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Crop cultivation planning with
fuzzy estimation using water
wave optimization

Li-Chang Liu, Kang-Cong Lv and Yu-Jun Zheng*

School of Information Science and Technology, Hangzhou Normal University, Hangzhou,
Zhejiang, China
In a complex agricultural region, determine the appropriate crop for each plot of

land to maximize the expected total profit is the key problem in cultivation

management. However, many factors such as cost, yield, and selling price are

typically uncertain, which causes an exact programming method impractical. In

this paper, we present a problem of crop cultivation planning, where the

uncertain factors are estimated as fuzzy parameters. We adapt an efficient

evolutionary algorithm, water wave optimization (WWO), to solve this problem,

where each solution is evaluated based on three metrics including the expected,

optimistic and pessimistic values, the combination of which enables the

algorithm to search credible solutions under uncertain conditions. Test results

on a set of agricultural regions in East China showed that the solutions of our

fuzzy optimization approach obtained significantly higher profits than those of

non-fuzzy optimization methods based on only the expected values.

KEYWORDS

crop cultivation planning, optimization, fuzzy parameters, evolutionary algorithms,
water wave optimization (WWO).
1 Introduction

Many agricultural areas have complex and diverse topographic features (Rabia et al.,

2022). In an area of one or several square kilometers, soil properties often change greatly,

and different soil properties are suitable for different crops (Fu et al., 2023). The planning of

crop cultivation in such a complex agricultural area needs to determine the appropriate

crop for each plot of land to maximize the expected total profit, which is an important but

difficult problem from an agricultural management point of view (Thilakarathne et al.,

2023). The problem has to consider many factors including not only the topography and

soil properties, but also the investment budget and cost of cultivation, expected yield of

each plot, and selling price of each crop. However, the factors such as cost, yield, and selling

price are typically uncertain and hard to estimate exactly. How to appropriately

characterize these factors becomes a challenging task in the problem formulation.

In this paper, we present a problem of crop cultivation planning that aims to maximize

the expected total profit under the constraint of investment budget and potential loss,

where the uncertain factors are characterized as fuzzy parameters. Therefore, the problem
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is formulated as a fuzzy optimization problem, which is much more

complex than its crisp counterpart. Classical exact optimization

approaches typically use methods such as expected functions and

centroids to transform fuzzy values into crisp values, which

inevitably lose important information contained in fuzzy

parameters (Ekel et al., 1998; Liu, 2002; Zheng and Ling, 2013;

Luhandjula, 2015).

To solve the problem more credibly by fully utilizing the

information contained in fuzzy parameters, we propose an

approach that evaluates the objective function with three metrics

based on the expected, optimistic and pessimistic value models

developed by Liu (2007). Based on the comprehensive fitness

evaluation approach, we adapt an efficient evolutionary algorithm,

water wave optimization (WWO) (Zheng, 2015) for the problem,

which evolves the solutions to simultaneously improve the fitness in

terms of the three related but different metrics. We conduct

computational experiments on a variety of test instances

constructed on agricultural regions in East China, and the results

validate that the solutions obtained by the proposed WWO

algorithm with fuzzy optimization obtain significantly higher

profits than those of popular non-fuzzy evolutionary algorithms

based on only the expected values. The main contributions of this

paper can be summarized as follows:
Fron
• We present a crop cultivation planning problem that uses

fuzzy parameters to characterize uncertain factors.

• We propose an adaptedWWO algorithm to efficiently solve

the fuzzy optimization problem.

• We validate the proposed method on a variety of test

instances.
The remainder of the paper is organized as follows. Section 2

reviews the related work, Section 3 presents the crop cultivation

planning problem, Section 4 describes the adaptedWWO algorithm

for the problem, Section 5 presents the test results, and Section 6

concludes with a discussion
2 Related work

Optimization models and algorithms have been widely used in

agricultural planning. Zuo et al. (1991) studied a production

planning problem for a large seed corn production company in

North America in order to minimize the total cost by allocating the

production of corn hybrids to different geographical areas; they

developed a series of mathematical programming models and

proposed a linear programming package and a mixed-integer

programming package combined by a designed heuristic program

to solve the problem. Sarker et al. (1997) presented a linear

programming model for crop planning in Bangladesh that aims

to maximize the overall contribution having satisfied the food

demand, land availability, and capital constraints. Detlefsen and

Jensen (2004) presented a decision support system, which calculates

for each variety of winter wheat the expected net revenue as the

expected gross revenue minus the expected costs for treatment of

diseases and application of additional fertilization; the decision
tiers in Plant Science 02
process was represented as a simple stochastic optimization

model. Janová (2012) developed specific validation and

verification procedures for the crop planning optimization models

in agriculture when the randomness of harvests is considered and

complex crop rotation restrictions must hold; the procedures were

applied to stochastic programming model constructed as a decision

support tool for crop plan optimization in South Moravian farm.

López-Mata et al. (2016) developed a direct-solution algorithm

capable of determining the crop ´ planning (area and volume of

water per crop) that maximizes the profitability of an irrigation

farm based on the data including the total cultivable area of the

farm, the amount of available irrigation water, and the “gross

margin vs. irrigation depth” functions of the considered crops.

Esteso et al. (2022) presented a centralized multi-objective

mathematical programming model to support the sustainable

crop planning definition for a region that jointly optimize three

objectives including supply chain profits maximization, waste

minimization, and unfairness among farmers minimization; the

multi-objective model was solved by applying the weighted

sum method.

Except the simplest linear programming model, integer, mixed-

integer, and multi-objective programming models are all NP-hard,

for which exact optimization algorithms are applicable to only

small- or medium size problem instances. Many recent efforts have

been devoted to evolutionary algorithms for find near optimal or

acceptable solutions to complex crop planning problems. Sarker

and Ray (2009) formulated a crop-planning problem as a bi-

objective optimization model that maximizes the total gross

margin while minimizing the total working capital required; they

solved two versions of the problem using multi objective

evolutionary algorithms. Adeyemo et al. (2010) considered a

multi-objective crop planning problem with three objectives

including total net benefit maximization, agricultural output

maximization, and total irrigation water minimization; they

transformed the model into a single-objective one by taking the

latter two as constraints, and then solved the single-objective

optimization problem using differential evolution (DE) (Storn and

Price, 1997). Márquez et al. (2011) modeled a water-saving crop

planning problem as a multi-objective optimization problem that

not only maximizes the economic benefits but also minimizes the

water used; they solved the problem using two multi-objective

evolutionary algorithms to search for Pareto-optimal solutions

representing a trade-off between the two objectives. The water-

saving crop planning problem considered by Wang et al. (2012)

used four objective functions including maximum total net output,

total grain yield, ecological benefits, and water productivity; they

employed a multiple objective chaos particle swarm optimization

(PSO) algorithm to solve the problem. Chetty and Adewumi (2014)

compared a genetic algorithm (GA) and several swarm intelligence

metaheuristics including cuckoo search, firefly algorithm, and

glowworm swarm optimization, in solving an NP-hard annual

crop planning problem. Zheng et al. (2013) studied a

multiobjective oil crop fertilization problem, which takes into

consideration not only crop yield and quality but also energy

consumption and environmental effects; the authors proposed a

hybrid multiobjective fireworks optimization algorithm that evolves
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a set of solutions to the Pareto optimal front, using the concept of

Pareto dominance for individual evaluation and selection.

Fereidoon and Koch (2018) used a complex coupled simulation-

optimization tool combining constrained PSO and LINGO-sub-

optimization to solve crop planning in the Karkheh River Basin,

Iran, under the impacts of climate change. Lin et al. (2021)

presented a mathematical programming model for annual crop

planning that allocates a land area for growing dryland and wetland

crops to maximize the total profit and minimize the total irrigation

water used for multiple cropping, and they proposed a simplified

swarm optimization that improves PSO with four probabilities to

determine the operations of updating solutions to effectively solve

the problem.

In practice, agricultural systems are related to various

uncertainty factors from the environment and market. However,

only a few studies formulate these uncertainties into crop planning

problems. Niu et al. (2016) developed an interactive two-stage fuzzy

stochastic programming method for supporting crop planning and

water resource allocation, where uncertainties are expressed as

probability distributions and fuzzy-boundary intervals; the

method enables decision makers to identify a trade-off between

higher objective values and feasibility of constraints, and was

applied to a real case of Hetao irrigation district in China.

Alemany et al. (2021) developed a set of mathematical

programming models to plan the planting and harvest of fresh

tomatoes under a sustainable point of view for multi-farmer supply

chains under uncertainty in different decision-making scenarios; for

each distributed scenario, the individual solution per farmer as

regards the planting and harvesting decisions per crop were

integrated to obtain the overall supply to satisfy the markets

demand. To the best of our knowledge, there are few studies

conducted on evolutionary algorithms for solving large-size crop

planning problems (typically of tens to hundreds of plots of lands

and types of crops) with uncertain factors.
3 Problem description

3.1 Basic problem formulation

In the considered problem, we have an agricultural region that

is divided into a set of m plots of lands, denoted by {P1,P2,…,Pm}.

The area of each plot Pi is ai hectares; as the topographic conditions

and soil properties inside a plot are homogeneous, each plot is

allowed to cultivated with only one type of crop in the planning

horizon (i.e., a particular season).

There are n types of candidate crops, denoted by {C1,C2,…,Cn}.

If plot Pi is cultivated with crop Cj, the basic investment is ũij
(including investment for seeds, pesticides, fertilizers, irrigation,

cultivation machines, etc.) per hectare, the expected yield is gij kg

per hectare, and the cost for harvesting the crop is ij per kg. The

expected selling price of crop Cj (after harvesting) is pj per kg

(1≤i≤m;1≤j≤n). The superscript ˜ indicates that due to uncertain

conditions, the corresponding variable is difficult to determined

exactly, and therefore is estimated as a fuzzy number.
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The problem is to determine for each plot Pi the type of crop to

be cultivated. Therefore, the decision variables can be expressed by

an m-dimensional integer vector x={x1,x2,…,xm}, where xi denotes

the type of crop in Pi, i.e., Pi is cultivated with crop Cxi (1≤xi≤n).

Given a solution vector x={x1,x2,…,xm}, the expected overall

revenue of the cultivation decision can be calculated as:

f (x) =o
m

i=1
ai(~gi,xi (~pxi − ~vi,xi ) − ~ui,xi ) (1)

The total budget is B, and the maximum loss that can be

tolerated by the blueinvestor is L. Therefore, the budget

constraint and loss constraint can be described as follows:

o
m

i=1
ai(~ui,xi + ~gi,xi~vi,xi ) ≤ B (2)

o
m

i=1
l(i, xi) ≤ L (3)

where l(i,xi) denotes the loss in plot Pi cultivated with crop Cxi ,

which is calculated as:

l(i, xi) =
max (aieui,xi − aiegi,xi (epxi − evi,xi ), 0), epxi ≥ evi,xi
aieui,xi − aiegi,xi (evi,xi − epxi ) epxi < evi,xi

(
(4)
3.2 Evaluation of fuzzy parameters

If all input parameters are crisp values, the above formulation

(1)–(4) can be regarded as an exact integer programming model.

However, at the beginning of the planning horizon, some important

parameters are difficult to estimated accurately. In this work, we

express the investment ũij, yield rate gij, and harvest cost ij as interval

fuzzy numbers ½uij, �uij�, ½gij, �gij�, and ½linevij,�vij�, respectively, where
an underline denotes a lower limit and an overline denotes an upper

limit (1≤i≤m, 1≤j≤n); we express the expected selling price pj as a

Gaussian fuzzy number N(mj,sj), where mj is the mean value and sj
is the deviation (1≤j≤n). Nevertheless, other types of fuzzy numbers

(e.g., triangular and trapezoidal fuzzy numbers) are also allowable

in the formulation of our fuzzy optimization problem. The fuzzy

values can be estimated from historical data based on regression,

fuzzy logic, and other machine learning methods that are capable of

modeling uncertainty (Zheng et al., 2017a; Zheng et al., 2017b;

Hernández and López, 2020; Gavahi et al., 2021).

As the budget constraint is a hard constraint, we use upper

limits of investments and costs to transform the fuzzy constraint (2)

as:

o
m

i=1
ai(�ui,xi + �gi,xi�vi,xi ) ≤ B (5)

For the loss constraint, we evaluate the selling price of crop Cj as

pj–3sj (the probability that the selling price is even smaller is less

than 0.27% and is therefore negligible); moreover, if this selling

price is larger than the harvest cost, we consider the lower limit of

yield; otherwise, we consider the upper limit of yield; consequently,
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equation (4) is transformed as:

l 0 (i, xi) =
max (aiui,xi − aigi,xi (mxi − 2sxi − vi,xi ), 0), mxi − 2sxi ≥ vi,xi

aiui,xi − aigi,xi (vi,xi − mxi + 2sxi ), mxi − 2sxi < vi,xi

(
(6)

Normally, the objective function (1) can be evaluated by using

expected values mxi , ui,xi = (ui,xi + �ui,xi )=2, gi,xi = (gi,xi + �gi,xi )=2, and

vi,xi = (vi,xi + �vi,xi )=2 for fuzzy parameters:

E(x) =o
m

i=1
ai(gi,xi (mxi − vi,xi ) − ui,xi ) (7)

However, in practice, the expected value could deviate largely

from the actual value. Therefore, we employ a credibility model

(Liu, 2007) that calculates a credibility value Cr(x) for a fuzzy

variable x with membership function m over the base set B of real

numbers as follows:

Cr x ∈ Bf g = (sup
x∈B

m(x) + 1 − sup
x∈BC

m(x))=2 (8)

Given a confidence q∈(0,1], the q-optimistic value and q-
pessimistic value of x are respectively defined as follows:

O(x, q) = sup   r jCr x ≥ rf g ≥ qf g (9)

P(x, q) = inf   r jCr x ≥ rf g ≤ qf g (10)

Based on the model, we also respectively evaluate an optimistic

objective value and a pessimistic objective value as follows:

O(x, q) =o
m

i=1
ai(O(gi,xi , q)(O(pxi , q) − O(vi,xi , q)) − O(ui,xi , q)) (11)

P(x, q) =o
m

i=1
ai(P(gi,xi , q)(P(pxi , q) − P(vi,xi , q)) − P(ui,xi , q)) (12)

where the parameter q is specified by the decision maker. The three

objective values {E(x), O(x,q), P(x,q)} constitute a comprehensive

evaluation of fitness of each solution x to the fuzzy

optimization problem.

If a solution violates the constraints, we calculates the violation

degree as:

v(x) = max  (o
m

i=1
ai(�ui,xi + �gi,xi�vi,xi ) − B, 0) + max  (o

m

i=1
l 0 (i, xi)

− L, 0) (13)

And then the objective function of the solution is added by a

penalty of Mv(x), where M is a large positive number.
4 Water wave optimization for
the problem

4.1 Basic water wave optimization

WWO is a relatively new evolutionary algorithm inspired by the

shallow water wave theory (Zheng, 2015), where the solution space
Frontiers in Plant Science 04
is analogous to a seabed area, each solution x is analogous to a water
wave associated with a wavelength bdax, and the fitness of a solution

is measured inversely according to its seabed depth. According to

the shallow water wave theory, the shorter the distance between the

seabed and the wave, the higher the wave height is and the smaller

the wave length is, as illustrated in Figure 1.

At each iteration of the WWO algorithm, each wave x
propagates in a range proportional to its wavelength, such that

better solutions exploit smaller areas and worse solutions explore

larger areas to balance between the local and global search to

generate new solutions. In a high-dimensional continuous

solution space, the propagation operation is executed by shifting

each dimension i of the x as follows:

xi = xi + rand( − 1, 1) · lxLi (14)

where rand is a function that generates a uniformly distributed

random number within the specified range, and Li is the length of

the ith dimension of the solution space.

All wavelengths are initialized to 0.5 and then updated based on

solution fitness at each iteration as follows:

lx = lxa
−(f (x)−fmin+ϵ)=(fmax−fmin+ϵ) (15)

where fmax and fmin are the maximum and minimum fitness values

among the population, respectively, ϵ is a very small value to avoid the

zero-division error, and a is a parameter for wavelength reduction.

In addition to propagation, the basic WWO have two other

operators: refraction and breaking. The refraction operator

performs on any wave x that has not been improved after a

certain number of generations by learning from the current best

solution x* at each dimension i as follows:

x0i = N(
x*i + xi

2
,
x*i − xi
��� ���

2
) (16)

where N(m,s) generates a Gaussian random number with mean m
and standard deviation s. After refraction, its wavelength is updated
according to the ratio between the new and original fitness values as:
FIGURE 1

Illustration of wave heights and lengths in shallow water.
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lx0 = l
f (x)
f (x0)

(17)

The breaking operator is used to split a newly found best wave

x* into a series of solitary waves, each of which is obtained by

randomly selecting k dimensions (where k is a random number

between 1 and a predefined upper limit kmax) and at each dimension

i updating the component as:

x0i = x*i + rand(0, 1) · bLi (18)

where b is a parameter of breaking range. If the fittest one among

the solitary waves is better than x*, it will replace x* in

the population.

In brief, propagation is the basic search mechanism for

balancing global exploration and local exploitation, refraction

helps stagnant waves to escape from local optima and improves

the diversity of the population, while breaking further enhances

the local search ability. The combination of these three

operators makes WWO efficient in search in a high-dimensional

solution space. Algorithm 18 presents the basic WWO

algorithm framework.

The basic WWO algorithm is proposed for continuous

optimization problems. Zheng et al. (2019) presented a systematic

approach for adapting WWO to various combinatorial

optimization problems. The key idea is to define a neighborhood

search operation based on a neighborhood structure of the problem,

and conduct the propagation on an solutions as a series of steps of

neighborhood search, while the number of steps depends on the

fitness or wavelength of the solution.

Since its proposal, WWO has attracted considerable attention in

both academic and industrial communities. There have been a lot of

work on modified WWO algorithms (Zheng and Zhang, 2015; Wu

et al., 2017; Zhang et al., 2018; Zhang et al., 2019) and their

applications to a variety of engineering optimization problems

(Zheng et al., 2017c; Fard and Hajaghaei-Keshteli, 2018; Shao

et al., 2018; Shao et al., 2019; Zhao et al., 2019; Zhou et al., 2019;

Yan et al., 2021; Su et al., 2022; Zhang et al., 2022).
4.2 Adapted water wave optimization for
fuzzy optimization

The basic WWO algorithm is for crisp optimization problems.

To handle the presented fuzzy crop planning problem, we adapt the

WWO in the following aspects.
Fron
• Instead of the single current best x* in WWO, the adapted

WWO keeps three current bests x*E , x
*
O, and x

*
P that have the

best expected, optimistic, and pessimistic objective function

values found so far, respectively.
1 Randomly initialize a population of NP

solutions (waves);

2 Calculate the fitness of each solution, and
tiers in Plant Science 05
let x* be the fittest one in the population;

3 while the termination condition is not

satisfied do
4 foreach wave x in the population do

5 foreach dimension i do
6 Update xi according to Eq. (14);

7 Let x' be the propagated wave;

8 if f(x') > f(x) then

9 Replace x with x';

10 if f(x) > f(x*) then

11 Set x* to x;

12 for k = 1 to rand(1, kmax) do

13 Select a random dimension

i and create a solitary

wave x' according to Eq.

(18);

14 if f(x') > f(x*) then
15 Set x* to x';

16 else
17 if x has not been improved for hmax

iterations then
18 Refract x to a new x' according

to Eq. (16);

19 Update λx'according to Eq.

(17);

20 Update the wavelengths of the solutions

according to Eq. (15);

21 return the best wave found so far.
ALGORITHM 1
Basic WWO algorithm.
• At each iteration, let Emax, Omax, and Pmax be the maximum

expected optimistic, and pessimistic objective function

values in the population, respectively, and Emin, Omin, and

Pmin be the corresponding minimum objective function

values; for each solution x in the population, we select the

maximum value among (E(x)–Emin+ϵ)/(Emax–Emin+ϵ), (O

(x ,q)–Omin+ϵ)/(Omax–Omin+ϵ) , and (P(x ,q)–Pmin

+ϵ)/(Pmax–Pmin+ϵ) as the exponent r, and update its

wavelength as lx=lxa–r.

• When performing a propagation operation on a solution x,
each component xi has a probability of lx of being changed
to a new value xi, which is determined by randomly

selecting two other solutions, and then set to the

corresponding component of the better one.

• A propagated solution x’ will replace its original solution x
if any of the following conditions is satisfied:

1. x’ is a feasible solution, while x is an infeasible solution;

2. Both x’ and x are feasible; x’ is better than x in one objective

functions and is not worse than x in either of the other two

objective functions;

3. Both x’ and x are feasible; x’ is better than x in two or three

objective functions.
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Fron
• When performing a breaking operation on a solution x,
each solitary wave is obtained by selecting a random

dimension i and setting xi to a value, which, among all

values in [1,n], leads to the best improvement (in any of the

three objective functions).

• The refraction operator is removed, and the removal of

stagnant solutions is done by iteratively reducing the

population size from an upper limit Nmax
P to a lower limit

Nmin
P , as suggested by Zheng and Zhang (2015).
In this way, the population evolves the solutions to improve the

fitness in terms of the expected, optimistic, and pessimistic objective

function values simultaneously. Finally, the three best solutions x*E ,

x*O, and x*P are returned to the decision maker for selection.
1 Randomly initialize a population of NP

solutions (waves);

2 Calculate the fitness of each solution, and

let x*E, x*O and x*P be the solutions with the best

expected,optimistic, and pessimistic

objective function values, respectively;

3 while the termination condition is not

satisfied do
4 foreach wave x in the population do

5 foreach dimension i do
6 Update xi according to Eq. (14);

7 Let x' be the propagated wave;

8 if x' is better than x in terms of the

comprehensive comparison of the three

objective functions then

9 Replace x with x';

10 if E(x) > E(x*) or O(x, θ) > O(x*, θ)

or P(x, θ) > P(x*, θ) then
11 Update the corresponding best

solution;

12 for k = 1 to rand(1, kmax) do

13 Select a random dimension i

and create a solitary wave x'

according to Eq. (18);

14 if x' leads to a new best

solution then
15 Update the corresponding
tiers in Plant Science 06
best solution;

16 else

17 if x has not been improved in any

objective function for hmax

iterations then
18 Refract x to a new x' according

to Eq. (16);

Updateλx'accordingtoEq.(17);

20 Update the wavelengths of the solutions;

21 return the best wave found so far.
ALGORITHM 2
WWO algorithm adapted for the fuzzy crop planning problem.
Compared to the basicWWO, the fuzzyWWOalgorithm increases

the time complexity in two aspects: (1) each solution is evaluated based

on the three (related) objective functions; (2) the comparison of

each pair of solutions is based on the three objective functions, at

least once and at most three times. Consequently, the time complexity

of the fuzzy WWO algorithm is at most triple that of the basic WWO.
5 Results

We applied the proposed algorithm to six selected agricultural

regions in Zhejiang Province, East China. These regions were with

different numbers of plots, crops, budgets, and allowable losses, as

summarized in Table 1. The planning horizon was three months.

The investment and cost are measured in RMB yuan.

After solving each problem instance, we presented the results to

the decision-maker for selection, and obtained the actual total profit of

the crop cultivation after the planning horizon. For comparison, we

also implemented three evolutionary algorithms, including differential

evolution (DE) (Omran and Engelbrecht, 2007), biogeography-based

optimization (BBO) (Simon, 2008; Wang and Wu, 2014), and the

basic WWO, to solve the crop planning problem by only maximizing

the expected objective function (7). We executed each algorithm for 20

runs, and take the best solution among the 20 runs. The profit of each

solution is evaluated based on the expected yields of the solution and

actual costs and prices at the end of the planning horizon.

Table 2 presents the profits of the solutions obtained by the

different algorithms on the instances, which are also compared in

Figure 2. On instance 1, WWO solution obtained the maximum
TABLE 1 Basic information of the six agricultural regions for the applications of the proposed algorithm.

#Region Area (hectares) m (plots) n (crops) B (RMB Yuan) L (RMB Yuan)

1 471 27 36 550,000 100,000

2 665 39 33 720,000 180,000

3 729 49 39 800,000 160,000

4 1202 76 36 1,200,000 300,000

5 1530 93 41 1,800,000 450,000

6 2808 121 39 2,400,000 500,000
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TABLE 2 Profits of the solutions obtained by the three non-fuzzy evolutionary algorithms and the proposed WWO with fuzzy optimization (WWO-F).

#Region DE BBO WWO WWO-F

1 191275 184320 196009 207355

2 231060 208040 229750 250700

3 244960 231000 242580 252600

4 v408100 379100 391600 415200

5 357750 339120 362590 378100

6 560800 538800 557900 590200

Total 1993945 1880380 1980429 2094155
F
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FIGURE 2

Comparison of the profits of the solutions obtained by the three non-fuzzy evolutionary algorithms and the proposed WWO with fuzzy optimization
(WWO-F) on the six test instances (A–F).
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profit of 196,009 among the three non-fuzzy evolutionary algorithms,

while WWO-F solution obtained a profit of 207,355, which was

11,346 more than maximum profit of the non-fuzzy algorithms. On

instance 2, DE solution obtained the maximum profit of 231,060

among the three non-fuzzy evolutionary algorithms, while WWO-F

solution obtained a profit of 250,700, which was 19,640 more than

that of DE solution. On instance 3, DE solution obtained the

maximum profit of 244,960 among the three non-fuzzy

evolutionary algorithms, which was 7,640 less than the profit of

252,600 obtained by the WWO-F solution. On instance 4, DE

solution obtained the maximum profit of 408,100 among the three

non-fuzzy evolutionary algorithms, which was 7,100 less than the

profit of 415,200 obtained by the WWO-F solution. On instance5,

WWO solution obtained the maximum profit of 362,590 among the

three non-fuzzy evolutionary algorithms, which was 15,510 less than

the profit of 378,100 obtained by the WWO-F solution. On instance

6, DE solution obtained the maximum profit of 560,800 among the

three non-fuzzy evolutionary algorithms, which was 29,400 less than

the profit of 590,200 obtained by the WWO-F solution. The results

show that, on all six instances, WWO-F always obtained a better

profit than the non-fuzzy evolutionary algorithms. This is because the

non-fuzzy evolutionary algorithms use only the expected objective

function to evaluate the solution fitness; however, the estimated cost

and selling price could deviate from the actual values, and hence a

solution for maximizing the expected objective function often failed

to fully utilize the budget to pursue the maximum profit. By

simultaneously using the three criteria including expected,

optimistic, and pessimistic values, WWO-F utilized the information

contained in the fuzzy parameters much better than the non-fuzzy

algorithms, evolved the solutions to keep a good trade-off between the

overestimation of the profit and underestimation of the costs, and

hence obtained solutions that are more robust and credible.

The last row of Table 2 summarizes the total profits of the

algorithms on the six instances. DE obtained the maximum total

profit of 1,993,945 among the three non-fuzzy evolutionary

algorithms, while WWO-F obtained a total profit of 2,094,155,

which was 102,210 more than the DE solution. In summary, the

proposed fuzzy optimization approach obtained an over five

percent increase over the best non-fuzzy algorithm. This result

demonstrated the significant economic benefits brought by the

application of our fuzzy optimization approach for crop planning.
6 Conclusion

This paper presents a crop cultivation planning problem with

fuzzy parameters (including cost, yield, and selling price) for

maximizing the expected total profit under the constraint of

investment budget and potential loss. To fully utilize the

information contained in fuzzy parameters, we evaluate the

objective function with three metrics based on the expected,

optimistic and pessimistic value models, and propose an adapted

WWO algorithm that evolves the solutions to simultaneously

improve the fitness in terms of the three related but different

metrics. Results on a variety of test instances constructed on
Frontiers in Plant Science 08
agricultural regions in East China validated that the solution of the

proposed WWO algorithm with fuzzy optimization obtained an over

five percent increase on the total profit over the best non-

fuzzy algorithm.

The current work studies crop planning in a particular season.

Currently, we are extending the fuzzy optimization problem and

algorithm for annual crop planning, which involves cultivating and

harvesting multiple crops with different seasonal lengths in a plot.

Moreover, in the current study, the fuzzy parameters are mainly

estimated based on experience or simple regression on historical

data; in future work, we will estimate the parameters from big data,

using fuzzy deep learning to discover highly nonlinear relationship

with complex factors (Song et al., 2019; Elavarasan and Durai Raj

Vincent, 2021) and employing transfer learning to utilize

knowledge in similar domains to cope with the insufficiency of

labeled data (Song et al., 2021; Song et al., 2022; Zheng et al., 2022)

in a more comprehensive manner.
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