more bands in the visible and invisible spectrum

(Akkoyun, 2022). These cameras are able to cover parts of the infrared

and ultraviolet regions. The most common wavelengths for these

cameras are the Near-infrared wavelength (NIR) and red-edge

wavelength from the infrared spectrum. Likewise, multi-spectral

cameras hold a sensitive area detector used in conjunction with a

series of specific waveband filters or a waveband tunable light source

(Ramirez et al., 2022). The working principle of a multi-spectral

camera is shown in Figure 5, with a visual representation of an image

expected from this camera. In forestry health assessment, multi-

spectral cameras have been used to obtain spectral indices and the

derived applications as seen in previous sections.
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3.1.3 Hyper-spectral cameras
Hyperspectral sensors capture the radiation emitted by bodies

in many bands, that go from hundreds up to thousands of

wavelength bands, with narrower bandwidths than multi-spectral

cameras (from 5 to 20 nm). Other sensors like RGB or Near-

infrared (NIR) cameras only capture a minor number of bands

(three in the case of RGB) (Adão et al., 2017). A comparison of

multi-spectral and hyper-spectral cameras is shown in Figure 6,

the main difference is that the hyper-spectral captures a

continuous representation of the light spectrum, given the fact

that it collects the reflectance in narrow bands; but the multi-

spectral cameras only capture the reflectance in a selected number

of bands.

Hyperspectral cameras have been used in forestry, to obtain new

VIs to predict vegetation features such as leaf nitrogen content (Raj

et al., 2021), chlorophyll, and other photosynthetic plant traits (Watt

et al., 2020). Mapping forest hyperspectral characteristics have been

performed as well (Weinstein et al., 2021). The main advantage of

using hyperspectral cameras is the increased number of wavelengths,

thus more information is gathered about the environment, however,

the models created using this information might be overfitted and

thus not usable in general cases (Lee et al., 2004).

3.1.4 Infrared cameras
Infrared cameras are a specific type of sensor that captures the

infrared radiation that is emitted by all bodies with a temperature

above absolute zero. The range of wavelengths that is captured by these

sensors depends on the nature of each one, but common wavelengths

are Short-wave Infrared (SWIR) that ranges from 700 to 1400 nm,
FIGURE 4

RGB camera working principle: a typical image processing system.
FIGURE 5

Multi-spectral imaging: camera structure and a sample of spectral forestry images.
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Mid-wave, infrared (MWIR) from 3000 to 5000 nm, and Long Wave

infrared (LWIR) that ranges from 8000 to 14000 nm (Gade and

Moeslund, 2013), these sensors are also known as thermalcameras in

the reviewed studies (Xu et al., 2018; Cheng et al., 2022).

Figure 7 shows the common structure of a thermal camera used

in remote sensing applications. These sensors have been used in

forestry health assessment to create thermal mappings that are

coincident with RGB mapping information (Webster et al., 2018).

Other applications include the use of thermal indices to predict soil

moisture (Cheng et al., 2022) and for phenotyping (Xu et al., 2018).
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3.1.5 LiDAR sensor
LiDAR (Light Detection And Ranging or Laser Imaging

Detection and Ranging) sensor is a device widely used for remote

sensing. It is considered an active device due to its light emission and

detection (See Figure 8 for comparison with passive sensors).

Moreover, this sensor has two key elements to gather and analyze

data: photodetector and optics. The principle of LiDAR is to emit

laser light towards an object on the Earth’s surface and compute how

long it takes to return to the LiDAR emitter, this definition holds for

an airborne-based LiDAR system (Khairul and Bhuiyan, 2017).
FIGURE 6

Comparison between Multi-spectral and Hyper-spectral camera operation. The multi-spectral camera presents a discrete and reduced number of
bands, however, the hyper-spectral camera presents a continuous spectrum that ranges from wavelengths of 5 to 20 nm.
FIGURE 7

Internal Structure and expected forestry image from a thermal camera.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1139232
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Estrada et al. 10.3389/fpls.2023.1139232
The LiDAR point cloud is useful for obtaining physical

information about the surveyed area, the 3D measurements can

be used for generating terrain models, then by processing the

LiDAR point cloud information digital terrain models and digital

elevation models can be retrieved by thresholding the altitude of

each point and discerning which point can be considered from

terrain or from the top tree crowns. With this information,

elevation models are easily obtained by subtracting the digital

elevation modelsand digital surface models surface models

(Hologa et al., 2021). LiDAR point clouds are also useful for

obtaining geometric features of vegetation as slopes or texture

information; these metrics are then used as input data for

machine learning models with various tasks for example (Hologa

et al., 2021), uses geometric descriptions of vegetation obtained

from a point cloud to perform tree classification, a similar approach

is done in (Hell et al., 2022). Due to the resolution that the LiDAR

point cloud is capable of generating, individual trees can be

identified, and thus tree metrics can be directly computed. In

(Vizireanu et al., 2020; Neuville et al., 2021), DBH is estimated

based only on LiDAR retrieved data, other forest attributes

estimated by LiDAR cloud points are canopy cover (Cai et al.,

2021), which can be derived through the density of vegetation

points, this metric is also used to predict biomass near rivers (Resop

et al., 2021), and with the purpose of determining crown fuels

(Suwardhi et al., 2022). Morphological features derived from

LiDAR point cloud can be key factors to determine and

differentiate between alive trees and snags or deciduous and

evergreen trees, this study is done by Stitt et al. (2022). The use of

LiDAR has helped researchers investigate the following: tree

modeling (Suwardhi et al., 2022), biomass estimation (Torre-Tojal

et al., 2022), and tree classification (Hell et al., 2022) among others.

3.1.6 Terrestrial laser scanning systems
Terrestrial laser Scanning Systems (TLS) are instruments used

to obtain three dimension observation of the surface of objects. It

uses LiDAR sensing to obtain the distance from the surface to the

sensor, and precise angular measurements to obtain 3D information

from the objects. TLS systems are capable of reconstructing an area
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with high precision in the order of millimeters (Liang et al., 2016). A

representation of the TLS and its measurements are shown in

Figure 9. In forest health assessment, TLS systems are used to

determine tree features and structure (Miraki and Sohrabi, 2021;

Terryn et al., 2022; Yang et al., 2022), and to estimate crown fuel

and fuel hazard (Hillman et al., 2021).

3.1.7 Handheld spectrometer
A handheld spectrometer is a device that is capable to retrieve

the spectrum emitted by a body in many wavelength bands, the

same as a hyper-spectral camera, but this one is portable and

operated by hand. Another difference is that a hyperspectral

camera captures many pixels, and the spectrometer only captures

a single point. The main application for this device is to obtain

samples of an object that will serve as ground truth for mass data

obtained with a camera or by other means. Handheld spectrometers

have been used to gather information to estimate leaf water content

(Li et al., 2021), to monitor the chlorophyll response to droughts

(Raddi et al., 2021), and to perform tree recognition based on hyper-

spectral features (Yang and Kan, 2022).
FIGURE 8

Differences between Passive sensors and Active sensors.
FIGURE 9

TLS sensor variables needed for obtaining 3D cloud points.
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3.1.8 Others
There are other kinds of sensors used for forestry health

assessment. For instance, an ANAFI camera (Ribas Costa et al.,

2022), wireless sensors (Yang et al., 2022), a thermocouple (Yao

et al., 2021), and a SPAD-502 meter (chlorophyll meter) (Yao et al.,

2021; Narmilan et al., 2022). These sensors are used for very specific

scenarios, such as measuring chlorophyll in a single leaf, and thus

are not considered for further revision in this review.
3.2 Remote sensing platforms

This section presents a brief review of the most common remote

sensing platforms; highlighting their advantages, disadvantages, and

applications; for a most extensive review on the topic, see (Omasa

et al., 2006; Ashraf et al., 2011; Pajares, 2015; Toth and Jó´zków,

2016; Zhang K. et al., 2020; Chamola et al., 2021; Zhao et al., 2022).

Remote sensing platforms are understood as the platforms that

physically carry the different cameras and sensors used for the

assessment of forestry health. There are two major groups of

platforms that are identified: Unmanned Aerial Vehicles (UAVs)

and satellites. Figure 10, summarizes the number of appearances

that the different remote sensing platforms have in the reviewed

articles. Figure 11 shows a remote sensing platform using a UAV.

3.2.1 Satellites
Satellites are commonly used for remote sensing purposes

(Zhao et al., 2022). These devices are aimed at gathering data

from Earth using imaging sensors. Satellites tend to capture

electromagnetic radiation in the microwave, ultraviolet, and

visible wavelengths reflected by the Earth’s surface (Ashraf et al.,

2011). Overall, a remote-sensing satellite is able to take 4-5 photos

with different types of color filters, evidently, these color filters help
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to better assess vegetation features such as soil, leaves, stems, tree

crowns, under/over the canopy, and so on.

Satellites carry onboard high-resolution microsatellite cameras

(HR-250 and Raptor imagers) with advanced electronic detectors

known as CCDs (Charge-Coupled Devices). These devices not only

allow them to be more sensitive than a film but also convert the

multispectral photographs into electronic signals for further study

(Zhang K. et al., 2020).

According to the literature reviewed, Sentinel 1 and 2 (Huo et al.,

2021; Nasiri et al., 2022), Landsat-8 (Rodrıǵuez et al., 2021),

Worldview-2 (Becker et al., 2018), Triplesat (Fakhri et al., 2022) are

the most prominent satellite platforms used to assess forestry health.

3.2.2 UAVs
Unmanned Aerial Vehicles are the most common platforms in

remote sensing applications for forestry health assessment. The

typical UAV for remote sensing is an electric-propelled air vehicle,

with a navigation system and communication system, and a sensor

for remote sensing (Toth and Józków, 2016). The navigation and

flight control systems are composed of various onboard sensors in
FIGURE 10

Distribution of the most common UAV platforms in the reviewed journal articles.
FIGURE 11

A remote sensing platform mounted on a hexacopter.
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the UAV, the main ones are: Global Positioning System (GPS), an

Inertial Measurement System (IMU), and Micro-Electromechanical

System (MEMS) (Toth and Józków, 2016). The other components

of the remote sensing platform are the sensors needed for the data

acquisition process, the most common sensors in remote sensing

applications are the ones mentioned in section 3.1.

There are different kinds of UAVs, and according to their

configuration, they offer different features such as higher payload

capability, longer flight capacity, and better maneuverability among

others. We have identified the following classes:
3.2.2.1 Single-rotor

Single-rotor UAVs are formed by a single rotary wing, they are a

minority compared to other remote sensing platforms. Since they

only present a single rotor they present a much higher power

efficiency compared to multi-rotor UAVs, they are also used for

carrying heavy payloads (Chamola et al., 2021).

3.2.2.2 Multi-rotor

Multi-rotor UAVs are the most versatile and have been used in

a wide range of operations. This group includes quadcopters,

hexacopters, and octocopters. The main advantages of using these

UAVs are their commercial availability and affordability, the ease of

maneuverability, they don’t need a platform to take off, meaning

that they can take off and land on any surface; so they are preferred

for research purposes. The arrangement of multiple rotors provides

the UAV with better stability making them ideal for imaging

purposes (Toth and Józków, 2016; Chamola et al., 2021).
3.2.2.3 Fixed-wing UAV

These UAVs present a stationary wing, similar to a plane, the

advantage of using a fixed-wing is that lift forces are lower

compared to rotary wing UAVs. Since they are similar to a plane

they need some area for the takeoff and eventual landing. The main

advantage of fixed-wing drones is that they can fly for longer

periods of time, cover larger areas, and can carry heavier payloads

(Chamola et al., 2021).
3.2.2.4 Aircraft

Forestry studies have evoked their efforts to incorporate remote

sensing aircraft into the dynamics of forest surveys and data

collection. Aircraft remote sensing platforms rely heavily on

onboard sensors to leverage their advantages associated with

flexible use and high spatial resolution. In addition, images

captured from the aerial inspection can be used for rapid analysis

in different seasons of the year (Omasa et al., 2006).
4 Machine learning techniques used in
forestry health assessment

Machine learning is a set of algorithms that require the

computer or machine to infer and extract patterns from raw data

(Goodfellow et al., 2016); the effectiveness of machine learning
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heavily depends on the representation of the data fed to the model.

These algorithms can be used for regression tasks, which implies

predicting a number from a set of input data; classification

problems can also be accomplished by machine learning, in this

case, the algorithm predicts that the data representing a feature

belongs to a predefined class.

Learning is a key concept in machine learning, it can be

performed in these ways:
4.1 Supervised learning

In supervised Learning algorithms, the dataset containing

features also contains a number or a label that is the expected

output from the input features. In this case, the machine learning

algorithm needs to infer which is the relation between the set of

features and the expected output, then apply these found relations

in a set of testing data (Goodfellow et al., 2016).
4.2 Unsupervised learning

In these algorithms, the dataset contains a set of features and the

algorithm learns properties about how the data is structured, a

common task performed by unsupervised learning is to recreate the

probability distribution that generated the dataset; another

common function is to group data into clusters with similar

characteristics (Goodfellow et al., 2016).
4.3 Metrics

It is important to measure how the machine learning algorithm

is performing its task, thus it is important to describe the most

common metrics to quantitatively evaluate the algorithm’s

performance. The following are the most used metrics for

classification purposes:
4.3.1 Accuracy
It can be defined as the ratio between the number of correct

predictions and the number of total predictions made by the model

(Flach, 2019), it can be calculated with Eq. (1)

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Where TP, TN, FP, and FN stand for True Positive, True

Negative, False Positive, and False Negative respectively.
4.3.2 Precision
It is the ratio between correct positive predictions and total

prediction, it indicates the proportion of how many correct

predictions the model yields, it is calculated with Eq. (2)

Prec =
TP

TP + FP
(2)
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4.3.3 Recall
It measures the ratio of correct positive predictions and the total

predictions, it is obtained with Eq. (3)

Rec =
TP

TP + FN
(3)
4.3.4 F1 Score
It is a metric that combines both Precision and Recall, it is

useful when the classes in a dataset are unbalanced, and it is

computed with Eq. (4)

F1 = 2 ·
Prec · Rec
Prec + Rec

(4)
4.3.5 Root mean square error
It is a measure of the error between the predicted output of the

model and the real output of the model. This metric is used for

evaluating regression models. It is computed with Eq. (5)

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−N
i=1jjy(i) − ŷ (i) ‖2

N

s
(5)
4.3.6 Correlation factor (R2)
It is a number that indicates if there is a correlation between two

variables, in regression models it is a metric that helps to understand

if the output of the model is correlated with the input. It ranges from

0 to 1, where 0 indicates that there is no correlation between the

variables and 1 that there is a high correlation.

With the previous remarks, the section continues describing the

most common machine-learning techniques used in the reviewed

articles for the assessment of forestry health and the most critical

results supported by quantitative metrics, the discussed algorithms

in the section are: Linear Regression, Random Forests, Support

Vector Machines, K-Nearest Neighbours, deep learning approaches

and other not common machine learning techniques. Figure 12

shows the most common ML algorithms used in forestry health

assessment in articles from the last five years. Figure 13 shows a

visual representation of how three of the most common ML

methods divide the search space for classification purposes.
4.4 Linear regression

Linear Regression is one of the most common algorithms in

machine learning, for predicting results. Using an optimization

process,linear regression determines the appropriate equation that

maps the input features with the expected output (Goodfellow et al.,

2016). Linear regression has had a wide range of applications. It has

been used to find the correlation between the data derived from TLS

and airborne LiDAR; the study presented by Hillman et al. (2021)

demonstrated that estimations of canopy volume have a strong

correlation between the data from LiDAR and TLS which achieved

a value of 0.96, herein the ground-truth is the value obtained from

the TLS sensors, however other tree structure parameters such as
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canopy base height achieved only a correlation of 0.794. In other

studies canopy height volume reached a correlation of only 0.394,

thus it is not suitable for predicting crown fuel (Shin et al., 2018),

similar experiments were conducted by Arkin et al. (2021). For

predicting the moisture of leaf fuels, multi-spectral VIs were used as

input data for regression models, however, the correlation factor

reached 0.435, thus more studies are needed for practical

implementations for this model (Barber et al., 2021).

Other vegetative problems are investigated using linear

regression models. Resop et al. (2021) studied the correlation

between vegetation metrics, the distance from water sources, and

seasonal variation; the results show that there is no correlation

between the distance to the water stream and canopy height and

vegetation density. Using multi-spectral VIs, regression models

have been used to predict biomass in the tidal marsh; the best VI

was ExG however the correlation index only reached 0.376 (Morgan

et al., 2021). In coastal wetlands, the correlation between above-

ground biomass and flood depth was studied, and the regression

models follow a Gaussian distribution with a correlation factor of

0.54 (Yan et al., 2022). Xu et al. (2022) studied the correlation

between tree diversity and spectral indices. The correlation value

was 0.6; thus VIs could be used for tree classification purposes.

Estimating the correlation between tree features and point cloud

LiDAR data information, in the work presented by Fraser and

Congalton (2021a) RGB and LiDAR-derived metrics of DBH and

crown radius were studied in a coniferous forest. The results show a

correlation of 0.392 and RMSE which equates to 30% of the total

error. Fan et al. (2020) created tree models derived from LiDAR

point clouds, and then structure metrics were calculated, the

predictions were correlated with the ground truth collected in

situ, and the linear models achieved a correlation of more than

0.9 for DBH, tree height, and crown volume. In the article by

Imangholiloo et al. (2020), tree height was estimated using LiDAR
FIGURE 12

Distribution of the most common machine learning algorithms for
forestry health assessment in the reviewed journal articles.
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metrics, such as point density, in leaf-on and leaf-off seasons, and

the correlation factor achieved 0.98. A similar study conducted by

Puliti et al. (2019), compared tree height, stem volume, and basal

area; from data obtained via different aerial methods (UAV, and

manned aircraft); the results show correlation values in the range of

0.64 and 0.73. Another study combined RGB images and LiDAR

metrics to predict tree height and DBH in a eucalyptus forest,

combining both metrics as input data for the model achieved a

correlation of 0.94 (Liao et al., 2022). Xu et al. (2021) developed a

remote sensing platform and the method of validating its data was

to find the correlation of tree structure parameters with the ground

truth found in the field, this study also contemplated the creation of

thermal and multi-spectral VIs.

Leaf area index (LAI) is another parameter that can be predicted

using LiDAR metrics and linear regression models. In the work by

Tesfamichael et al. (2018) the highest correlation value was 0.83;

however, this model used several metrics as input data; a simple

model using only two metrics achieved a correlation of 0.63 but the

simplicity of the model was considered an advantage. A similar study

using RGB point clouds for calculating LAI was conducted by Lin L.

et al. (2021), and the models achieved a correlation of 0.92. Miraki

and Sohrabi (2021) estimated LAI from RGB images and terrain

model descriptors as input data, but the correlation was only 0.42, in

the same study canopy height was also estimated, and using linear

regression models the correlation achieved was 0.84. The study
Frontiers in Plant Science 15
presented by (Qiao et al., 2022) also considered morphological

features from the soil and the vegetation to improve the prediction

of LAI, achieving correlation values of 0.93 but it depends on the

growth stage of the vegetation. Water and transpiration models are

also associated with LAI and canopy volume; Aboutalebi et al. (2019)

estimated these parameters using information derived from airborne

LiDAR and multi-spectral cameras; the LAI derived by machine

learning achieved correlations of 0.7.

Predicting the chlorophyll changes in response to environmental

changes has been explored with the aid of regression models. In the

study presented by Raddi et al. (2021), using hyper-spectral indices

and multi-spectral indices; leaf chlorophyll content in textit Quercus

Robur, Quercus Pubescens, and Quercus ilex was estimated with the

aid of linear regression models; using both kinds of indices achieved a

correlation of 0.97 in both cases, thus providing an excellent

alternative to assess drought responses using the change of

chlorophyll content as an indicator. Zhuo et al. (2022), conducted a

similar study to predict chlorophyll content, however, it considered

the effect of mixed vegetation in wetlands for the computation of the

spectral indices, in this case, the model reached a correlation of 0.82.

(Kopacková-Strnadová et al., 2021) presented a study aimed to

predict photosynthetic pigments in coniferous Spruce forests, using

multi-spectral VIs; however, the researchers showed that information

from the growth stage of the forests is needed since the spectrum

from two years’ leaves was the only VI that reached a correlation
FIGURE 13

A comparison between the most common machine learning methods, and how the space is divided to generate different classes.
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factor of 0.52 in a linear regression model. Watt et al. (2020)

conducted a similar procedure but with the purpose of predicting

nitrogen and phosphorus. Using hyperspectral VIs, regression

models were trained and the predictor for both P and N achieved

correlations of 0.75 and 0.83 respectively. Other studies predicting

chlorophyll in different ecosystems are done by Narmilan et al. (2022)

and Yao et al. (2021), with the purpose of evaluating soil respiration;

estimating nitrogen can be achieved with regression models and RGB

indices (Lu et al., 2021).

Problems related to moisture content, in general, can be

performed using linear regression. In the work presented by Li

et al. (2021), leaf water content estimation was performed using

hyper-spectral VIs in various growth stages of vegetation reaching a

correlation factor of 0.9 with the appropriate VI. Regression models

were also used to assess water evaporation models and trace element

uptake by trees growing on red gypsum landfill (Malabad et al.,

2022). Cężkowski et al. (2020) used thermal indices used to predict

various indicators of water stress in wetlands (soil moisture,

chlorophyll content, and photosynthetic active radiation

(fAPAR)), the correlation factors for soil moisture and fAPAR

were of 0.62 and 0.70 respectively, thus the index could be an

indicator of water stress.
4.5 Random forest

Random Forest is a machine learning method that combines

multiple tree classifiers. Each tree is tested with a random input

vector, which leads to selecting the most significant features from

the input data. Random Forest can be used for classification and

regression problems (Breiman, 2001).

For classification purposes random forest has been used in

conjunction with information derived from LiDAR point cloud and

with multi-spectral indices derived from spectral imagery; this

approach presented by Hologa et al. (2021) was used to perform

individual tree classification in a mixed forested area, the trained

random forest achieved an accuracy of 96% over eleven different

tree species when combining both inputs from LiDAR and multi-

spectral imagery. A similar approach was done by Fraser and

Congalton (2021a), but in this case, due to the nature of the

forest, the classification task using random forest achieved an

accuracy of 85%, but the authors highlight the capability of

random forest over traditional methods for tree delineation.

Imangholiloo et al. (2020) used random forest for classification

between coniferous and deciduous trees from information obtained

by LiDAR. In the work presented by Miyoshi et al. (2020), the input

data included hyperspectral multi-temporal imaging data to

perform tree classification in a diverse tropical forest, even though

the accuracy only reached 50%, the use of multi-temporal imaging

improved previous approaches using random forests as classifiers,

leaving the door open to future researches in the same field.

Fraser et al. Fraser and Congalton (2021b), performed a

classification of forest stands in three different categories: healthy,

stressed, and degraded trees; for this purpose, VIs from multi-

spectral imagery were derived and they were used to train the RF

model; the accuracy achieved a maximum of 71%, due to the fact
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that there is a high variation in the characteristics of each

healthy tree.

Classification tasks are not only needed to differentiate between

tree species. Another important task is to classify between live trees

and dead trees, the reason being this ratio is important for assessing

the response of the ecosystem to external disturbances; Stitt et al.

(2022) used information derived from a LiDAR point cloud to

classify different kinds of snags, the model achieved an accuracy of

77%, signifying that only LiDAR information is not enough to

identify some characteristics of snags. In the work by (Shovon et al.,

2022), the RF algorithm was trained to segment between alive and

dead trees in forest stands with an accuracy of 89.4%, using as input

variables tree height derived from LiDAR point clouds and RGB

spectral indices.

Identifying forest structure can be achieved by using random

forest, Yu et al. (2021) explored the feasibility of using multi-

seasonal data from LiDAR and multi-spectral images to perform

vertical forest structure classification. The results show that adding

information from different seasons as input variables to the models

increases its performance and its capability of reliably identifying

the forest structure, even though the random forest was not the best

algorithm according to the metrics presented.

Individual tree recognition can be accomplished by random

forest. Guo et al. (2021), with the purpose of assessing

afforestation models, trained random forests methods to

recognize areas of interest that could potentially be identified as

tree crowns, for this purpose several VIs were computed from

RGB images and they were used as training data for the random

forest algorithm; the individual crown recognition task achieved

an accuracy of 92%, when using more than two input variables to

train the model.

Random Forests were also used for regression purposes. In the

work presented by Lou et al. (2021), the feasibility of predicting

canopy chlorophyll content in marsh vegetation was evaluated

using multispectral images from UAVs, and from satellite

platforms including Landsat-8 and Sentinel-2. The predicted

canopy from the random forest was validated with the real value

through a linear regression achieving a correlation value of 0, 92.

Villacrés and Cheein (2022) used random forests to retrieve spectral

VIs from multispectral imagery essential for mapping moisture

content, however, the results were unsatisfactory, and other

regression methods were needed.

Biomass prediction using Random Forest was explored by

Torre-Tojal et al. (2022), for this purpose, a LiDAR point cloud

was obtained using a UAV; subsequently, digital terrain models and

canopy models were reproduced. Some of the metrics obtained were

height distribution, canopy cover, and canopy height. An analysis of

the importance of those metrics was performed resulting in that the

metrics related to the height of the trees were the most significant

when describing biomass; using these variables the RF was trained,

and the predicted result of the model achieved a correlation value of

0.7, improving previous estimations. Indices and aerial images from

satellite platforms are also promising sources of data for prediction

purposes, Nasiri et al. (2022) used Sentinel-2 derived Vegetation

indices with the purpose of mapping canopy cover in forested areas

using Random Forest Regression to predict the percentage of
frontiersin.org

https://doi.org/10.3389/fpls.2023.1139232
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Estrada et al. 10.3389/fpls.2023.1139232
canopy according to the indices, the trained model achieved a

correlation of 0.69, showing the potential of combining satellite

platforms and random forest for mapping purposes. Sentinel-2

imagery was used to predict the biomass of fine fuels in dryland

ecosystems, and the training of the random forest yielded a

correlation factor of 0.63 over a six-year period, highlighting the

potential of machine learning techniques for mass land estimation

of fine fuels (Wells et al., 2021).
4.6 Support vector machines

A support vector machine is a method mainly used for

classification purposes, the objective of the SVM is to find a

hyperplane that divides in the “best way” two different classes of

data. The “best way” refers to the fact that the distance between the

hyperplane and each class is maximum (Goodfellow et al., 2016).

The main advantage of SVM is that it uses a kernel function that

assigns the input data to a higher dimensional space, where it is

easier to find the hyperplane that separates two classes.

In forestry health assessment SVMs are used to perform

classification and regression tasks. In (Mäyrä et al., 2021), SVMs

are used to perform the identification of tree species, using as input

vectors point clouds from LiDAR and images from hyperspectral

cameras from the SWIR region with 288 bands. From the point

clouds, individual tree segmentation was performed and the SVMs

were trained. This study shows that there are no major errors in tree

classification processes using SVM, achieving an accuracy of 82%;

although this method is outperformed by deep learning approaches

(Mäyrä et al., 2021), which achieved an accuracy of 87%.

The work by Blanco-Sacristán et al. (2021) uses SVM to

perform segmentation in images based on RGB and multi-

spectral images. Images were segmented based on their level of

dryness, it is important for monitoring possible fire-prone lands.

The accuracy reached 80% in most cases.

Tree structure classification has also been studied with the aid of

SVM (Yu et al., 2021), predicting the tree structure in a densely

forested area, for this purpose the authors used LiDAR and Multi-

spectral point clouds to generate height models which were used as

inputs to the SVM, in this case, the classification from the SVM was

outperformed by other methods. SVMs are used to evaluate carbon

models from tree parameters such as canopy height and DBH

(McClelland et al., 2019).

The segmentation of ground points based on VIs can be

considered as a classification algorithm, in this context Zhang Y.

et al. (2021) used vegetation indices as input data for SVM with the

purpose of classifying ground points and vegetation points in aerial

images; this method achieved an accuracy of 94% using only two

VIs as input.

As a regression technique, Support Vector Regressor (SVR) was

used to predict tree structure parameters such as DBH, tree height,

and volume using as input data high-density LiDAR point clouds

(Corte et al., 2020). The results show that the errors in the

prediction were lower when using SVR, compared to other

algorithms such as RF or neural networks. Nasiri et al. (2022)

processed VIs derived from Sentinel-2 information to model
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canopy cover, achieving significant correlation values of 0.64. A

similar task was performed by Abdollahnejad and Panagiotidis

(2020), but the tree classification was performed with inputs from

multi-spectral VIs.
4.7 K-nearest neighbors

K-nearest Neighbors is a non-parametric machine learning

technique, which means that the training does not generate the

optimum parameters for a mapping function or plane. It simply is a

function of the training data, in its simplest form, KNN computes

the expected output value from a new input, by averaging the

output from the K nearest neighbors in the training data of this new

entry (Goodfellow et al., 2016).

The KNN algorithm was used to perform tree classification

from hyper-spectral information. In the work presented by Yang

and Kan (2020), the input vectors were information from hyper-

spectral imaging, in this case, the KNN algorithm was the least

effective algorithm. Tuominen et al. (2017) used KNN to estimate

tree structures from the information gathered manually in plots and

predict them in aerial photos, the results show that the error is

below 30 percent. Another use of KNN algorithm is presented by

Zhang Y. et al. (2021), the model was used to segment ground

points from vegetation points, however, this model was

outperformed by SVM.
4.8 Deep learning

Deep learning (DL) refers to techniques that rely on multiple

layers of units (called neurons). Each neuron is a function that maps

the input data to the desired output. In the training process, the

network is capable of learning the parameters of such mappings.

Figure 14 shows the scheme of a network with two hidden layers.

The name “deep” refers to the number of layers employed in these

kinds of models (Goodfellow et al., 2016). The key feature of a deep

learning model is its capability to make representations of

unstructured data such as images or raw text (Osco et al., 2021).

Likewise, DL models are used in conjunction with RGB, multi-

spectral, and hyper-spectral images, to perform different tasks

concerning the assessment of forest health. Lin and Chuang

(2021) used deep convolutional neural networks ResNet50,

VGG19, and SegNet to extract features from aerial RGB pictures

to perform tree classification. However the initial results showed

poor performance based on accuracy; thus the authors proposed a

simplification of the images using Principal Component Analysis,

selecting only the most important features of the images. With this

approach, SegNet reached an accuracy of 95%. The same task was

performed by Onishi and Ise (2021), from aerial RGB images

individual tree crowns were segmented, and each individual tree

crown was used as the input data for the deep learning model, which

was capable of categorizing seven different tree species and achieved

an accuracy over 90%. Here the deep learning architectures were

AlexNet, VGG16, Resnet18, and Resnet152, these were used for

fine-tuning the model. A similar approach was done by Zhang C.
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et al. (2020), where a model using ResNet50 achieved an accuracy of

92.6%. In the work presented by (Feng et al., 2020), the authors

investigated the results of using multi-temporal information in a

recurrent convolutional neural network, for mapping vegetation

using multiple-seasons aerial images. Hell et al. (2022) used

PointCNN and 3DmFV-NET to perform the classification of

coniferous, deciduous, and dead trees; from a LiDAR 3D cloud

point, the results show that both networks are capable of

differentiating between coniferous and dead trees, and it can

reach an overall accuracy of more than 80%.

Pulido et al. (2020) used segmentation networks DetectNET,

Faster R-CNN, and Single Shot Multibox Detector (SSD) to perform

tree recognition from multi-spectral images in a forested area. The

results show that, while traditional methods are capable of identifying

trees, DL models outperform them and show improved metrics in

areas where trees are clustered together. A similar task was performed

by Hao Z. et al. (2022), herein the authors used Mask region-bases

convolutional neural networks (Mask R-CNN) and evaluated the

effect of reducing the number for training. The results show that by

randomizing the training dataset, thus training the model with

dissimilar samples each time, the metrics of the model are not as

affected; therefore the training images can be reduced.

The creation of segmented images of fire-prone vegetation areas

can be achieved with the use of deep learning techniques,

Trencanová et al. (2022), trained U-NET network to identify

these areas from RGB images, and the results show an F1 score of

0.7 in the validation dataset; however, due to the complex labeling

process, the authors suggest that further improvements are needed

to enhance this technique of identifying areas in landscapes.

Liu et al. (2021) proposed a 3D deep learning structure called

LayerNet to perform tree classification tasks, the network used as

input individual tree point clouds obtained from a LiDAR point

cloud, the advantage of the network is that it can be trained from

disorganized 3D point clouds. Compared to other algorithms such

as random forest or KNN, this method achieved an accuracy of

88%, greatly outperforming the other two more common methods,

which also need to pre-process the information to reduce the

dimensions of the data, thus reducing potentially valuable traits.
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Deep learning can be used to determine canopy cover in a

densely forested area. Li et al. (2022) use a deep learning approach

to distinguish background vegetation points from over-story

canopy points, to produce canopy maps from forests’ 3D

imagery.The results show that the deep learning approach

outperforms traditional canopy mapping methods, therefore it is

an accurate and robust method for creating canopy maps under

different illuminations and terrain conditions.

Regression tasks can be performed using deep neural networks,

Babaeian et al. (2021) used several machine learning methods and

compared them to neural networks with two or three depth layers;

the input data were multi-spectral VIs, and texture measurements

from the soil and the expected output was soil moisture content; the

results indicate an error below 5% and a high correlation value

between the machine learning models and the predicted output.
4.9 Other algorithms

Other machine learning algorithms have been sparsely applied in

different tasks. For example, gradient boosting machines (GBM) have

been used to estimate soil moisture content in vegetated areas.

Babaeian et al. (2021) tested several ML algorithms to predict soil

moisture content including GBM. The results yielded that Neural

Networks outperformed the other algorithms based on prediction

error and the correlation factor. In the study presented by Villacrés and

Cheein (2022), boosting gradient machines were used to reconstruct

vegetation indices. Another task accomplished by GBM is the

prediction of leaf nitrogen content based on hyperspectral indices,

this is done by Raj et al. (2021), where the model achieved a correlation

factor of 0.63, in areas with water-stressed vegetation; however, the

model didn’t achieve the same results in well-irrigated areas.

A more optimized version of gradient boosting is Extreme

Gradient Boosting machine (XGB), this approach was used by Yu

et al. (2021), to determine the forest structure and it was compared

to random forest and support vector machines algorithms, in this

studyit was determined that XGB was the best algorithm for this

task achieving an F1 score of 0.91.
FIGURE 14

Visual representation of a neural network with two hidden layers.
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For classification purposes, Yang and Kan (2020) studied the

use of Extreme learning machine (ELM) which is based on neural

networks; and a Linear Bayes Normal Classifier (LBNC); the

authors compared both algorithms with KNN; in this study ELM

and LBNC achieved an accuracy of 97.55% and 96.53% respectively,

both outperforming KNN in tree classification task.

The generation of digital terrain models was explored with

the aid of machine learning (Arevalo-Ramirez et al., 2022),

using conditional random field (CRF) to extract ground points;

this approach generated smoother terrain models than other

approaches not based on machine learning methods.
5 Discussion

There is a clear relationship between the discussed vegetative or

forest issues, the sensors, and the machine learning algorithms

selected to accomplish the research objectives. For tasks such as

tree recognition and classification, deep learning and other

classification algorithms prevail, and the selected sensors for this

task are mainly imaging systems, RGB, or multi-spectral. Other

tasks corresponding to determining and predicting phenotype

features of forests such as chlorophyll, water, and moisture

content often use regression algorithms, where input data are the

VIs gathered from RGB, multi-spectral, and hyperspectral cameras. In

the case of physical modeling of forests and determining its parameters,

sensors such as LiDAR or terrestrial laser scanning systems are more

suitable, due to their capability of creating 3d models from point

clouds. Figure 15 illustrates the relationship between the vegetative

issues, the sensors, and the data processing algorithms.

In general, all the reviewed works follow a somewhat similar

workflow described by Müllerová et al. (2021): a problem in forestry

health assessment is identified (chlorophyll prediction, water

content estimation, biomass estimation, forest structure
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parametersestimation, tree classification, crown fuel estimation).

Then the suitable sensors are selected depending on the needs of the

problem, for example, if the problem is related to the geometric

features of forests, a LiDAR sensor could fulfill the requirements.

RGB, multi-spectral, and hyper-spectral cameras are more suited

when spectral information is required and VIs are needed for

example in chlorophyll estimation. The specific spectral response

can also be used as an indicator of a specific tree speciesthus VIs are

ideal to perform tree segmentation. Once the sensors are chosen, the

data acquisition process is conducted. One of the most difficult parts

of assessing forest health is the information processing phase. There

is no clear pathway that leads to a correct decision when deciding

which algorithm is the best to process the information according to

the needs; as shown in the previous section, machine learning

algorithms are a powerful alternative to process data and reach

meaningful results.
5.1 Sensors used in remote sensing for
forestry health assessment

Forestry health assessment aided by machine learning and

remote sensing platforms is a promising trend in recent years.

With the evolution of technology and machine learning techniques,

better results in predictions of factors that affect forestry health have

been accomplished. It is now possible to determine features from

hyperspectral and multi-spectral imaging technologies, the use of

UAVs helps the survey of great areas in short time, contrasted with

a visual inspection from experts.

The use of LiDAR technology allows precise 3D reconstruction

of environments in the range of centimeters (Hologa et al., 2021),

allowing a complete geometrical characterization of forests, and the

retrieval of tree and forest structure parameters. Efforts of mapping

are important for forestry health assessment and to test algorithms;
FIGURE 15

Relation between the vegetative or forest issue studied, the sensors and the machine learning algorithm chosen to do the investigation.
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(Webster et al., 2018) performed thermal characterization of forest

canopies in a large survey area, the study also made a coincident

RGB mapping of the area, facilitating the access to public data to the

scientific community.

The use of multi-spectral and hyper-spectral cameras to detect

leaf reflectance and to compute different VIs has allowed an

improvement in prediction techniques with the aid of machine

learning algorithms. However, the information that can be gathered

from spectral imaging methods is vast, and most of it will not have

any correlation with the desired measurement, thus it is a current

challenge to discover which bands and VIs are suitable for the

different tasks in forestry health assessment. One way of reducing

the dimensionality of input data for machine learning algorithms is

the use of statistical methods to determine which information is

more valuable and will provide better insight into the process, a

common practice to reduce the dimensionality is to perform

principal component analysis (PCA). Shovon et al. (2022)

performed PCA in multi-spectral images, then a new VI with the

four principal components, which was useful for identifying trees

from snags. In the work presented by Kopacková-Strnadová et al.

(2021), PCA was performed to reduce four spectral bands to three

(three principal components), and with the selected bands, a VI was

computed to predict photosynthetic pigments (i.e Chlorophyll). A

similar process was performed by Barber et al. (2021), where the

authors reduced the number of bands to predict fuel moisture in

grasslands, again Ahmed et al. (2021b), reduced the number of

multi-spectral bands to three principal components that

represented the 86% variability of the images to generate VIs for

tree identification. There is a greater issue when using hyperspectral

imaging cameras since they can provide up to hundreds of bands;

Yang and Kan (2020) retrieved 114 bands from a hyper-spectral

camera, using a reduction process 14 bands were selected as

principal feature bands, greatly reducing the dimension of the data.

5.2 Machine learning in
forestry applications

The current trend in remote sensing for forestry health

assessment is to use machine learning methods to process the

information and find the desired correlations. These novel

techniques currently outperform other methods that do not involve

a training process, for example in the tree classification task Shovon

et al. (2022) presented a thresholding algorithm to perform tree

classification task, and even though the results were considered

satisfactory, they are greatly outperformed by deep learning

methods using convolutional layers. The accuracy is near a 90%

(Onishi and Ise, 2021) on the training dataset with seven different tree

species, whereas (Shovon et al., 2022) reported an accuracy of 80%.

The studies in classification tasks highlight that the use of deep

learning techniques greatly outperforms other classification

techniques (Onishi and Ise, 2021; Hell et al., 2022), and other

studies present the advantage that the data does not need pre-

processing (Liu et al., 2021). Hao Y. et al. (2022) performed

individual tree detection without using machine learning models,

and even though the proposed method improves the detection

accuracy, reaching 90% in some scenarios; it is outperformed by the
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deep learning algorithm conducted proposed by Hao Z.

et al. (2022).

The information needed as input data for deep learning

and machine learning techniques is not clear either; in some

cases, data extracted from UAV flights in a particular season of

the year is insufficient for regression and classification purposes;

thus recent articles investigate the use of multi-temporal data, for

example, the results presented by Kopacková-Strnadová et al.

(2021) suggest that temporal data is needed for predicting

photosynthetic pigments in trees, given the fact that VIs from

leaves of a certain age yielded the stronger correlated models.

Other studies (Imangholiloo et al., 2020), explored the option of

using data from different seasons for characterizing seedlings. Feng

et al. (2020) used multi-temporal data to train DL networks,

improving the accuracy of the model by more than 20%

compared to the model using mono-temporal information.

For regression purposes, there is no clear tendency in the

techniques that can be used to retrieve the desired data and make

the predictions with the least amount of error. Most of the studies

that rely on a prediction value, train different machine learning

algorithms and assess the performance of each one using

quantitative metrics. The performance of the algorithms varies

case by case.

5.2.1 Publicly available data
One of the biggest drawbacks of using machine learning is the

lack of curated available data to train the algorithms. In most forestry

health assessment applications, not only the data acquisition process

is necessary, but also generating the ground truthis needed. Generally,

the ground truth is acquired with the help of expert knowledge and in

situ measurements, which is an expensive and time-consuming

process; thus studies to create large datasets fulfill a vital role for

the scientific community. Weinstein et al. (2021) created a dataset

containing LiDAR, RGB, and hyper-spectral information, with

manual delineation of individual tree crowns. This dataset can be

used to train machine-learning algorithms for tree detection and

classification. Other studies compared how the reduction of samples

affects the performance of deep learning models. Hao Z. et al. (2022)

showed that by randomizing the training dataset and creating more

dissimilar samples it is possible to reduce the number of training

images without affecting the performance of the model. Research

about the retrieval of pigments, particularly chlorophyll, water, and

moisture content, is conducted through spectral information at the

leaf or canopy level. Several datasets containing samples of multiple

leaves and their reflectance are of great help when developing

machine learning models for regression purposes, using as input

some form of spectral data. Among the most used datasets for these

purposes are the following: ANGERS (Jacquemound et al., 2003),

which contains the spectral reflectance of 276 live, fresh leaves of 39

species of trees located in Angers, France; alongside chemical and

physical measurements such as chlorophyll content and water

content. Another dataset of similar characteristics is LOPEX dataset

(Hosgood et al., 1993), which presents reflectance data of 330 leaf

samples from 45 different tree species, this dataset also presents

biochemical properties for the dataset. Both datasets and other

similar ones can be found online (https://ecosis.org/). One
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important model for remote sensing applied to forestry applications

is the PROSPECT model (Feret et al., 2008), which recreates spectral

reflectance and transmittance at the canopy level, and could be of

great use when predicting biochemical properties of leaves including

pigment content (Feret et al., 2008). Information about publicly

available datasets, including ANGERS, LOPEX and the one

presented by Weinstein et al. (2021) is summarized in Table 3

Datasets for forestry applications using deep learning are scarce

and, in the reviewed works, every group of researchers created its

own databases with annotations, for their intended objectives.

However public information is available and it has been compiled

at Diez et al. (2021).

5.2.2 Big data approaches
Another future perspective for the assessment of forest health is

the use of big-data approaches; under this new perspective, it is

possible to use in conjunction with information retrieved from

various sources including satellite platforms, airborne and

terrestrial vehicles, and in-situ measurements to model the ever-

changing dynamic of forests. One approach is to use the geological

information-modeling system (GIMS), as presented by Varotsos

and Krapivin (2017), who used GIMS to perform simulations

evolution of the climate-nature-society system.
5.3 Future perspectives for machine
learning and remote sensing in forestry
health assessment

As shown in this current work, remote sensing aided by

machine learning algorithms for forestry health applications is an

active research field. As the methods of processing information

advance and become more sophisticated, there is the possibility of

highly improved forest management practices and contributing to

sustainable forest management. Various studies (Liu et al., 2021;

Onishi and Ise, 2021; Hell et al., 2022; Shovon et al., 2022), reported

improved results in the metrics for tree recognition and tree

classification, demonstrating the capabilities of machine learning

to generate more precise models.

Another area that will continue to benefit from the

improvement of models is the area of wildfire prevention (Jain

et al., 2020). Correctly predicting fuel moisture content and biomass

is of great help for predicting areas prone to wildfires. As seen in the

reviewed works (Cężkowski et al., 2020; Raddi et al., 2021; Wells
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et al., 2021; Yao et al., 2021; Narmilan et al., 2022; Nasiri et al., 2022;

Torre-Tojal et al., 2022), ˙ the use of machine learning algorithms

have helped researchers predict biomass of fine fuels and moisture

content at leaf and canopy level; thus helping identify dangerous

areas for wildfire prevention. Machine learning models, alongside

remote surveillance, carried out by UAV or satellite platforms will

be of great importance for the prevention of disasters and the

correct decision-making in disaster areas Jain et al. (2020).
6 Conclusions

The current state of the art suggests that for regression purposes

(i.e estimating tree features, chlorophyll content, water leaf content,

and soil moisture content among others); machine learning

techniques are suitable. Choosing the imaging systems or sensors

depends on the appropriate input data for the model it could be in

the form of multi-spectral indices or metrics derived from LiDAR

point clouds. However, there is no consensus on which regression

technique achieves better performance.

DL techniques are a common trend for tree identification and

classification tasks; these methods outperform other classification

algorithms such as SVM and random forests, but they present the

withdrawal of not enough data for training and validation purposes.

Most recent research is using multi-temporal information to

improve the classification of trees from aerial images since the

growing stage of trees affects their physical and chemical features.

The characterization of forests and their structure is a complex

task due to the nature of the terrain, mixed and dense vegetation,

constant evolution due to natural causes (different growth stages of

the trees), and external causes (droughts, wildfires, climate change);

therefore similar methodologies might not be suitable depending on

the ecosystem.

The reviewed articles suggest that assessing forest features

through remote sensing and machine learning techniques is a

viable trend; since many ML techniques are being used for

predicting forest health indices. Most recent works started

exploring the use of Deep Learning Models, particularly

convolutional neural networks to perform tree classification

and recognition; these algorithms show great promise in

reducing time for forest inventory and management, however;

generating data for the training process, and creating models for

general purposes are still some barriers in the use of deep

learning techniques.
TABLE 3 Publicly available datasets for forestry health assessment.

Dataset Content Information Case Application

ANGERS
Information from
276 leaves of

different species

Visible and infrared spectra. Physical
measurements. Biochemical analysis (Pigment

content)

Development of model PROSPECT5 for reconstructing leaf
reflectance (Feret et al., 2008). Testing machine learning algorithms

for pigment estimation (Koirala et al., 2020; Shi et al., 2022).

LOPEX
Information from
330 samples of
different species

Visible and infrared spectral. Physical
Measurements. Biochemical Analysis (Pigment

content).

Development of model PROSPECT5 (Feret et al., 2008). Training
machine learning algorithms for pigment estimation Koirala et al.

(2020)

Dataset presented by
Weinstein et al., 2021).

Multiple sensor
data and individual
crown delineation.

RGB images. Hyper-spectral images. LiDAR
point cloud. Individual image-annotated
crowns. Individual field annotated crowns.

Development of individual crown detection algorithms from RGB and
hyper-spectral images, and LiDAR point clouds Weinstein et al., 2021).
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Müllerová, J., Gago, X., Bucas, M., Company, J., Estrany, J., Fortesa, J., et al. (2021).
Characterizing vegetation complexity with unmanned aerial systems (UAS) – a
framework and synthesis. Ecol. Indic. 131, 108156. doi: 10.1016/j.ecolind.2021.108156

Munnaf, M., Haesaert, G., Meirvenne, M. V., and Mouazen, A. (2020). “Site-specific
seeding using multi-sensor and data fusion techniques: a review,” in Advances in
agronomy (Elsevier), 241–323. doi: 10.1016/bs.agron.2019.08.001

Narmilan, A., Gonzalez, F., Salgadoe, A. S. A., Kumarasiri, U. W. L. M.,
Weerasinghe, H. A. S., and Kulasekara, B. R. (2022). Predicting canopy chlorophyll
content in sugarcane crops using machine learning algorithms and spectral vegetation
indices derived from uav multispectral imagery. Remote Sens. 14, 1140. doi: 10.3390/
rs14051140

Nasiri, V., Darvishsefat, A. A., Arefi, H., Griess, V. C., Sadeghi, S. M. M., and Borz, S.
A. (2022). Modeling forest canopy cover: a synergistic use of sentinel-2, aerial
photogrammetry data, and machine learning. Remote Sens. 14, 1453. doi: 10.3390/
rs14061453

Neuville, R., Bates, J. S., and Jonard, F. (2021). Estimating forest structure from
UAV-mounted LiDAR point cloud using machine learning. Remote Sens. 13, 352.
doi: 10.3390/rs13030352

Omasa, K., Oki, K., and Suhama, T. (2006). “Remote sensing from satellites and
aircraft (American society of agricultural and biological engineers), chap. 5,” in
Precision agriculture (Maryland, USA: American Society of Agricultural Engineers),
231–244.

Onishi, M., and Ise, T. (2021). Explainable identification and mapping of trees using
uav rgb image and deep learning. Sci. Rep. 11, 1–15. doi: 10.1038/s41598-020-79653-9

Osco, L. P., Junior, J. M., Ramos, A. P. M., de Castro Jorge, L. A., Fatholahi, S. N., de
Andrade Silva, J., et al. (2021). A review on deep learning in UAV remote sensing. Int. J.
Appl. Earth Observ. Geoinform. 102, 102456. doi: 10.1016/j.jag.2021.102456

Pajares, G. (2015). Overview and current status of remote sensing applications based
on unmanned aerial vehicles (UAVs). Photogramm. Eng. Remote Sens. 81, 281–330.
doi: 10.14358/pers.81.4.281
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