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Yield for biofuel crops is measured in terms of biomass, so measurements

throughout the growing season are crucial in breeding programs, yet

traditionally time- and labor-consuming since they involve destructive

sampling. Modern remote sensing platforms, such as unmanned aerial vehicles

(UAVs), can carry multiple sensors and collect numerous phenotypic traits with

efficient, non-invasive field surveys. However, modeling the complex

relationships between the observed phenotypic traits and biomass remains a

challenging task, as the ground reference data are very limited for each genotype

in the breeding experiment. In this study, a Long Short-Term Memory (LSTM)

based Recurrent Neural Network (RNN) model is proposed for sorghum biomass

prediction. The architecture is designed to exploit the time series remote sensing

and weather data, as well as static genotypic information. As a large number of

features have been derived from the remote sensing data, feature importance

analysis is conducted to identify and remove redundant features. A strategy to

extract representative information from high-dimensional genetic markers is

proposed. To enhance generalization and minimize the need for ground

reference data, transfer learning strategies are proposed for selecting the most

informative training samples from the target domain. Consequently, a pre-

trained model can be refined with limited training samples. Field experiments

were conducted over a sorghum breeding trial planted in multiple years with

more than 600 testcross hybrids. The results show that the proposed LSTM-

based RNNmodel can achieve high accuracies for single year prediction. Further,

with the proposed transfer learning strategies, a pre-trained model can be

refined with limited training samples from the target domain and predict

biomass with an accuracy comparable to that from a trained-from-scratch

model for both multiple experiments within a given year and across

multiple years.
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Introduction

Population growth and the increasing consumption of energy in

a world economy that seeks to reduce dependence of fossil fuels

have incentivized development of biofuels as an environmentally

friendly, renewable energy source that can help fulfill the global

demand (Rodionova et al., 2017). Sorghum, a C4 plant, can

efficiently use water and nutrients to produce biomass-based fuels

with lower CO2 emissions than fossil fuels (van der Weijde et al.,

2013). With recent developments in modern biotechnology, it is

possible to create numerous genotypes of sorghum and select those

that maximize biomass production. However, biomass is

traditionally measured by destructive sampling, which is

extremely time- and labor-consuming, and cannot provide a

timely evaluation of this complex phenotypic trait, especially in

large breeding programs. Recent advances in remote sensing (RS)

technology have enabled field-based high-throughput phenotyping.

Platforms like unmanned aerial vehicles (UAVs) and ground-based

systems can carry multiple sensors, including RGB cameras,

multispectral, hyperspectral, thermal infrared scanners, and light

detection and ranging (LiDAR) units, and maneuver in the field to

acquire high-quality data at high spatial resolution (Yang et al.,

2017; Xie and Yang, 2020; Feng et al., 2021). These platforms have

great potential for precision agriculture applications due to their

capability to acquire high spatial and temporal resolution data “on

demand” via efficient, non-invasive relatively low-cost field surveys.

UAV data have been used to estimate many phenotypic traits,

including plant height (Pérez-Ruiz et al., 2020), canopy cover (Sun

et al., 2018; Masjedi et al., 2020), leaf area index (Ribera et al., 2018;

Comba et al., 2020; Nazeri et al., 2021), and biomass (Ballesteros

et al., 2018; Masjedi et al., 2019), replacing traditional in-

field phenotyping.

Researchers continue to explore approaches to model the

relationships between RS data and more complex phenotypes,

such as biomass (Lu, 2006; Chao et al., 2019). This is extremely

challenging because the relationship between time-series RS data

and biomass is complex and is highly variable within and between

varieties in a breeding experiment. These interactions also vary

throughout the growing season due to environmental conditions,

even with consistent management practices. Additionally, the

number of ground reference samples for training models is very

limited. In the breeding experiments, hundreds of genotypes are

planted with limited replicates. Recently, the Long Short-Term

Memory (LSTM), a recurrent neural network (RNN) architecture,

has been demonstrated to be effective for dealing with continuous

input. For agricultural applications, prior studies that adopted this

network structure achieved high accuracy in crop yield prediction

(Khaki et al., 2020; Gong et al., 2021; Fan et al., 2022) and plot-level

biomass prediction (Masjedi et al., 2019). The main limitations of

current LSTM-based biomass prediction models are: i) extraction

and selection of robust, appropriate features are critical as having

highly correlated features could degrade the performance of the

prediction model; ii) current models do not incorporate the genetic

marker data due to its high dimensionality compared with other

features (phenotypic information, environmental conditions, or

management practices); iii) a prediction model pre-trained on a
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single year of RS data does not generalize well on another trial from

a different year or location due to differences in genotypes and

environmental conditions.

In this study, an LSTM-based RNN model is proposed for plot-

level sorghum biomass prediction using RS data (representing

phenotypic traits), weather data, and genotypic information.

Feature importance is first evaluated to identify and remove the

highly correlated features from the prediction model. A strategy for

reducing the dimensionality of the genetic marker data and

incorporating this information into an LSTM-based RNN

prediction model is proposed. In response to the need for

generalization and to limit requirements for ground reference

data, transfer learning techniques are developed to refine a pre-

trained model using limited training samples from a new trial with

additional genotypes, different environmental conditions or

management practices. The performance of the proposed

approaches is evaluated over a sorghum breeding experiment that

contained more than 600 testcross hybrids and was planted in

multiple years. The remainder of this paper is organized as follows:

Section Related work provides a review of prediction models using

RS data and genotype information, along with different transfer

learning strategies; Section Materials and methods describes the

study sites, datasets, and the methodologies including feature

extraction, the prediction model, and transfer learning strategies;

The experimental results are presented and discussed in Section

Experimental results and discussion; Conclusions of the study are

summarized in Section Conclusions and discussion, which also

includes recommendations for future work.
Related work

Feature extraction/selection

Compared to data in the two- or three-dimensional physical

space, high dimensionality inputs result in “the curse of

dimensionality” (Altman and Krzywinski, 2018). The quantity of

data required to obtain reliable results grows exponentially with

dimensionality due to the sparsity caused by high dimensionality

(Zimek et al., 2012). Hyperspectral data with hundreds of bands are

not only high dimensional, but many bands are also highly

correlated. It is necessary to reduce the number of features due to

the limited quantity of training samples; this is achieved either by

feature extraction or feature selection techniques. Feature selection

focuses on selecting a subset of features that can efficiently represent

the original feature space and provide good classification/prediction

results. A comprehensive comparison of feature selection criteria is

available in Khalid et al. (2014). In contrast, feature extraction aims

at projecting the original feature space into a new space with lower

dimensionality. Although the transformed features may not directly

represent physical characteristics related to the original data, the

goal of feature extraction is similar to feature selection: to reduce

complexity and represent the original feature space in a simple way.

As noted in the survey article (Khalid et al., 2014), the success of

feature extraction/selection methods is strongly related to datasets,

so no single method is globally preferred.
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Biomass prediction model

Researchers have developed predictive models for biomass

using RS data via two primary approaches. The first strategy

incorporates limited RS data products into crop simulation

models, such as the Agricultural Production Systems sIMulator

(APSIM) (Hammer et al., 2010). For example, (Yang K. W. et al.

(2021) parameterized the APSIM crop growth model with canopy

cover estimated from RGB remote sensing data products to predict

sorghum biomass; Zheng et al. (2019) proposed an improved

APSIM wheat model to predict traits related to canopy

development more accurately. Combining crop simulation models

with machine learning or deep learning approaches is an active area

of research (Messina et al., 2018; Feng et al., 2020; Xie and Huang,

2021; Jeong et al., 2022). Mechanistic models incorporate biological

processes, providing opportunities to generalize empirical models

that are based on observed conditions, but require extensive field

data input for tuning beyond general conditions.

The second approach focuses on the development of empirical

models, such as support vector regression (SVR), random forest

(RF), and partial least squares regression (PLSR), which depend

heavily on training sample size and RS data type (Fassnacht et al.,

2014). For example, Huntington et al. (2020) used a variation of RF

to predict sorghum yields; Han et al. (2019) and Masjedi et al.

(2020) both evaluated multiple classical machine learning

algorithms, e.g. SVR, PLSR, RF, and multiple regression, for

above-ground biomass prediction. None of the approaches were

able to fully model the relationship between time series RS data/

environment inputs and biomass. In addition, they do not fully

leverage data from different remote sensing modalities or effectively

incorporate genetic information, environmental conditions, and

management practices, and are not easily generalizable.

Recently, deep learning approaches have been investigated for

building complex physical models with RS data (Zhu et al., 2017).

Recurrent neural networks contain a rich class of dynamic models

that can process variable length sequences of inputs (Graves, 2013).

Among them, the LSTM is an RNN architecture that has been

demonstrated to be effective for dealing with continuous input such

as video (Ullah et al., 2017), speech recognition (Graves et al., 2013),

and natural languagemodeling (Sundermeyer et al., 2012). Due to the

special architecture, an adaptive “forget gate” (Gers et al., 2000)

enables an LSTM cell to “rest itself “when its contents are “out of date

and become useless”. Researchers have integrated both genotype and

phenotype related information into the LSTM-based prediction

model. For example, Khaki et al. (2020) developed an LSTM-based

crop yield prediction model for different environments with a large

quantity of historical soil, weather, and management practice data

from 1980 to 2018 within 13 states in the United States as training

samples. Shook et al. (2021) utilized time-series weather data,

clustered genotype information and maturity group to predict field-

scale soybean yield over 150 locations. In the context of plant

breeding programs, breeders aim to develop the traits of crops to

produce desired characteristics (Poehlman, 2013). They seek to focus

on specific genotype candidates for which it would typically be

impossible to obtain years of historical RS data. Masjedi et al.

(2019) proposed an LSTM-based RNN model, which achieved
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accurate biomass prediction with multi-temporal RS data in a

single year. However, their model trained with a single year of RS

data could not achieve high accuracy when testing on another trial

with different genotypes or environmental conditions. While

potentially useful for post-season evaluation under given

conditions, the model lacked generalizability.
Transfer learning

Transfer learning in deep learning seeks to transfer knowledge

learned from a source domain to a target domain while using limited

training samples from the target domain (Pan and Yang, 2010).

Unlike semi-supervised methods, which assume unlabeled and

labeled data sets have the same distribution, transfer learning

allows the target domain to have different distributions from the

source domain. The goal is to efficiently update the model to

accommodate these differences. The three general categories of

transfer learning approaches are: instance-based, mapping-based,

and network-based (Tan et al., 2018). The instance-based strategy

assumes that appropriate weights assigned to a partial dataset of

source domain data can be added into the training set in the target

domain. Thus, the goal of this strategy is to identify data in the source

domain similar to the target domain and re-weight these points (Dai

et al., 2007; Jiang and Zhai, 2007; Li et al., 2017). The mapping-based

strategy assumes both source and target domains can be mapped into

a new space, and data from the two domains become more similar in

the new data space. Therefore, an important issue of this strategy is to

measure the difference in distributions or similarity between

domains. The network-based deep learning strategy, which is the

most popular approach for artificial neural networks, refers to

partially using the pre-trained network from the source domain,

and fine-tuning the parameters with training samples from the target

domain. The assumption for the network-based strategy is that the

front layers of the pre-trained network can be treated as a feature

extractor. A common usage of this strategy for RGB image related

purposes involves freezing front layers of convolutional neural

networks (CNNs) trained on the diverse RGB ImageNet dataset,

then randomly initializing the remaining layers and training in target

domains with limited training samples. However, the transferability

varies with different network structures (Yosinski et al., 2014);

AlexNet, VGG, and ResNet all perform well with the network-

based deep learning strategy. Researchers have also explored the

transferability of time-series prediction models; for example, Zoph

et al. (2016) used an LSTM-based RNN trained with high-resource

language data and refined it with very little low-resource language

data as the target domain. Similarly, Dong et al. (2019) proposed a bi-

directional RNNmodel which was pre-trained with a general Chinese

corpus as the feature extractor, then fine-tuned with a Chinese

electronic medical record corpus as the target domain to extract

more accurate features.

Transfer learning strategies have also been used in agricultural

studies (Wang and Su, 2022). Abdalla et al. (2019) evaluated three

transfer learning methods using a VGG-based encoder net for

oilseed rapes image segmentation; Cai et al. (2020) proposed a

modified U-Net architecture with transfer learning strategy for
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detecting plant locations; (Yang S. et al. (2021) utilized transfer

learning with Mask R-CNN for soybean seed segmentation. For the

RNN architecture, Wang et al. (2018) proposed a deep transfer

learning framework with LSTM-based RNN for soybean yield

prediction in different countries with satellite imagery. Later,

Kaya et al. (2019) applied a transfer learning strategy to an RNN-

CNN combined model for leaf classification.
Few-shot learning

The concept of supervised learning with a limited number of

examples from the target domain is called Few-Shot Learning (FSL)

(Wang et al., 2020). Compared to the most current machine learning

algorithms, humans can efficiently use prior knowledge and learn new

tasks with a few examples. Thus, FSL has been proposed recently as a

machine learning paradigm. For instance, FSL in a classification

scenario is referred to as “k-shot, N-way”, aiming to train classifiers

for N classes with only k training samples per class. The supervised FSL

strategies can be categorized based on three perspectives, data, model,

and algorithm. The data perspective aims at using prior knowledge to

enrich the limited label data in the target domain. Some common

strategies for image related tasks include classical augmentation

(translation, flipping, scaling, cropping, rotation, etc). Designing a

reasonable strategy depends heavily on domain knowledge and

might not be applicable to other data sets (Wang et al., 2020). The

model perspective simplifies the problem by using prior knowledge and

results in a much smaller hypothesis space. Usually, a small hypothesis

space cannot represent real-world problems very well, but with the

guidance of prior knowledge, the empirical risk can beminimized. Four

types of methods have been proposed based on different prior

knowledge: multitask learning (Caruana et al., 1997), learning

through feature embedding (Jia et al., 2014), learning with external

memory (Graves et al., 2014), and generative modeling (Reed et al.,

2017). The algorithm perspective searches for the best parameters by

refining existing parameters. The existing parameters found by prior

knowledge provide a good initialization, and the resultant search steps
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are guided by prior knowledge. To avoid overfitting, multiple

regularization methods such as early-stopping and selectively

updating the parameters can be used. The FSL has also been used in

many agriculture studies, for example plant counting, pest detection,

and plant disease recognition (Karami et al., 2020; Yang et al., 2022).

Nevertheless, generating ground reference data in the target

domain is still time- and labor- consuming, especially for tasks like

collecting fresh biomass described in this paper. It is important to

identify a small number of the most informative training samples in

the target domain. In this paper, two transfer learning strategies are

proposed for an LSTM-based RNN-G sorghum biomass prediction

model that incorporates both time-series and static features

extracted from RS data, weather data, and genetic marker data.
Materials and methods

Field trials and ground reference data

The field surveys for this study were conducted over sorghum

breeding trials at Purdue University’s Agronomy Center for

Research and Education (ACRE) in Indiana, USA (Figure 1). The

field surveys included the following trials: the sorghum biodiversity

testcross (hereafter, Tc) panel in 2018, 2019, and 2020, and the

sorghum biodiversity testcross calibration (hereafter, Cal) panel in

2019, 2020, and 2021, as listed in Table 1. The Tc panel consisted of

630 hybrid genotypes with two replicates in 4 row plots. The same

hybrids were planted over the three years. The Cal panels contained

72 hybrid genotypes with two replicates (in 2019 and 2020) and

three replicates (in 2021) in 12 row plots. The 72 hybrids in the Cal

panel, which were representative testcrosses selected from the Tc

panel, were destructively sampled multiple times during the

growing season, providing a time series of ground reference data.

Field trials were conducted each year using a randomized complete

block design.

The above-ground biomass data were destructively collected using

a Wintersteiger Cibus 2-row Biomass Harvester (Wintersteiger Inc.,
FIGURE 1

Locations (highlighted by yellow and red boxes) of sorghum experiments at the Purdue University’s Agronomy Center for Research and Education
(ACRE). Cal panels were planted in Fields F42w and F54m, and Tc panels were planted in Fields F42m and F54s on alternating years.
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Salt Lake City, UT, USA). Approximately 500 g of the shredded

sorghum plant material in each plot was used to determine fresh

weight, dry weight and moisture content. For the Tc panel, rows 2 and

3 of each plot were harvested only once at the end of season. For the Cal

panel, biomass data were collected two times by themachine during the

growing season at approximately 60-70 (rows 5 and 6) and 90-100 days

(rows 2 and 3) after sowing (DAS). The harvest dates are listed in

Table 1. Figure 2 shows the box plots of the fresh biomass data for the

Tc and Cal panels. Differences in fresh biomass across plots and

between years can be attributed to the large number of hybrids in each

panel, as well as to the impact of different planting dates and weather

during the growing season. For example, the two panels in 2019 were

planted approximately one month later than the other years due to an

excessively wet spring.
Remote sensing data

The data acquisition platform was a DJI Matrice 600 Pro (M600P)

platform which carried a custom mounted Sony a7R III RGB camera,

Headwall Nano-Hyperspec Visible Near Infrared (VNIR) push-broom

scanner, and Velodyne VLP-16 Puck Lite laser unit (Figure 3). RGB
Frontiers in Plant Science 05
data products were not used in this study. The hyperspectral scanner

has 272 spectral bands with a wavelength range from 400 nm to 1000

nm and a pixel pitch of 7.4 mm. The LiDAR unit has a range accuracy

of ±3 cm with a maximum range of 100 m. Georeferencing

information was collected by a Trimble APX-15 UAV v3 integrated

Global Navigation Satellite Systems/Inertial Navigation Systems

(GNSS/INS) unit. The expected post-processing positional accuracy

is ±2 cm to ±5 cm, and the attitude accuracy is ±0.025˚ and ±0.08˚ for

the roll/pitch and heading, respectively. Rigorous system calibration

was performed for direct georeferencing using the procedure described

in Ravi et al. (2018).

The RS data used in this paper were acquired by the

hyperspectral scanner and LiDAR unit onboard the UAV during

the growing season in each year. The flying height of all the flight

missions was ~44 m, which was designed to ensure a 4 cm Ground

Sampling Distance (GSD) for the hyperspectral scanner. Four RS

datasets were selected for each trial based on the Growing Degree

Days (GDDs) to represent different growing stages, as shown in

Table 2. The hyperspectral data were converted to reflectance using

calibrated reference targets and the empirical line method (Ortiz-

Jiménez et al., 2020), orthorectified (Habib et al., 2018), and

mosaicked. Examples of the hyperspectral orthomosaic and

reconstructed LiDAR point cloud are shown in Supplementary

Figure 1. The weather data, including temperature and

precipitation, were provided by the Midwestern Regional Climate

Center (station name: West Lafayette 6 NW). The daily solar

radiation data was collected by an Eppley solar sensor located at

ACRE. The genetic marker data were provided by the breeder.
Feature extraction and importance analysis

Both hyperspectral and LiDAR features were extracted from the

rows 2 and 3 in each plot (from hyperspectral orthomosaics and

LiDAR point cloud data) to minimize the border effects

(Supplementary Figure 2). The candidate hyperspectral features

include vegetation indices, integration features, and derivative

features (Masjedi et al., 2020). Integration features are areas

under the mean spectral curves over defined ranges of

wavelength. Derivative features include first and second

derivatives of the spectral signatures. Candidate LiDAR features

include different percentiles of height, canopy volume, multiple

statistical features, and LiDAR canopy cover (Masjedi, 2020;
A

B

FIGURE 2

Box plot for (A) the end-of-season fresh biomass data for the Tc
panels in 2018, 2019 and 2020 and (B) the two machine harvested
fresh biomass data for the Cal panels in 2019, 2020 and 2021.
TABLE 1 Multi-year field survey information.

Trial Year Field Number of
plots

Number of
hybrids Sowing date Available

biomass date

Tc 2018 F54m 1260 630 05/08 08/02

Tc 2019 F42m 1260 630 06/04 09/12

Cal 2019 F42w 144 72 06/04 08/09, 09/05

Tc 2020 F54s 1260 630 05/12 08/19

Cal 2020 F54m 144 72 05/13 07/14, 08/11

Cal 2021 F42w 216 72 05/23 08/03, 09/03
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Masjedi et al., 2020). The percentiles of height, canopy volume, and

multiple statistical values were calculated based on the non-ground

points of rows 2 and 3 in each plot. The LiDAR canopy cover is

defined as a ratio of the number of points above a certain height and

the total number of points within the respective row segment.

Weather features include cumulative precipitation, radiation, and

GDDs (shown in Supplementary Figure 3).

Redundancy in the features slows the training process and

reduces the robustness of deep learning neural networks (Ortiz-

Jiménez et al., 2020). In this paper, the importance of the

hyperspectral and LiDAR features is evaluated, and those which

are less important are removed from the prediction model. First, a

principal component analysis (PCA) is applied to an Np � Nf

matrix, where Np is the number of plots and Nf is the number of

features. The importance of a feature, Ifi , is calculated as Eq. (1),

where (Wfi )n is the magnitude of feature i in the nth principal

component (PC) and Vn is the variance explained by the nth PC. For

a single trial, feature importance Ifi is evaluated for each of the

selected RS datasets, as the importance of a feature could change

over time. Features with lower importance across time are then

identified. For multiple field trials, the above-mentioned procedure
Frontiers in Plant Science 06
is repeated for each trial, and majority voting is used to select the

common redundant features. In this study, features with lower

importance, identified in more than half number of the trials, were

selected and removed from the feature list.

Ifi = (Wfi )n*Vn (1)

The genetic marker data are extraordinarily high dimensional,

as each hybrid is represented as a 1 � 80,104 vector. To reduce its

dimensionality of genetics, PCs of the original genetic marker data

are computed, and a small number (based on the variance

explained) of components are selected (in this study, the first 10

PCs are used). A k-means clustering is then performed on the

projected marker data. To determine the number of clusters, k,

the within-cluster sum of squares (WCSS), which measures the

variability of the data within each cluster, is calculated for different k

values. The Elbow method that plots the WCSS against the k values

is utilized to identify the optimal k value. The resulting genotype

clusters serve as the genetic information extracted from the high

dimensional genetic maker data and can be directly used together

with other features in the neural network.
FIGURE 3

The Unmanned Aerial Vehicle (UAV) mobile mapping system and onboard sensors.
TABLE 2 Remote sensing data sets used in this study.

Trial Year Data Type Dates

Tc 2018
VNIR 06/14 07/06 07/25 08/02

LiDAR 06/11 07/02 07/23 08/01

Tc 2019
VNIR

07/12 07/23 08/10 08/24
LiDAR

Cal 2019
VNIR

07/12 07/23 08/10 08/24
LiDAR

Tc 2020
VNIR

06/19 07/08 07/25
08/06

LiDAR 07/28

Cal 2020
VNIR

06/17 07/08 07/25
08/06

LiDAR 07/28

Cal 2021
VNIR

07/03 07/19 08/02 08/16
LiDAR
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LSTM-based RNN-G model

To efficiently use both time-series features (RS and weather) and

static feature (genetic marker clusters), an LSTM-based RNN model

(architecture in Figure 4), referred to as RNN-G, is proposed. Different

numbers of stacked LSTM-cells were explored based on the

experimental data, and the sensitivity analysis indicated 2 is the

optimal number. RS and weather features are calculated at each date

and used as input vectors of the stacked LSTM-cells. In this study, four

RS datasets were selected throughout the growing season based on their

GDDs, representing different stages of plant development. The input

dimensionality of the RNN-G model is Nf � Nt where Nf is the

number of RS and weather features, andNt is the number of time steps

(in this study Nt = 4). To avoid redundant parameters in the

prediction model, the static genotype clusters and the output of the

stacked LSTM-cells are concatenated and used as input of a fully

connected layer. The Mean Squared Error (MSE) loss function was

used as a metric in fitting the model. The Adam optimizer (Kingma

and Ba, 2014) was used to update the network weights and minimize

the loss function during the training process. The RNN-G model was

trained on each set of trial using 3-fold cross validation. One-third of

the plots were randomly selected as the test set, and the remaining plots

were split into 90% as training set and 10% as a validation set (to allow

adequate data for training). The modeling strategy needed to

accommodate both the limited quantity of reference data and the

diversity across the experiment. An independent test set was not

selected for these reasons. To evaluate the performance of the model,

the R2
ref was calculated as per Eq. (2). Here, yi and ŷi represent the

ground reference and predicted fresh biomass of plot i, respectively.

R2
ref = 1 −  oi(yi −   byi)

2

oi(yi − �y)2
(2)
Transfer learning strategies

In breeding programs, numerous phenotypic traits are measured

in-field at different growing stages, which, as noted previously, is

traditionally labor- and time-consuming. For example, an

experimental panel with a large number of testcross hybrids (the Tc

panel in this study) usually cannot be destructively sampled multiple

times during the growing season due to resource constraints. To
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address this issue, breeders select representative hybrids and plant

them in a small field referred to as the calibration panel (e.g. Cal panel

in this study). With a relatively small number of hybrids, destructive

sampling can occur multiple times during the growing season,

providing a time series of ground reference data for the LSTM-based

RNN prediction model. A key objective of this study is to develop

transfer learning strategies for the model trained with RS data acquired

over the Cal panel, and perform biomass prediction on the larger Tc

panel. The pre-trained model is fine-tuned with limited training

samples and used to perform prediction in the target domain, which

contains many hybrids that are unseen in the source domain. Two

transfer learning strategies for identifying optimal training samples

from the target domain are investigated: the genomic strategy and the

phenotype strategy. The hybrids manually selected by breeders and

planted in the Cal panel are assumed to be broadly representative.

Thus, the genomic strategy selects the same hybrids that are in the Cal

panel from the Tc panel, and fine-tunes the pre-trained model to

accommodate local differences. The phenotype strategy, as described in

(Wang and Crawford, 2021), assumes that the extracted RS features

represent phenotypes that are highly correlated with biomass. By

clustering the RS features, the algorithm selects the most

representative training samples from the phenotypic point of view.

The k-means clustering algorithm is applied to the RS features

extracted from the Tc panel. The suitable number of clusters is

identified, and the samples with the smallest distance to the centers

of each cluster are selected for fine-tuning the pre-trained model.
Experimental results and discussion

Remote sensing feature
importance analysis

The proposed feature importance analysis was applied to the

hyperspectral and LiDAR features from the Tc and Cal panels in

2018, 2019, and 2020. The original hyperspectral and LiDAR features

are listed in Supplementary Table 1 and Supplementary Table 2

(Masjedi, 2020; Masjedi et al., 2020). The hyperspectral features were

evaluated at plot level, resulting in anNp  �22 feature matrix for each

data set, where Np denotes the number of plots. PCs were extracted

from the individual data sets, and the variance of 22 PCs are shown in

Figures 5A, 6A. The first 5 PCs explained more than 90% of the
FIGURE 4

RNN-G biomass prediction model and input vectors including hyperspectral, LiDAR, and weather features at each stage, and the genotype clusters.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1138479
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1138479
variance in all the individual dates across growing season. The feature

importance (Ifi ) based on the first 5 PCs for the Tc and Cal panels is

shown in Figures 5B–E and Figures 6B–E, respectively. As illustrated

in the figures, different features are dominant within different PCs

over the season. For example, for date 1 of the 2018 Tc panel, the first

PC was dominated by features 5 and 20; the second PC was

dominated by features 4 and 5. The dominant features change over

time or across experimental trials based on the plant physiology and

the local environmental conditions. In this study, a feature is

considered redundant only if it has low importance values at all

growth stages within a year. Common redundant features among all

experimental trials across years were identified by majority voting.

The experimental results are quite consistent for the same trials

planted in different years. Three vegetation indices and one derivative

feature (6th, 17th, 18th, and 22nd features) were identified as redundant

features and removed from the prediction model.

Similar to the hyperspectral features, the original LiDAR

features resulted in an Np  �19 feature matrix, where Np denotes

the number of plots. The variance explained by each PC is shown in

Figure 7A and Figure 8A; the first 5 PCs explained more than 95%

variance in the 4 dates across the growing season. Figures 7B–E, 8B–

E show the results of the importance analysis for the TC and Cal

panels, respectively. The results suggest that different features can

be critical at different growing stages or environments. The 10th and

11th LiDAR based features were identified as redundant among all

experimental trials across years and thus were removed from the

prediction model.
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Genotype clusters based on
genetic markers

PCs of the genetic marker data are of dimension Nv  �80,   104,

where Nv is the number of hybrids. The optimal number of clusters

was determined experimentally, as noted previously. The WCSS

decreases rapidly as the number of clusters k increases at the

beginning. The optimal value of k was selected at the curve of the

elbow graph. In this study, the elbow graph shown as Figure 9

suggests the number of clusters to be 5. A visualization of the 5

clusters is shown in Supplementary Figure 4. Supplementary

Figures 4A, B show different combinations of 3 principal

components to visualize the 5 clusters in 3D plots. Each color

represents a unique cluster. Based on the results, hybrids belonging

to the same category were grouped together. The cluster ID serves as

an input feature representing the genetic information in the

prediction model.
Impact of incorporating
genetic information

To illustrate the impact of incorporating genetic information

into the sorghum biomass prediction model, results from the Tc

panels in 2018, 2019, and 2020 are included in this section. The

learning rate was determined experimentally and set to 0.0005 with

the Adam optimizer, and the number of epochs was set to 1000. The
D

A

B

E

C

FIGURE 5

Principal components of the hyperspectral features in (A) 2018 Tc panel and the corresponding importance of hyperspectral features on (B) the 1st,
(C) the 2nd, (D) the 3rd, (E) the 4th dates which represents four different growing stages.
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FIGURE 7

Principal components of the LiDAR features in (A) 2018 Tc panel and the corresponding importance of all LiDAR features on (B) 1st, (C) 2nd, (D) 3rd,
(E) 4th dates which represents 4 different growing stages.
D

A

B

E

C

FIGURE 6

Principal components of the hyperspectral features in (A) the 2020 Cal panel and the corresponding importance of all hyperspectral features on
(B) the 1st, (C) the 2nd, (D) the 3rd, (E) the 4th dates which represent four different growing stages.
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end-of-season fresh biomass of individual plots was the predicted

variable. Prediction performance of the LSTM-based RNN model

was evaluated based on the difference between the predicted and

ground reference values (R2
ref ). A negative R2

ref indicates a bias in the

predicted values. Two models were developed:
Fron
• Model A: single year biomass prediction using RS and

weather data only;

• Model B: single year biomass prediction using RS, weather,

and genotype cluster information.
The prediction performance of Models A and B was evaluated

against the ground reference data, as shown in Figure 10. As can be
tiers in Plant Science 10
seen in Figures 10A, C, E, Model A tended to under-predict the fresh

biomass for the high-yielding plots (as marked by the red circles). By

incorporating the genotype information, Model B was able to provide a

more reliable estimate of the end-of-season fresh biomass for these

high-yielding hybrids, as shown in Figures 10B, D, F.
Transfer learning from Cal to Tc

The two proposed transfer learning strategies were evaluated using the

Tc and Cal panels in 2018, 2019, 2020, and 2021. Results of two scenarios

were investigated: i) the Tc and Cal panels were from different fields in the

same year, and ii) the Tc and Cal panels were from different years.
FIGURE 9

Elbow point graph of within-cluster sum of squares, the red point shows the selected number of clusters.
D

A

B

E

C

FIGURE 8

Principal components of the LiDAR features in (A) 2019 Tc panel and the corresponding importance of all LiDAR features on (B) 1st, (C) 2nd, (D) 3rd,
(E) 4th dates which represents 4 different growing stages.
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The Tc and Cal panels in 2019 and 2020 were used for the first

scenario. As mentioned in Section 3.1, the Cal panels contain 72

hybrids which are a subset of 630 hybrids in the Tc panels. Four

models were developed based on Tc and Cal panels in 2019 (Table 3):
Fron
• Model R19tc: the RNN-G pre-trained with the Tc panel in

2019;

• Model R19cal: the RNN-G pre-trained with the Cal panel in

2019;

• Model R19cal-G19: Model R19cal fine-tuned with training

samples selected by the genomic strategy from the Tc panel

in 2019;

• Model R19cal-P19: Model R19cal fine-tuned with training

samples selected by the phenotype strategy from the Tc

panel in 2019.
Table 3 shows the results obtained with all four models over the Tc

panel in 2019, including the number of training samples/hybrids, R2
ref
tiers in Plant Science 11
and root-mean-square error (RMSE) values of prediction, andR2
ref values

of ranking. The average fresh biomass weights of each hybrid were used

to calculate the R2
ref values of ranking. Both models R19cal and R19tc

were used as baseline models. Model R19tc was trained with target

domain data (Tc panel) and thus was expected to have the highest R2
ref

value and the lowest RMSE value. Model R19cal was trained with source

domain data (Cal panel) without using any information from the target

domain (Tc panel), and thus yielded the lowest R2
ref value and the highest

RMSE value. Based on Table 3, models R19cal-G19 and R19cal-P19

achieved similar R2
ref values in both prediction and ranking. The two

models also obtained similar RMSE values in prediction. Compared to

model R19cal, both the genomic and phenotype strategies achieved

significant improvement of prediction and ranking results. It should

also be noted that the phenotype strategy (R19cal-P19) required only

about half the quantity of training data used by the genomic strategy

(R19cal-G19). However, both strategies have nearly the same number of

hybrids. As mentioned previously, the Cal panel contains a subset of

genotypes manually selected by the breeder according to his belief that
D

A B

E F

C

FIGURE 10

Performance of single year biomass prediction: (A) Model A on the 2018 Tc panel, (B) Model B on the 2018 Tc panel, (C) Model A on the 2019 Tc panel,
(D) Model B on the 2019 Tc panel, (E) Model A on the 2020 Tc panel, (F) Model B on the 2020 Tc panel. Red circles show the improvement of the
prediction results with genetic information, which occurred for high biomass reference values, typically associated with photoperiod sensitive hybrids.
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these hybrids are representative of the 630 genotypes planted in Tc. The

conceptual basis of the phenotype strategy is that k-means clustering can

effectively represent the phenotypic groups and identify informative

training samples. This result implies that from both genotypic and

phenotypic points of view, the variation/behavior of the 630 genotypes in

the Tc panel can be represented by the around 70 genotypes.

Both the genomic and phenotype strategies selected a similar number of

hybrids, and the selected hybrids cover the five major genotype clusters

(Supplementary Figure 5). The PC representation of hybrids based on the

phenotype strategy is essentially the same as for the genomic strategy.

The analysis was repeated to investigate consistency. Four

models were developed based on Tc and Cal panels planted in

2020 (Table 4):
Fron
• Model R20tc: the RNN-G pre-trained with Tc panel in

2020;

• Model R20cal: the RNN-G pre-trained with Cal panel in

2020;

• Model R20cal-G20: Model R20cal, fine-tuned with training

samples selected by the genomic strategy from the Tc panel

in 2020;

• Model R20cal-P20: Model R20cal, fine-tuned with training

samples selected by the phenotype strategy from the Tc

panel in 2020.
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The fresh biomass prediction performance of the four models

over the Tc panel in 2020 is shown in Table 4. Models R20cal and

R20tc were used as baseline models to show the best and worst

performances, respectively. Models R20cal-G20 and R20cal-P20

achieved similar R2
ref values in prediction and ranking, and they

also had similar RMSE values in prediction. The performances of

Models R20cal-G20 and R20cal-P20 showed significant

improvement compared to Model R20cal. In fact, their

performances were quite comparable to the Model R20tc. As in

2019, both the genomic and phenotype strategies selected a similar

number of hybrids from the five major genotype clusters

(Supplementary Figure 6). Overall, the findings of analyses

conducted on Tc and Cal panels in 2019 and 2020 are consistent.

The results show that the proposed transfer learning strategies can

efficiently select critical training samples and achieve reasonable

prediction results over the Tc panel while using less than 20% of the

training data.

In the second scenario, the Tc and Cal panels planted in different

years (2018 and 2021) were used in an experimental trial. The different

environmental conditions associated with the field and weather

between the two years provided more challenging conditions to

verify the robustness of the transfer learning strategies. Similarly, four

models were developed to verify the performance of the two proposed

transfer learning strategies (Table 5):
TABLE 4 Biomass prediction results obtained by the 4 models on the Tc and Cal panels in 2020.

Model
R20tc

(pre-trained with
Tc-2020)

R20cal
(pre-trained with

Cal-2020)

R20cal-G20
(fine-tuned R20tc with
genomic strategy)

R20cal-P20
(fine-tuned R20tc with phe-

notype strategy)

Number of training samples
from 2020 Tc panel

744 0 143 80

Number of training hybrids
from 2020 Tc panel

417 0 72 77

R2
ref of prediction 0.76 0.07 0.68 0.67

RMSE of prediction (g=m2) 504.21 933.11 571.93 582.27

R2
ref of ranking 0.77 0.58 0.72 0.71
TABLE 3 Biomass prediction results obtained by the 4 models on the Tc and Cal panels in 2019.

Model
R19tc

(pre-trained with
Tc-2019)

R19cal
(pre-trained with

Cal-2019)

R19cal-G19
(fine-tuned R19tc with
genomic strategy)

R19cal-P19
(fine-tuned R19tc with phe-

notype strategy)

Number of training samples
from 2019 Tc panel

726 0 129 70

Number of training hybrids
from 2019 Tc panel

378 0 67 68

R2
ref of prediction 0.78 -5.02 0.66 0.62

RMSE of prediction (g=m2) 316.14 1703.64 397.43 410.59

R2
ref of ranking 0.81 0.54 0.69 0.65
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Fron
• Model R18tc: the RNN-G pre-trained with the Tc panel in

2018;

• Model R21cal: the RNN-G pre-trained with the Cal panel in

2021;

• Model R21cal-G18: Model R21cal fine-tuned with training

samples selected by the genomic strategy from the Tc panel

in 2018;

• Model R21cal-P18: Model R21cal fine-tuned with training

samples selected by the phenotype strategy from the Tc

panel in 2018.
Table 5 shows the evaluation results over the Tc panel in 2018

for the four models. Models R21cal and R18tc were used as baseline

models. According to Table 5, the proposed two transfer learning

strategies, Models R21cal-G18 and R21cal-P18, achieved similar

R2
ref values in prediction and ranking. The two models also obtained

similar RMSE values in prediction. Compared with the lowest

reference value, Model R21cal, both transfer learning strategies

obtained higher R2
ref values and lower RMSE values, and their

performances were quite comparable to the highest reference,

Model R18tc. The number of hybrids selected by the genomic and

phenotype strategies are similar, and these hybrids cover the five

major genotype clusters (Supplementary Figure 7).

In summary, both the genomic and phenotype strategies

significantly improved the performance of the pre-trained model

in the target domain in both experiments in the same year (weather

conditions equivalent) and different years (different fields and

different weather). The results also indicate that the phenotype

strategy can achieve similar prediction performance as the

genomic strategy using only half number of the training samples.
Summary of experimental results

In section Remote sensing feature importance analysis, based on

the remote sensing feature importance analysis results from three

years’ Tc and Cal panels, 4 hyperspectral and 2 LiDAR features were

identified as redundant features and removed from the

prediction model.

In section Genotype clusters based on genetic markers, the

unsupervised genotype clustering result showed all the hybrids
tiers in Plant Science 13
involved in this study (630) can be grouped into 5 major clusters.

The cluster IDs were used as input information for the RNN-G

biomass prediction model.

In section Impact of incorporating genetic information, the

advantage of incorporating the genetic information into the

biomass prediction model was demonstrated. Model B (with

genetic information) achieved more accurate prediction results on

the high-yielding plots thanModel A (without genetic information).

In section Transfer learning from Cal to Tc, the two proposed

transfer learning strategies were verified under two scenarios:
• The Tc and Cal panels were from different fields in the same

years: the experiments were conducted in two years (2019

and 2020) to investigate consistency. Models R19cal-G19/

R20cal-G20 and R19cal-P19/R20cal-P20 (using genomic

and phenotype s trateg ies) obta ined s ignificant

improvement over the lowest baseline models, respectively.

• The Tc and Cal panels were from different years: the Tc-

2018 and Cal-2021 were analyzed. With different

environmental conditions, models R21cal-G18 and

R21cal-P18 (using genomic and phenotype strategies) still

achieved comparable prediction results to the highest

baseline model, respectively.
Overall, the two transfer learning strategies had similar

performance and both tended to select training samples to cover

all 5 major genotype clusters.
Conclusions and discussion

This study proposed an LSTM-based RNN model for plot-level

sorghum biomass prediction using remote sensing, weather, and

genotypic data. Feature importance analysis was utilized to identify

remote sensing features with low importance across multiple growing

stages and fields. These features were removed from the biomass

prediction model to reduce the redundancy and enhance robustness

of the model. The number of features removed was surprisingly small;

this was primarily due to the importance of features being time

dependent over the growing season. A strategy for dimension

reduction of genetic marker data was implemented. The
TABLE 5 Biomass prediction results obtained by the 4 models on the Tc panel in 2018 and Cal panel in 2021.

Model
R18tc

(pre-trained with
Tc-2018)

R21cal
(pre-trained with

Cal-2021)

R21cal-G18
(fine-tuned R18tc with
genomic strategy)

R21cal-P18
(fine-tuned R18tc with
phenotype strategy)

Number of training samples
from 2018 Tc panel

732 0 131 80

Number of training hybrids
from 2018 Tc panel

419 0 67 76

R2
ref of prediction 0.81 0.57 0.69 0.69

RMSE of prediction (g=m2) 504.03 748.85 633.07 638.14

R2
ref of ranking 0.82 0.58 0.70 0.70
frontiersin.org

https://doi.org/10.3389/fpls.2023.1138479
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1138479
architecture of the proposed LSTM-based RNN model is designed to

handle the time series remote sensing and weather data, as well as

the static genetic information. Two transfer learning strategies, the

genomic and phenotype strategies, were investigated to leverage the

knowledge learned from a subset of hybrids in a breeding program.

The performance of the proposed strategies was assessed over a

sorghum breeding experiment planted in multiple years with more

than 600 testcross hybrids. Experimental results showed that the

hybrids could be clustered into 5 major classes based on their

genotype information. The proposed LSTM-based RNN biomass

prediction model achieved a high accuracy (R2
ref value around 0.8) for

single year prediction. In terms for transfer learning, both the

genomic and phenotype strategies effectively selected critical training

samples and thus improved the performance of the pre-trained

model in the target domain. Based on the genotype cluster plots of

the selected samples, the two transfer learning strategies sought to

accommodate the variability of the hybrids in the target domain. This

result also indicates the strong relationship between crop

phenotyping and genotyping. For large crop breeding experiments,

phenotyping can potentially be used as a key factor to select the most

informative training samples for the biomass prediction model and

help reduce the manual harvest work.

Currently, the proposed LSTM-based RNN biomass prediction

model requires time-series RS data throughout the whole growing

season. Use of partial growing season RS data to predict the end-of-

season biomass at an early stage is being explored to provide early

rankings and thus allow concentrate effort on promising hybrids.
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SUPPLEMENTARY FIGURE 1

An example of (A) hyperspectral orthomosaic, and (B) reconstructed LiDAR
point cloud over field 54.

SUPPLEMENTARY FIGURE 2

Example 4-row plot from the Tc panel in 2020; Features extracted from areas
within the yellow boxes.

SUPPLEMENTARY FIGURE 3

Cumulative environmental features during 2018-2021 growing season: (A)
cumulative precipitation, (B) cumulative GDDs, and (C) cumulative radiation.

SUPPLEMENTARY FIGURE 4

3D plots of the five genotype clusters in different colors: (A) plot showing the

three principal components (PCs) PC1, PC2, and PC3, and (B) plot showing

PC1, PC2, and PC4.

SUPPLEMENTARY FIGURE 5

Genotype clusters of the training samples selected by two transfer learning

strategies, shown in 3D plots with different combinations of principal
components (PCs), (A) shows the 67 hybrids selected by R19cal-G19 and

the distribution of those hybrids in all hybrid lines; (B) shows the 68 hybrids

selected by R19cal-P19 and the distribution of those hybrids in all hybrid lines.

SUPPLEMENTARY FIGURE 6

Genotype clusters of the training samples selected by two transfer learning

strategies, shown in 3D plots with different combinations of principal
components (PCs), (A) shows the 72 hybrids selected by R20cal-G20 and

the distribution of those hybrids in all hybrid lines; (B) shows the 77 hybrids

selected by R20cal-P20 and the distribution of those hybrids in all
hybrid lines.

SUPPLEMENTARY FIGURE 7

Genotype clusters of the training samples selected by two transfer learning
strategies, shown in 3D plots with different combinations of principal

components (PCs), (A) shows the 67 hybrids selected by R21cal-G18 and

the distribution of those hybrids in all hybrid lines; (B) shows the 76 hybrids
selected by R21cal-P18 and the distribution of those hybrids in all hybrid lines.
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