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Introduction: In wheat, kernel weight (KW) is a key determinant of grain yield

(GY). However, it is often overlooked when improving wheat productivity under

climate warming. Moreover, little is known about the complex effects of genetic

and climatic factors on KW. Here, we explored the responses of wheat KW to

diverse allelic combinations under projected climate warming conditions.

Methods: To focus on KW, we selected a subset of 81 out of 209 wheat varieties

with similar GY, biomass, and kernel number (KN) and focused on their

thousand-kernel weight (TKW). We genotyped them at eight kompetitive

allele-specific polymerase chain reaction markers closely associated with TKW.

Subsequently, we calibrated and evaluated the process-based model known as

Agricultural Production Systems Simulator (APSIM-Wheat) based on a unique

dataset including phenotyping, genotyping, climate, soil physicochemistry, and

on-farm management information. We then used the calibrated APSIM-Wheat

model to estimate TKW under eight allelic combinations (81 wheat varieties),

seven sowing dates, and the shared socioeconomic pathways (SSPs) designated

SSP2-4.5 and SSP5-8.5, driven by climate projections from five General

Circulation Models (GCMs) BCC-CSM2-MR, CanESM5, EC-Earth3-Veg,

MIROC-ES2L, and UKESM1-0-LL.

Results: The APSIM-Wheat model reliably simulated wheat TKW with a root

mean square error (RMSE) of < 3.076 g TK-1 and R2 of > 0.575 (P < 0.001). The

analysis of variance based on the simulation output showed that allelic

combination, climate scenario, and sowing date extremely significantly

affected TKW (P < 0.001). The impact of the interaction allelic combination ×

climate scenario on TKW was also significant (P < 0.05). Meanwhile, the variety

parameters and their relative importance in the APSIM-Wheat model accorded

with the expression of the allelic combinations. Under the projected climate

scenarios, the favorable allelic combinations (TaCKX-D1b + Hap-7A-1 + Hap-T +

Hap-6A-G + Hap-6B-1 + H1g + A1b for SSP2-4.5 and SSP5-8.5) mitigated the

negative effects of climate change on TKW.
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Discussion: The present study demonstrated that optimizing favorable allelic

combinations can help achieve high wheat TKW. The findings of this study clarify

the responses of wheat KW to diverse allelic combinations under projected

climate change conditions. Additionally, the present study provides theoretical

and practical reference for marker-assisted selection of high TKW in wheat

breeding.
KEYWORDS

allelic combination, climate change, thousand-kernel weight, winter wheat (Triticum
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1 Introduction

Wheat is one of the most important staple crops and constitutes

~21% of the global food crop production (FAOSTAT, 2021). By

2050, the global demand for wheat is expected to increase at an

annual rate of 1.7%; however, the wheat grain yield (GY) is expected

to increase by only 1.1% per year at that time (Ray et al., 2013). The

thousand-kernel weight (TKW) is a key determinant of winter

wheat GY (Li L. et al., 2022). Kernel number per spike and spike

number per unit area (ha) (SN) are becoming increasingly stable as

wheat genomics rapidly develops (Fischer, 2008). Previous studies

have shown that increasing TKW effectively increases GY (Qin

et al., 2015; Duan et al., 2020).

Grain formation comprises photosynthate production,

transport, accumulation, and solidification (Serrago et al., 2013).

Kernel weight (KW) depends mainly on grain size (volume) and

degree of filling (plumpness). Larger grains and faster, earlier, and

longer grain filling are associated with higher KW (Xie et al., 2015).

The grain filling rate divides KW formation into gradual, rapid, and

slow increase periods (Wang and Shangguan, 2015). The gradual

increase period is the “reservoir establishment” stage. Temperature,

photosynthetic nutrition, and phytohormone levels cooperatively

induce endosperm cells to form the grain through division and

growth. The number of endosperm cells determines the grain size

(Schnyder and Baum, 1992). Grain filling slowly accelerates and

grain dry matter accumulation accounts for 13–20% of the total

mature KW during the gradual increase period. The rapid increase

period is the “reservoir formation” stage. At this stage, the

assimilates required for grain filling originate mainly from the

photosynthetic products formed after flowering and the

mobilization of soluble reserves from the nutritional organs

before and after flowering. Genotype, climatic conditions, and

nutrient supply levels influence this process (Ehdaie et al., 2008).

During the rapid increase period, the rate of grain filling increases

considerably and grain dry matter accumulation is highest and

accounts for 52–57% of the mature KW. The slow increase period is

the “reserve solidification” stage. Senescent plant organs supply

assimilates as their structural macromolecules degrade and are
02
transported to the developing grains at the late plant growth stage

(Distelfeld et al., 2014). During the slow increase period, the grain

filling rate gradually decreases, grain filling eventually stops, the

grain gradually matures, and dry matter accumulation accounts for

12–20% of the mature KW.

Wheat KW is influenced by both genetic and environmental

factors (Brinton and Uauy, 2019). Kernel weight is a quantitative

trait regulated by several different genes with a stable phenotype and

medium to high heritability (0.6–0.8); however, it is highly

susceptible to environmental factors (Miao et al., 2022). Research

has revealed that breeding for superior allele aggregation, which in

turn regulates and modifies gene expression as well as biochemical

and metabolic pathways, is an important way to increase KW. Qin

et al. (2015) conducted a linear regression analysis of >1,850

Chinese wheat varieties produced since the 1920s, which revealed

that the average TKW increased from 30.16 g TK−1 in the 1920s to

38.43 g TK−1 in the 2010s (Qin et al., 2015). Furthermore, the use of

molecular marker technology greatly enhanced the improvement of

thousand grain weight traits. Wheat TaSus1-7A and TaSus2-7B

encode sucrose synthases and are positively correlated with dry

matter accumulation during wheat development (Hou et al., 2014).

Auxin regulates cell elongation, expansion, and division during

grain filling and affects grain size and weight. TaGW2-6A negatively

regulates wheat KW by inhibiting auxin biosynthesis (Geng et al.,

2017; Li et al., 2017). Environmental factors, particularly

temperature, also play vital roles in KW. Temperature

substantially altered KW by affecting wheat phenological

development, grain filling rate, and duration (Li M. et al., 2022; Li

Y. et al., 2022).Elevated temperatures accelerate the growth and

development of wheat, shorten the wheat nutritional growth stage,

and reduce dry matter accumulation in the nutritional organs

before flowering (Juknys et al., 2017). Grain filling has a heat

duration of approximately 700 growing degree-days (GDD).

Hence, grain filling is shortened if the ambient temperature is

particularly high during this period (Zhao et al., 2007). At

temperatures between 20°C and 30°C, the grain filling rate

slightly increases with temperature but does not compensate for

the reduction in grain filling duration. At temperatures > 30°C, the
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grain filling rate slows down in part because of thermal damage to

the plant organs and accelerated plant senescence (Wardlaw and

Moncur, 1995; Lobell et al., 2012).

A suitable sowing date is an important management strategy for

the modulation of winter wheat KW. Tillering development,

environmental conditions, and the timing and duration of the

nutritional and reproductive stages of wheat growth and

development may vary with sowing date. Thus, adjustments to

the sowing date can alter photosynthesis and nutrient transport

during wheat growth and development and, therefore, KW

accumulation (Silva et al., 2014; Wahid et al., 2017; Liu et al.,

2021). An appropriate sowing date promotes tillering development,

increases light interception, photosynthesis, and dry matter

accumulation, and improves transport efficiency (Dueri et al.,

2022). However, sowing that is too early or too late weakens

tillering, lowers the grain filling rate and duration, and decreases

KW (Shukla et al., 2022).

Previous research focused mainly on the impact of climate

change on wheat GY but did not explore its influences on KW. The

latter is a key determinant of GY potential and future climate

adaptability (Tian et al., 2014; Tack et al., 2015; Zhao et al., 2016;

Shew et al., 2020). Process-based crop models are often used to

study the effects of genetics, field management, and their

interactions on wheat growth and development as well as the

impact of climate warming on wheat productivity. Briak and

Kebede (2021) used their experimental data to calibrate and

evaluate the Agricultural Production Systems Simulator (APSIM-

Wheat) model and demonstrated its accuracy. Their simulation

experiments showed that optimal sowing dates for suitable wheat

varieties improve crop adaptation to climate warming. Here, we

implemented the APSIM-Wheat model to elucidate the

mechanisms by which KW responds to genotype and sowing date

and improve its KW under climate warming. Out of a pool of 209

wheat varieties, we selected 81 with similar GY, biomass, and kernel

number (KN). We used these KW, GY, and KN values to calibrate
Frontiers in Plant Science 03
and evaluate the APSIM-Wheat model and then applied the

evaluated model to simulate KW under eight allelic combinations

(81 wheat varieties), seven sowing dates, and two shared

socioeconomic pathways (SSPs). The objectives were to mitigate

the negative impact of future climate warming on KW and achieve

high KW. The results of the simulation enabled the identification of

adaptive sowing dates and favorable allelic combinations for KW

improvement. The findings of this study help clarify the

physiological and ecological mechanisms by which KW responds

to genotype and sowing date under climate warming and provide

theoretical and practical references for high KW development in

winter wheat.
2 Materials and methods

2.1 Field conditions

Field experiments were conducted in 2018–2019 and in 2019–

2020 at the Xinxiang Comprehensive Experimental Station of the

Chinese Academy of Agricultural Sciences, Henan Province,

China (35°18′N, 113°51′E, 78 m a.s.l.). The region has a warm,

temperate, semi-humid climate. The brown soil of the region had

pH and bulk density of 7.11 and 1.38 g cm-3, respectively. The

water, organic carbon, and total nitrogen levels were 36.1%, 1.7 g

kg-1, and 1.11 g kg-1, respectively. In 2018–2019 and 2019–2020,

the accumulated temperatures were 2559.3 °C and 2437.1 °C and

the precipitation levels were 105.5 mm and 110.6 mm, respectively

(Ma et al., 2021).
2.2 Experimental design

Two hundred and nine varieties were selected among natural

wheat populations and Huaimai 40 (stable) and Zhengmai 7698
TABLE 1 On-farm management of 209 wheat varieties during the 2018-2019 and 2019-2020 growing seasons.

Growing seasons Date Irrigation (mm) Fertilization (kg/ha)

2018-2019

10/4 (Before sowing) Humic acid urea 12.5 + Di-ammonium phosphate 30 + KCl 7.5

12/15 (Overwintering) 180

2/27 (Elongation) N26-P0-K4 15

3/7 (Elongation) 120

5/17 (Grouting) 120

2019-2020

10/22 (Before sowing)
Humic acid urea 11 + Controlled-release urea 4 +
Mono-ammonium phosphate 30 +Potassium 5

12/24 (Overwintering) 150

12/28 (Overwintering) N26-P0-K4 10

3/1 (Elongation) N26-P0-K4 10

3/12 (Elongation) 120

4/27 (Grouting) 120
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(sensitive) served as the control varieties. They were sown on

October 8, 2018 and October 23, 2019, respectively, and harvested

on June 6, 2019 and June 2, 2020, respectively. The experiment was

repeated twice using a randomized complete block design. The

sowing density, row spacing, sowing depth, and plot size were 270

plants m-2, 10 cm, 5 cm, and 4.2 m2 (3 m × 1.4 m), respectively.

Details of water and fertilizer management during the two growing

seasons are listed in Table 1. The SN, KN, GY, and TKW were

measured during two growing seasons. Two random samples were

taken, after the grain filling stage, from each sample frame (0.5 ×

0.5 m) within the test plots (excluding edge areas). The SN in the

sample frames was recorded, and the average value was obtained.

Before the wheat maturity, 20 representative ears of wheat were

randomly selected from each plot and threshed to obtain the

average KN. After the wheat matured, it was threshed, dried, and

weighed to obtain the GY per unit area (ha). Representative kernels

(1000) were then selected and weighed to obtain the TKW. Pest and

weed control were implemented in accordance with local

productive field standards.
2.3 Materials

The present study included 209 wheat varieties sampled from

different habits (winter, semi-winter, weak-spring, or spring), gluten

content types (strong, medium-strong, medium, or weak), breeding

years (1980s–2010s), and habitats (China or other countries). The

materials were abundant and widely distributed. The medium

gluten type had the highest proportion (59.14%) followed by the

strong gluten (29.03%) and the weak and medium-strong gluten

types (7.53% and 4.30%, respectively). Additionally, the proportion

of the semi-winter type was the highest (65.24%) followed by the

weak-spring type (17.68%) and the winter and spring types (12.80%

and 4.27%, respectively). The crops cultivated in the 2000s had the

highest proportion (50.82%) followed by those grown in the 1990s

(24.04%) and those raised in the 1980s and the 2010s (14.21% and
Frontiers in Plant Science 04
10.93%, respectively). The Chinese varieties accounted for the

highest proportion (89.00%) and were distributed across nine

provinces. The varieties were distributed across six countries and

accounted for only 11.00% of the total (Figure 1).
2.4 Genotyping

DNA was extracted from the leaves of the wheat seedlings using

the high-salt/low-pH method (Guillemaut and Maréchal-Drouard,

1992) and amplified by PCR. A kompetitive allele-specific

polymerase chain reaction (KASP) fluorescence detector was used

to determine the genotypes for seven functional genes that regulate

KW (TaCKX-D1, TaGASR7-A1, TaSus1-7A, TaSus1-7B, TaGS5-A1,

TaGW2-6A, and TaKG2-6B), considerably affect its characteristics,

and are associated with KASP markers (Rasheed et al., 2019). The

primer sequences and amplification conditions for each gene are

described in Supplementary Table 1. KASP detection revealed 209

varieties with 41 KW allelic combinations (Supplementary Table 2).

Their wide variety ensured genotypic diversity in this study.
2.5 Data collection

Meteorological, soil, field management, and observation data

were collected to calibrate and evaluate the parameters of the

APSIM-Wheat model. The meteorological data included daily

maximum and minimum temperatures, daily sunshine hours,

and daily precipitation at the Xinxiang Agrometeorological

Station between 1961 and 2020. The phenological stage dataset

included emergence, three-leaf stage, tillering, elongation,

booting, heading, anthesis, medium milk, and maturity at the

Xinxiang station between 2001 and 2013. The soil data used to run

the model and calibrate the soil parameters were obtained from

Zain et al. (2021) and included soil water and nitrogen

distribution during the winter wheat growth periods between
B

C

DA

FIGURE 1

Distribution of tested varieties in terms of habit (A), gluten type (B), breeding year (C), and habitat particularly among nine provinces in China (D).
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2017 and 2019. The field observation data used to calibrate and

evaluate TKW, KN, and GY were derived from the phenotypic

observation data (Normalized Difference Vegetation Index

(NDVI), TKW, GY, KN, and SN) of the 209 varieties under

different managements at the Xinxiang station between 2018

and 2020. They also included data for the shared socioeconomic

pathways SSP2-4.5 and SSP5-8.5 of the five global climate models

in the Coupled Model Intercomparison Project Phase 6, namely,

BCC-CSM2-MR (China), CanESM5 (Canada), EC-Earth3-Veg

(Europe), MIROC-ES2L (Japan), and UKESM1-0-LL (UK).

Specific on-site farm managements are listed in Supplementary

Table 3. The physicochemical properties of the various soil layers

are listed in Supplementary Table 4.
Frontiers in Plant Science 05
2.6 Variety screening and statistical analysis

As the study focused on the mechanisms by which KW

responds to sowing date and genotype, 209 wheat varieties were

screened here. First, it was assumed that varieties with KN and

flowering period NDVI in close proximity had other genetic factors

near the KW-regulating gene. Hence, varieties with similar KN

(range < 5,000) and flowering period NDVI (range < 0.025) were

selected. The data analysis was verified using the Kruskal–Wallis

test. Eighty-one varieties met the foregoing criteria and did not

significantly differ in terms of KN or NDVI. The Kruskal–Wallis

test was run using the “npmc” package in R v. 3.6.2 (http://www.R-

project.org/). The KN and NDVI for the 81 selected and 128
B

C D

A

FIGURE 2

kernel number (KN) and Normalized Difference Vegetation Index (NDVI) of 209 wheat varieties in growing season. (A, B), KN; (C, D), NDVI. Red
columns represent varieties with similar KN and NDVI. Blue columns represent varieties with larger differences in KN and NDVI.
TABLE 2 Allelic combinations for kernel weight (B, eight combinations).

Haplotype TaCKX-D1 TaSus1-7A TaSus1-7B TaGW2-6A TaGW2-6B TaGASR7-A1 TaGS5-A1 Percent/%

B1 TaCKX-D1b Hap-7A-1 Hap-T Hap-6A-A Hap-6B-1 Hlc Alb 11.10

B2 TaCKX-D1b Hap-7A-1 Hap-T Hap-6A-A Hap-6B-1 Hlg Ala 13.60

B3 TaCKX-D1b Hap-7A-1 Hap-T Hap-6A-A Hap-6B-2 Hlg Ala 7.40

B4 TaCKX-D1b Hap-7A-1 Hap-T Hap-6A-A Hap-6B-1 Hlg Alb 33.30

B5 TaCKX-D1b Hap-7A-1 Hap-T Hap-6A-A Hap-6B-2 Hlg Alb 8.60

B6 TaCKX-D1b Hap-7A-1 Hap-T Hap-6A-G Hap-6B-1 Hlg Alb 7.40

B7 TaCKX-D1b Hap-7A-2 Hap-T Hap-6A-A Hap-6B-2 Hlg Ala 4.90

B8 TaCKX-D1b Hap-7A-2 Hap-T Hap-6A-A Hap-6B-1 Hlg Alb 13.60
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unselected varieties during their growth seasons are shown in

Figure 2. The allelic combinations and percentages are listed in

Table 2. The KW distributions for the selected 81 varieties in eight

allelic combinations are shown in Figure 3.
2.7 Sensitivity analyses of KW, KN, and GY
parameters in the APSIM-Wheat model

The eFAST method was used in this study to elucidate the

relationships among the variety and ecotype parameters and

accurately simulate KW, KN, and GY. The eFAST method has

been used to assess the sensitivity of various models (Campolongo

et al., 2000) and was applied in four steps.
Fron
(1) The parameters to be analyzed in the APSIM-Wheat model

were selected and their range of values was determined. In

the present study, eight variety and 33 ecotype parameters

were selected (Supplementary Table 5) and their upper and

lower limits were set.

(2) Monte Carlo sampling was used to generate a random

parameter sample set. Here, all parameters were sampled

with a uniform distribution implemented in Simlab

software. In eFAST, the number of parameters sampled

was > 65-fold greater that the number of parameters to be

validated, that is, sample number ≥ parameters number ×

65. Thus, 128 samples × 41 (model parameters) × two years

× two treatments = 20,992 model parameters.

(3) The random parameter samples were used as the input for

the APSIM-Wheat model and the simulation results were

generated. Python v. 3.9.15 (https://www.python.org/) was

used to write a program that sequentially replaces the 41

parameters in the APSIM Wheat.xml file and calls the

executable file (APSIM.exe) of the APSIM-Wheat model.

(4) Simlab software was then used to perform parametric first-

order and global sensitivity analyses of wheat KW, KN, and

GY (Giglioli and Saltelli, 2000). The model simulation
tiers in Plant Science 06
results were organized into a standard file input format

recognizable by Simlab. The latter automatically calculated

the first-order and global sensitivity indices of the input

parameters.
Both the first-order sensitivity and the global sensitivity indices

are used to assess the sensitivity of the system to the input

parameters. However, the former only considers the effect of a

single input parameter on the output parameter, while the latter

considers the interaction among multiple input parameters. The

closer the value of the sensitivity index is to 1, the greater will be the

influence of this input parameter on the output parameter;

the closer the value is to 0, the smaller will be the influence on

the output parameter.
2.8 Model calibration and evaluation

The phenological, soil, variety, and ecotype model parameters

directly and indirectly affecting KW formation were calibrated and

evaluated. The wheat phenological parameters were calibrated and

evaluated via batch parameter adjustment (Supplementary Table 6).

The simulation was conducted under water- and nitrogen stress-

free conditions. The physical properties were then calibrated and

evaluated (Supplementary Table7). Based on the results of the

parameter sensitivity analysis, the variety and ecotype parameters

related to KN were then calibrated and evaluated. The range of

parameter values was obtained for the optimally simulated KN

results for the 209 varieties. The variety and ecotype parameters

related to KW and GY were then calibrated and evaluated. The

range of parameter values was obtained for the optimally simulated

GY and KW results for the 209 varieties (Supplementary Table 8).

Root mean square error (RMSE) was used to determine the total

difference between the observed and simulated values. Linear

regression (R2) between the measured and simulated values was

used to evaluate model performance. Consistency (D) between the

measured and simulated values was also determined.
2.9 Simulation scheme and
statistical analysis

Simulations were run to (1) explore the responses of KW to

sowing date and genotype under the background of climate

warming, and (2) screen adaptive sowing dates and favorable

allelic combinations that enhance KW. The APSIM-Wheat model

was used to simulate KW under various sowing dates, allelic

combinations, and climate scenarios as follows:
(1) Historical sowing date data from the Xinxiang station between

2001 and 2012 were used to calculate the average value and the

latter was then set as the current sowing date (October 11; day

of year (DOY) 284). The sowing date period was from

October 5 to October 23 and the specific sowing dates were

October 5 (DOY 278), October 8 (DOY 281), October 11
FIGURE 3

Distribution of thousand-kernel weight (TKW) of different genotypes
of wheat in different growing seasons. Red box represents TKW in
2018-2019 growing season. Blue box represents TKW in 2019-2020
growing season.
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Fron
(DOY 284), October 14 (DOY 287), October 17 (DOY 290),

October 20 (DOY 293), and October 23 (DOY 296).

(2) Eighty-one varieties were selected and divided into eight

allelic combinations based on seven KW functional genes.

(3) The SSP2 and SSP5 scenarios were selected and the BCC-

CSM2-MR, CanESM5, EC-Earth3-Veg, MIROC-ES2L, and

UKESM1-0-LL global climate models were used in the

baseline (1991–2020) and future (2031–2060) periods.
R v. 3.6.2 (http://www.R-project.org/) was used to analyze and

test the significance of the differences in KW under various sowing

dates, allelic combinations, and climate scenarios. The AOV

function in the “stats” package of R was used to perform the

analysis of variance (ANOVA) and the lsd.test function in the

“multcomp” package of R was used to perform the analysis of

multiple comparison.
3 Results

3.1 Sensitivity analysis of the model
parameters affecting KW, GY, and KN

The first-order and global sensitivity indices of the factors

affecting wheat KW, GY, and KN were consistent. Of the 41

parameters affecting KW, the variety parameters “max_grain_size”

and “grains_per_gram_stem” had first-order sensitivity indices > 0.2

and global sensitivity indices > 0.4. The ecotype parameters

“y_swdef_leaf” and “fr_lf_sen_rate” had first-order sensitivity

indices > 0.05 and global sensitivity indices > 0.1. The ecological
tiers in Plant Science 07
parameter “node_sen_rate” had a first-order sensitivity index > 0.025

and a global sensitivity index > 0.1. The ecotype parameters “y_rue”

and “eo_crop_factor_default” had global sensitivity indices > 0.05. Of

the 41 parameters affecting GY, the variety parameters

“max_grain_size”, and “grains_per_gram_stem” and the ecotype

parameters “y_swdef_leaf”, “oxdef_photo”, “node _sen_rate”, and

“y_swdef_pheno_flowering” had first-order sensitivity indices > 0.05

and global sensitivity indices > 0.1. Of the 41 parameters affecting

KN, the species parameter “grains_per_ gram_stem” and the ecotype

parameters “y_swdef_leaf”, “oxdef_photo”, and “y_swdef_

pheno_flowering” had first-order sensitivity indices > 0.05. The

species parameter “grains_per_gram_stem” and the ecotype

parameters “y_swdef_ leaf”, “initial_root_depth”, “oxdef_photo”,

and “y_rue” had global sensitivity indices > 0.1.
3.2 Phenological model parameter
calibration and evaluation

Figure 4 shows the validation of the simulated phenological

growth stages of wheat including emergence, three leaves, tillering,

elongation, booting, heading, anthesis, mediummilk, andmaturity, at

the experimental base in Xinxiang, Henan Province, China between

2007 and 2013. The simulated and measured phenological stages

were consistent. We compared the simulated andmeasured values for

the growth stages between 2001 and 2007 to evaluate the parameters

independently. The fitted linear equation was y = 1.007x - 0.618 and

its slope was ~1. As RMSE = 7.5 d, the deviation between the

measured and simulated values for the phenological stage was 8 d.

The D values calculated from the measured and simulated values was

0.998. The R2 was 0.993 and P < 0.05 (Figure 5).
FIGURE 4

Comparison between measured and simulated values of wheat growth stages (Zadoks growth stage) including emergence (Z10), three leaves (Z14),
tillering (Z20), elongation (Z35), booting (Z45), heading (Z55), anthesis (Z65), medium milk (Z80), and maturity (Z100). Red circles and blue triangles
represent simulated and measured values, respectively. Zadoks growth stage is sourced from Zadoks et al. (1974). .
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3.3 Soil model parameter calibration
and evaluation

Figures 6, 7 show the validation of simulated water and nitrate

nitrogen content in the 0–80-cm soil layer at the experimental base

in Xinxiang, Henan Province, China between 2017 and 2018. The

simulated results for the water and nitrate nitrogen content were

good for the surface soil layer but poor for the deep soil layer. This

could be owing to a lack of accurately measured soil data. Using

data obtained from the literature may not fully reflect the actual

local conditions, resulting in inaccurate simulation results for the

deep soil layer. We compared the simulated and measured values

for the soil water and nitrate nitrogen content in 2018–2019 to

evaluate the parameters independently. The fitted linear equations

were y = 0.635x + 0.073 and y = 0.82x + 1.421 (Figure 8). The RMSE

were 0.06 mm mm-1 and 2.892 mg kg-1, respectively, and the D

values were 0.669 and 0.844, respectively. The R2 were 0.235, 0.548

(P < 0.05), respectively.
3.4 Model parameter calibration
and evaluation for KW, GY, and
KN determinations

Figures 9A–C shows the validation of the simulated KW, GY,

and KN and their comparison against the measured values for the

81 wheat varieties in 2018–2019. The simulated and measured KW,

GY, and KN values were highly consistent. We also validated the

KW, GY, and KN for the 81 wheat varieties in 2019–2020

(Figures 9D–F). The fitted equations were y = 0.784x + 7.94, y =
FIGURE 6

Dynamics of simulated (blue triangle) and measured (red circle) soil moisture content value in 0–80-cm soil profile at Xinxiang site from 2018 to 2019.
FIGURE 5

Evaluation of APSIM-Wheat model for modelling wheat growth stages
(Zadoks growth stage) (1:1, dashed line), including emergence (Z10),
three leaves (Z14), tillering (Z20), elongation (Z35), booting (Z45),
heading (Z55), anthesis (Z65), medium milk (Z80), and maturity (Z100),
at Xinxing station for evaluation dataset (2001–2007) (1:1, dashed line).
Blue circle represents simulated and measured values. Straight line
represents regression line of fitting equation between measured and
simulated value. RMSE is root mean square error which is used to
measure deviation between observed and measured value. D-value is
used to assess consistency between observed and measured value. R2

is used to describe degree of fitting of regression line to observed
value. The closer R2 is to 1, the better the fitting. P < 0.05 means
difference was highly significant. Zadoks growth stage is sourced from
Zadoks et al. (1974).
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0.985x - 375.08, and y = 0.369x + 13146.67, respectively. The RMSE

were 2.602g TK-1, 689.772 kg ha-1, and 2,008.485 KN spike-1,

respectively. The D values calculated from the measured and

simulated values were 0.819, 0.802, and 0.613, respectively. The

R2 were 0.5, 0.673, and 0.167 (P < 0.05), respectively.

3.5 Impact of wheat phenology,
biomass, and KW under future
climate change scenarios

Based on the current sowing dates, varieties, and field

managements at the Xinxiang station, the calibrated APSIM-Wheat

model was used to simulate the phenological stages, biomass, and
Frontiers in Plant Science 09
KW of winter wheat under the baseline (1991–2020), SPP2-4.5

(2031–2060), and SSP5-8.5 (2031–2060) climate scenarios. The

simulation demonstrated a temporal increase in the average

temperature during the winter wheat phenological stages,

shortening of the latter, increasing biomass (reproductive stages)

(Figure 10A–D), and decreasing KW (Figure 11). For the preceding

climate scenarios, the average temperature for winter wheat were 9.3°

C, 10.4°C, and 10.6°C, respectively; the mean phenological stages

235.21 d, 228.93 d, and 227.20 d, respectively; the mean reproductive

stages were 33.83 d, 33.81 d, and 33.73 d, respectively; the mean

biomass values for these reproductive stages were 1239.50 g m−2,

1374.99 g m−2, and 1386.21 g m−2, respectively; and the mean KW

were 39.90 g TK-1, 39.58 g TK-1, and 39.65 g TK-1, respectively.
BA

FIGURE 8

Comparison between simulated and measured soil water content and soil nitrate content (1:1, dashed line). (A), soil water content; (B), soil nitrate
content. Blue circle represents simulated and measured values. Straight line represents regression line of fitting equation between measured and
simulated value. RMSE is root mean square error which is used to measure deviation between observed and measured value. D-value is used to
assess consistency between observed and measured value. R2 is used to describe degree of fitting of regression line to observed value. The closer is
to 1, the better the fitting. P < 0.05 means difference was highly significant.
FIGURE 7

Dynamics of simulated (blue triangle) and measured (red circle) soil nitrate content value in 0–80-cm soil profile at Xinxiang site from 2018 to 2019.
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A B C

D E F

FIGURE 9

Calibration and evaluation of APSIM-Wheat model for modelling thousand-kernel weight (TKW), grain yield (GY) and kernel number (KN) and (1:1,
dashed line) of 81 wheat varieties at Xinxing station for calibration dataset (2018-2019) and evaluation dataset (2019-2020) (1:1, dashed line).
Comparison of observed and simulated thousand-kernel weight (TKW) (A), grain yield (GY) (B), and kernel number (KN) (C) for calibration datasets.
Comparison of observed and simulated thousand-kernel weight (TKW) (D), grain yield (GY) (E), and kernel number (KN) (F) for evaluation datasets.
B

C D

A

FIGURE 10

Average temperature, days, and biomass of 81 wheat varieties during phenological stages under different climate scenarios. (A), average
temperature; (B), duration of phenological stages; (C), duration of reproductive stages; (D), biomass of nutritional stages. Red boxes represent
baseline. Blue boxes represent SSP2-4.5. Green boxes represent SSP2-8.5. Different letters indicate significance at 0.05 level.
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3.6 Responses of sowing date and
allelic combinations to KW under
future climate scenarios

The calibrated APSIM-Wheat model was used to simulate

winter wheat KW under the aforementioned climate scenarios.

ANOVA was then performed based on the simulation results.

Allelic combination, climate scenario, and sowing date extremely

significantly affected KW (P < 0.001) while the interaction between

allelic combination and climate scenario significantly affected it (P <

0.05) (Table 3). Figure 12 shows the non-significant effect of

changing the sowing date on TKW and KW under SSP2-4.5 and

SSP2-8.5 scenarios. The KW was 39.58 g TK−1 and 39.65 g TK−1 for

the normal sowing period on October 11 (DOY 284), respectively.

The average KW increased gradually from October 5 to October 23

(DOY 278–DOY 296; an average increase rate of 0.092 g TK−1 and
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0.126 g TK−1, respectively). Figure 13 shows that changing the

sowing date for SSP2-4.5 and SSP2-8.5 scenarios had a significant

effect on the accumulated temperature at the reproductive stages

≥10°C. The accumulated temperature at the reproductive stages

(≥10°C) increased with delay in sowing, with an average increase

rate of 1.57°C·d and 1.56°C·d, respectively. Figure 14 shows the

favorable allelic combination B6 (TaCKX-D1b+ Hap-7A-1+ Hap-T

+ Hap-6A-G+ Hap-6B-1+ H1g+ A1b) with a KW of 40.13 g TK−1.

For the SSP2-8.5 scenario, the favorable allelic combinations are B5,

B6, and B8, with a KW of 40.53 g TK-1, 40.85 g TK-1, and 40.19 g

TK-1, respectively, and the KW values of allelic combination B6

(TaCKX-D1b+ Hap-7A-1+ Hap-T+ Hap-6A-G+ Hap-6B-1+ H1g+

A1b), from the first quartile (25%) to the third quartile (75%), from

the box position, were higher than those of B5 and B8. Stable,

favorable allelic combinations can mitigate the negative impact of

climate change on wheat TKW.
3.7 Values of the variety parameters for
different allelic combinations

Figure 15 shows the values of the species-type parameters

“potential_grain_growth_rate,” “potential_grain_filling_rate,” and

“max_grain_size” for different allelic combinations in the APSIM-

Wheat model. In the B6 high-KW allelic combination,

“max_grain_size” had the highest value with a mean value of

0.0503; the “potential_grain_growth_rate” parameter had the

highest value (top 25%) with a mean value of 0.00128; the

“potential_grain_filling_rate” parameter had the median value

(front 50%) with a mean value of 0.00167.

4 Discussion

4.1 Effects of the parameter sensitivity
analysis on APSIM-Wheat

Parameter localization is a prerequisite for effective crop model use.

Parameter sensitivity analysis facilitates targeted model parameter

calibration (Kirui et al., 2022). Process-based physiological and

ecological models simulate crop growth, development, and water and

nutrient uptake. They can explore the dynamic relationships among
TABLE 3 Variance analysis of effects of sowing date, genotype, and climate scenario and their interactions on thousand-kernel weight (TKW) in three
growing seasons (2018–2020).

df Sum of Sq Mean of Sq F Value Pr>F

Sowing dates 6 316 52.6 7.439*** <0.001

Genotype 7 9622 1374.5 194.289*** <0.001

Climate scenario 3 64 21.4 3.023* 0.02841

Sowing dates×Genotype 42 156 3.7 0.525 0.99516

Sowing dates×Climate scenario 18 131 7.3 1.026 0.42533

Genotype×Climate scenario 21 301 14.3 2.028** 0.00358

Sowing dates×Genotype×Climate scenario 126 187 1.5 0.21 1.00000
front
*** Indicates significance at the 0.001 level, ** Indicates significance at the 0.01 level, and * indicates significance at the 0.05 level
FIGURE 11

Thousand kernel weight (TKW) of 81 wheat varieties during
phenological stages under different climate scenarios. The red boxes
represent the Baseline; The blue boxes represent SSP2-4.5; The
green boxes represent SSP2-8.5. The different letters indicate
significance at the 0.05 level.
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atmosphere, crop, and soil and enable the prediction of crop responses to

climate, genotype, farm management, and their interactions (Briak and

Kebede, 2021). Prior studies focused on crop variety parameters.

However, Zhao et al. (2014) reported that the APSIM-Wheat model

includes other variables that may also affect the output. To minimize

model uncertainty, researchers performed a sensitivity analysis of eight

variety parameters and 33 ecotype parameters. Kernel weight (KW) was

sensitive to the variety parameters “max_grain_size” ,

“potential_grain_growth_rate”, and “potential_grain_filling_rate”. This

finding was consistent with the results of Zhao et al. (2014). Nevertheless,

KWwas also sensitive to the ecotype parameters “y_swdef_leaf”, “y_rue”,

“eo_crop_factor_default”, “fr_lf_sen_rate”, and “node_sen_ rate”. Other

studies reported contradictory results (He et al., 2015; Casadebaig et al.,

2016). Broadening the parameter range reduces the uncertainty of the

model and improves its performance at simulating winter wheat growth

and development (Silva et al., 2021).

4.2 APSIM-Wheat parameter calibration
and evaluation

Calibrating and evaluating APSIM-Wheat is the foundation for

determining the optimal sowing time and allelic combination high KW

in winter wheat under future climate scenarios (Ahmed et al., 2016).
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The present study validated the variety and ecotype parameters for KW

and GY based on the validation of the model parameters phenological

period, soil moisture content, nitrate nitrogen, and particle number.

This analysis provides theoretical support for subsequent investigations

of the source-sink relationships in wheat KW. Figures 5, 8 show that

after calibration and evaluation, the APSIM-Wheat model simulated

phenological period, soil moisture content, and nitrate nitrogen

reasonably well. The R2 were 0.993, 0.124, and 0.286, respectively,

and the RMSE were 7.588 d, 0.06 d, and 2.892 d, respectively. Hence,

the APSIM-Wheat model lays a theoretical foundation for optimizing

the parameters related to KW and GY. Substantial differences were

observed in the sowing dates over 2018–2020, the weather conditions

during the sowing periods, and the multi-year phenological data from

the agrometeorological stations. Nonetheless, the calibrated and

evaluated APSIM-Wheat model reflected the responses to different

sowing dates. Figure 9D shows that the calibrated and evaluated

APSIM-Wheat model accurately simulated KW (R2 = 0.575; RMSE

= 3.076 g TK-1). The APSIM-Wheat model had an input of 209

varieties and accurately simulated the phenological period and the soil

water-nitrogen balance. Thus, the calibrated and evaluated model

reflected the responses to diverse allelic combinations and is an

important tool for selecting optimal sowing dates and allelic

combinations in future studies.
FIGURE 13

Accumulated temperature of ≥ 10°C from anthesis to maturity of 81 wheat varieties under different sowing dates. Current sowing date (DOY 284).
Red boxes represent baseline. Blue boxes represent SSP2-4.5. Green boxes represent SSP2-8.5.
B CA

FIGURE 12

Thousand-kernel weight (TKW) of 81 wheat varieties at different sowing dates for different climate scenarios. (A), Baseline; (B), SSP2-4.5; (C), SSP2-
8.5. Current sowing date (DOY 284). Different letters indicate significance at 0.05 level.
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4.3 Effect of climate warming on wheat
kernel weight

The APSIM-Wheat simulation-based study revealed that climate

warming is an important cause of KW reduction in wheat. KW is

influenced by biomass accumulation during vegetative growth in

winter wheat. It is also constrained by grain size and filling rate

(Almeida and Lidon, 2009; Liu et al., 2020). Juknys et al. (2017)

reported that according to long-term phenological data, climate

warming can shorten the nutritional growth stages of winter wheat

and result in insufficient biomass accumulation during the pre-

reproductive stages as well as inadequate KW during the post-

reproductive stages. Jenner et al. (1993) demonstrated that elevated

temperatures reduce KW by downregulating the enzymes

biosynthesizing soluble starch. In this manner, high temperatures

shorten grain filling. The APSIM-Wheat model simulation of the

present study forecasted that the average temperature will increase and

the phenological stages will decrease in future winter wheat growing

seasons (Figures 10A, B). However, biomass will increase (Figure 10D).

Hence, the KW source will increase and the sink (grain-filling period

from flowering to maturity) influences the decrease in KW. Field and

greenhouse experiments conducted by Xie et al. (2015) showed that

faster and longer grain filling were associated with higher KW. In the

present study, the APSIM-Wheat model parameters “max grain size”,

“potential_grain_growth_rate”, and “potential_grain_filling_rate”
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reflected the post-flowering grain size and the grain filling and

growth rates which determine KW. In APSIM-Wheat, variety

parameters “max_grain_size”, “potential_grain_growth_rate”, and

“potential_grain_filling_rate” reflected maximum grain size,

potential growth rate, and filling rate under ideal climatic

conditions, respectively, and are affected by climatic conditions

(primarily temperature). In this study, the actual grain filling rate in

APSIM-Wheat decelerated and the growth rate accelerated under the

future climate scenario with an increase in the average daily

temperature (Figure 10A). Lobell et al. (2012) reported that an

increase in the average daily temperature increased the transpiration

rate of the grains, leading to water loss and negatively affecting the

grain filling rate. In addition, Barlow et al. (2015) reported that an

increase in average daily temperature will increase the growth rate of

the grain, leading to a reduction in the duration of grain filling. In this

study, the reproductive growth phase of winter wheat was shortened

under the future climate scenario (Figure 10C). Therefore, the

deceleration of filling rate and shortening of filling duration caused

by climate warming are responsible for the reduction in KW.
4.4 Effect of sowing date on wheat
kernel weight

Slight changes in the sowing window have only a marginal

impact on KW. Sowing date modification has the lowest cost of all
B CA

FIGURE 15

Values of variety parameters in the APSIM-Wheat model for different genotypes. (A), potential grain growth rate; (B), potential grain filling rate; (C),
max grain size.
B CA

FIGURE 14

Thousand-kernel weight (TKW) of different allelic combination under different climatic scenarios at optimal sowing date. (A), Baseline; (B), SSP2-4.5;
(C), SSP2-8.5. Different letters indicate significance at 0.05 level.
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farm management measures and is a key factor in KW. Sowing date

is mainly under human control and its modulation may subject

winter wheat to different weather factors such as temperature and

accumulated temperature that affect KW. For example, Shah et al.

(2020) stated that delaying the sowing date by four weeks lowered

the accumulated temperature from a normal sowing time value of

514°C to a wintertime value of 226°C, negatively impacted early

growth, and reduced KW. As the present study used a maize-wheat

rotation system, the wheat had to be harvested in a timely manner

to allow for maize sowing. Therefore, we used the APSIM-Wheat

model to establish seven sowing windows that started on October 5

and were repeated every 3 d until October 23. A delayed sowing

window slightly increased KW because the adjustments to the

sowing window led to a slight increase in the accumulated

temperature (Figure 13). For this reason, limited modifications to

the sowing window resulted in slightly increased KW. Zheng et al.

(2016) implemented the CSM-CERES-Wheat model in southern

Khuzestan, Iran to adjust the sowing window to start on October 25

and repeat every 10 d until January 5. They found that fewer

adjustments to the sowing window had a negligible impact on KW.
4.5 Relationship between variety parameter
values and kernel weight alleleic
combinations in the APSIM-Wheat model

The variety parameters and their relative importance in the

APSIM-Wheat model are closely related to KW. In general, high

KW is accompanied by the upregulation of functional alleles

associated with favorable KW (Zhang et al., 2014; Chegdali et al.,

2022; Tillett et al., 2022). The APSIM-Wheat model parameters

“max_grain_size” , “potential_grain_ fi l l ing_rate” , and

“potential_grain_growth_rate” had the strongest influences on

wheat KW (Zhao et al., 2014). Our first-order and global parameter

sensitivity analyses showed that “max_grain_size” had the greatest

impact on wheat KW followed by “potential_grain_filling_rate”

and “poten t ia l_gra in_growth_ra t e” . S eve ra l s tud i es

demonstrated that “max_grain_size” adjusts the grain size,

“potential_grain_filling_rate” adjusts the grain filling rate, and

“potential_grain_growth_rate” adjusts the grain growth rate (Zhao

et al., 2014; Xie et al., 2015; Kobata et al., 2018). The present study

showed that the values for the parameters characteristic of winter

wheat varieties with high KW were consistent with high KW allelic

combinations. In the B6 high-KW allelic combination,

“max_grain_size” had the highest value (Figure 15). This

observation may be explained by upregulation of the advantageous

A1b allele of the KW functional gene TaGS5-A1 which promotes cell

division and the formation of large kernels (Wang et al., 2016). In the

B7 low-KW allelic combination, “max_grain_size” had one of the

lowest values of all parameters (bottom 25%) (Figure 15). This finding

may be explained by the upregulation of the advantageous A1a allele

of the KW functional gene TaGS5-A1. An earlier study showed that

the KW functional genes TaSus1-7A and TaSus1-7B encoding sucrose

synthases have the advantageous alleles Hap-7A-1/2 and Hap-T that

promote starch sediment biosynthesis and facilitate grain filling (Hou

et al., 2014). In the B6 high-KW allelic combination, the
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“potential_grain_growth_rate” parameter had the highest value (top

25%), and the “potential_grain_filling_rate” parameter had the

median value (front 50%) (Figure 15). This discovery may be

explained by the upregulation of the advantageous allele Hap-6B-1

of the KW functional geneTaGW2-6B, which regulates the number of

endosperm cells, promotes grain development, and is superior to the

favorable allele “Hap-6B-2” (Qin et al., 2014).The foregoing reports

revealed that the APSIM-Wheat model variety parameter values

effectively captured KW expression in different allelic combinations.
4.6 Response of the kernel weight
functional genes to climate warming

Determining the responses of KW functional genes to climate

warming facilitates the identification of high-KW allelic combinations.

Here, multivariate ANOVA revealed that allelic combinations and

climate scenarios extremely significantly influenced TKW (P < 0.001)

while their interaction significantly affected it (P < 0.05). Under

different climate scenarios, the B6 allelic combination had higher

KW and was stable. The B7 allelic combination had lower KW than

the other allelic combinations. The preceding results suggest that the

values of the variety parameter determining high KW were consistent

with the high-KW allelic combinations. The variety parameter values

were highest for the B6 allelic combination which included the KW

functional genes TaSus1-7A, TaSus1-7B, TaGW2-6B, and TaGS5-A1

and their favorable alleles Hap-7A-1, Hap-T, Hap-6B-1, and A1b,

respectively. The B7 allelic combination had low variety parameter

values but included the KW functional genes, TaSus1-7A, TaSus1-7B,

TaGW2-6A, and TaGW2-6B, and their favorable alleles, Hap-7A-2,

Hap-T, Hap-6A-A, and Hap-6B-2, respectively. A recent study

revealed that in TaSus1-7A, Hap-7A-1 and Hap7A-2 had strong and

weak effects on wheat KW, respectively (Sehgal et al., 2019). The

favorable allele Hap-6B-1 of TaGW2-6B has a stronger impact on KW

than the favorable allele Hap-6B-2. However, both had a greater effect

on KW than TaGW2-6A (Hou et al., 2014). The favorable allele of

TaSus1-7A, “Hap-1/2,” was measured in multiple environments with

high TKW and stable expression of the trait (Qin et al.,

2014).Therefore, the B6 allelic combination can achieve maximum

KW. The present and preceding studies provide critical reference for

breeding winter wheat and certain other cereal crops with high kernel

weight under climate warning.
5 Conclusions

The present study demonstrated the responses of wheat KW to

diverse allelic combinations under predicted climate warming and

identified the genetic adaptations that will enable winter wheat to

remain productive as atmospheric temperatures continue to increase.

We conducted field trials and KASP genotyping on 209 wheat varieties

in 2018–2020 and compiled a unique dataset comprising phenotype,

genotype, climate, and soil data as well as on-farm management

information. We assumed that wheat varieties with KN and

flowering period NDVI in close proximity had other genetic factors

near the KW-regulating gene. Hence, 81 wheat varieties with similar

KN and flowering period NDVI were selected for calibration and
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evaluation by using the process-based APSIM-Wheat model. The

model simulated TKW for eight allele combinations (81 wheat

varieties), seven sowing dates, and two shared socioeconomic

pathways (SSPs). It was determined that variety and ecotype

parameters significantly influenced winter wheat KW, GY, and KN.

Localized APSIM-Wheat parameters could accurately calibrate and

evaluate these three yield metrics. The variety parameters and their

relative importance in the APSIM-Wheat model were consistent with

the expression of functional genes in allelic combinations. Therefore,

the selected variety parameters revealed diverse allelic combinations

affecting KW re-expression. The wheat phenological stages will be

shortened and KW will be reduced (0.11-0.18 g TK-1) under future

climate scenarios. Nevertheless, clarification of the responses of KW to

diverse allelic combinations under projected climate warming

scenarios may help ameliorate the negative impact of climate

warming on TKW. Under SSP2-4.5, favorable allele combinations

(TaCKX-D1b + Hap-7A-1 + Hap-T + Hap-6A-G + Hap-6B-1 + H1g

+ A1b) would increase KW by 0.34 g TK-1, Under SSP5-8.5, the

favorable allele combinations (TaCKX-D1b + Hap-7A-1 + Hap-T +

Hap-6A-G + Hap-6B-1 + H1g + A1b) would increase KW by 0.26 g

TK-1. The results of the present study showed that favorable allelic

combinations could help achieve high winter wheat TKW even under

the projected climate warming scenarios. The present study provides

valuable theoretical and practical reference for breeders in the

development and selection of high-yield, thermotolerant wheat

varieties with the aid of the APSIM-Wheat model. These novel

wheat cultivars could improve wheat productivity, profitability, and

water-use efficiency and help maintain food security. Future research

should endeavor to incorporate other genetic loci contributing to TKW

into the APSIM-Wheat model, enabling the construction of genetic

based-model by strongly linking genetic information to crop models.
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