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High-temperature stress affects crop yields worldwide. Identifying thermotolerant

crop varieties and understanding the basis for this thermotolerance would have

important implications for agriculture, especially in the face of climate change.

Rice (Oryza sativa) varieties have evolved protective strategies to acclimate to high

temperature, with different thermotolerance levels. In this review, we examine the

morphological andmolecular effects of heat on rice in different growth stages and

plant organs, including roots, stems, leaves and flowers. We also explore the

molecular and morphological differences among thermotolerant rice lines. In

addition, some strategies are proposed to screen new rice varieties for

thermotolerance, which will contribute to the improvement of rice for

agricultural production in the future.
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1 Background

High-temperature stress is an important environmental factor affecting crop growth

and yield (Yang et al., 2017). In 2017, four independent studies estimated that for every 1°C

increase in the average global temperature, rice (Oryza sativa) yields would decrease by

3.2%, maize (Zea mays) yields by 7.4%, wheat (Triticum aestivum) yields by 6%, and

soybean (Glycine max) yields by 3.1% (Zhao et al., 2017). Therefore, mitigating the

decreases in yield caused by high temperatures by developing and cultivating new

thermotolerant crop varieties has emerged as an important strategy for sustainable

agriculture. Rice represents the main food source for nearly half of the world’s

population, accounting for 21% of total global caloric intake. The cultivation area of rice

accounts for 11% of the total cultivated land area worldwide. It is estimated that global rice

consumption will increase from 480 million tons in 2014 to nearly 550 million tons in 2030

(Yuan et al., 2021). Rice yield is estimated to decrease by up to 10% with every 1°C increase

in land surface temperature (Peng et al., 2004). Given the frequency of extreme heat events,

it is important to identify existing thermotolerant rice varieties and develop new ones.
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In this review, we explore the effects of high temperature on rice

at different stages of growth. We then explore the effects of high-

temperature stress on cellular processes and phytohormones in rice.

Finally, we examine the mechanisms by which thermotolerant rice

varieties acclimate to high temperature. Understanding these effects

and mechanisms will provide a foundation for producing new

thermotolerant rice varieties, which will be essential for the future

of agriculture.
2 Effects of high temperature on rice
at different stages

The life cycle of rice is divided into vegetative (germination,

seedling growth, and tillering) and reproductive (booting, heading,

flowering, and maturation/grain filling) stages; high temperatures

have different effects on plants at different stages of development

(Zhang C et al., 2018). Rice plants are particularly sensitive to

temperature stress during reproductive growth and maturation,

when exposure to high-temperature stress can significantly affect

development and yield (Lawas et al., 2019; Chen et al., 2020). The

two subspecies, Japonica and Indica, have different domestication

origins. Japonica and Indica originated in temperate regions and

tropical regions, respectively. Indica is more thermotolerant than

Japonica and has different morphological and physiological

characteristics (Lee et al., 2002; Lee et al., 2017). So, these

geographic origins should be taken into account, when different

kinds of species were used for high temperature treatment.

Therefore, during the domestication of modern rice varieties, the

two subspecies were used as backgrounds of their respective

varieties. Figure 1 shows the impact of high temperature on

different developmental stages of rice.
2.1 Influence of high temperature on
vegetative growth

Vegetative growth includes seed germination, early seedling

growth, and tillering. Long-term exposure to high temperatures

affects the germination rate of rice seeds (Liu et al., 2015). In

seedlings, high temperature can destroy cell membranes, inhibit

photosynthesis, and increase oxidative damage, leading to increased

water loss, wilting, damage to root growth, and even plant death

(Bahuguna et al., 2015; Liu et al., 2018). To mitigate these effects,

rooting agents such as iron chelators, calcium, silicone, and

gibberellins can be added during sowing to improve the seed

germination rate, promote root growth, and reduce the effects of

high temperatures on the resulting plants (Tiwari et al., 2022).

Tillering determines the structure and yield of rice plants and is

thus an important agronomic trait of rice. Tillers develop from the

leaf axillary bud on the mother stem and grow at an angle centered

on the main stem (Wang et al., 2018; Luo et al., 2021). Tiller number

and angle affect yield: tillers growing at a large angle reduce harvest

efficiency, planting density, and yield, whereas tillers growing at a

small angle increase disease risk (Dias de Oliveira et al., 2015; Hu

et al., 2020). High temperature can decrease tillering and thus
Frontiers in Plant Science 02
panicle number in rice. For example, Soda reported that panicle

number and yield per plant decreased by 35% and 28%, respectively,

in rice plants subjected to high-temperature stress (Soda

et al., 2018).

Studies aimed at mitigating these effects have focused on the

regulation of tillering. For example, heterologous overexpression of

TaGAMYB1 (encoding a GAMYB-like family transcription factor)

or overexpression of FIBRILLIN 1 (OsFBN1) or OsSTVB-I (a rice

stripe virus resistance gene) improved thermotolerance and

increased tiller number in rice (Li et al., 2019; Hayano-Saito and

Hayashi, 2020; Wang et al., 2012). In addition, the tiller angle

between the main stem of rice and its side tillers also directly affects

the photosynthetic rate, and thus affects the rice yield per unit area

(Li et al., 2020a). Recent studies have shown that the expression of

HEAT SHOCK FACTOR A2d (HSFA2d) increases rapidly only

15 min after HS, and the formation of rice tiller angle can be

regulated by HSFA2D-LA1 (LAZY1) pathway in rice (Zhang N

et al., 2018; Hu et al., 2020; Prerostova et al., 2021). Therefore, the

phenotypic characteristics of tillers can also be used as one of the

screening criteria for thermoresistant varieties.
2.2 Influence of high temperature on
reproductive development

The reproductive stage includes booting, heading, and

flowering. We will discuss maturation, which includes grain

filling, in Section 2.3. The reproductive period, especially heading

and flowering, is very sensitive to high-temperature stress (Matsui

et al., 2015). Rice belongs to the Poaceae family. The spikelet,

representing the basic structure of the Poaceae inflorescence, is

composed of stamens, pistils, glumes, and lemmas (Ren et al., 2020).

High temperature during the reproductive period primarily affects

the fertility and number of spikelets, resulting in a serious decline in

rice yield. As early as 1978, Satake and Yoshida reported that

exposing rice to temperatures above 35°C for about five days

during the reproductive period resulted in spikelet sterility and

failure to produce seeds (Satake and Yoshida, 1978). The effect of

high temperature on the reproductive period was greater before

than after flowering. Exposing pre-flowering spikelets to 33.7°C for

one hour was sufficient to cause sterility, but exposing post-

flowering spikelets to 38°C or 41°C for one hour did not cause

sterility (Jagadish et al., 2007; Ishimaru et al., 2010; Shi et al., 2018).

Stamens are particularly sensitive to high temperature. Indeed,

Miura et al. reported that pistils could be successfully fertilized by

hand pollination even after five-day exposure to 41°C (Miura et al.,

2011). High temperature has several negative effects on rice

stamens. Firstly, high temperature interferes with meiosis during

pollen development, resulting in the formation of sterile pollen

(Endo et al., 2009). Secondly, high temperature inhibits pollen

dehiscence and decreases the swelling ability of pollen grains,

thus reducing the amount of pollen falling on a stigma and

affecting the fertilization rate (Arshad et al., 2017; Hu et al.,

2021). Thirdly, the moisture content of pollen grains is crucial to

both the formation and diffusion of pollen grains. When pollen falls

onto a stigma, the moisture content changes according to
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environmental conditions; high temperature plays a role in

disrupting this process (Das et al., 2014; Shrestha et al., 2022).

Finally, high temperature strongly reduces the amount of protein

present in pollen, thereby reducing the germination ability of pollen

and the elongation rate of the pollen tube, leading to spikelet

sterility (Arshad et al., 2017; Jagadish, 2020; Shrestha et al., 2022).

Some thermotolerant rice varieties rapidly release pollen early

during flowering, but many thermosensitive varieties fail to release
Frontiers in Plant Science 03
pollen in time to effect fertilization. For example, in the

thermotolerant rice variety Nagina 22 (N22), pollen dehiscence

occurs rapidly upon opening of the glumes, and the released pollen

settles on the stigma (Kobayashi et al., 2015). The anther cavity of

thermotolerant Japonica rice varieties (Akitakomachi, Nipponbare)

are well developed, and the septum breaks rapidly when the pollen

expands, resulting in high spikelet fertility (Matsui and Omasa,

2002). High temperature also causes decreases in pollen protein
FIGURE 1

High temperature has different effects on rice at different stages of the plant life cycle: reduced germination rate, loss of water, loss of membrane
integrity, inhibited photosynthesis, ROS accumulation, phytohormone imbalance, altered carbohydrate, altered lipid metabolism, dead seedlings, and
reduced tiller number at the vegetative stage; deformed floral organs, reduced spikelet fertility, reduced spikelet number, changed flower opening
time, reduced spikelet fertility, reduced spikelet number, and altered flower opening time at the reproductive stage; reduce starch biosynthesis,
lower starch accumulation, boost senescence of functional leaves, reduced grain filling and increased chalkiness rate at the maturity stage.
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content and viability. Indeed, a typical characteristic of a

thermotolerant variety is its strong pollen viability (Zhao et al.,

2018). Pollen tubes are also extremely sensitive to high temperature,

which affects grain yield. Therefore, studying the morphology and

physiology of floral organs from different thermosensitive and

thermotolerant varieties may help breeders screen varieties for

thermotolerance (Matsui and Omasa, 2002).

Approaches to mitigating the effect of high temperature on

reproductive development have focused on identifying the

underlying genetic factors. For example, Ye et al. identified a QTL

(qHTSF4.1) on chromosome 4 in 24 rice varieties. Compared with

rice varieties without qHTSF4.1, most varieties with this QTL

showed increased spikelet fertility under high-temperature stress

during the reproductive period, thus improving yield (Ye et al.,

2015). Therefore, in addition to detecting pollen viability, changes

in the expression levels of related target genes can also be detected

after high-temperature stress to evaluate the changes in pollen

metabolism and phytohormone levels, representing another

effective method for identifying thermotolerant rice varieties.

In addition, rice varieties have different flowering duration and

significantly different flower opening time (FOT), ranging from

early morning to midnight. High temperatures shorten the

flowering time, limiting the time for pollination (Jagadish et al.,

2007; Djanaguiraman et al., 2020). Therefore, changing the FOT

can help protect rice from high-temperature stress, thereby

reducing damage during flowering. This early-morning flowering

(EMF) strategy has been effectively applied in rice. This strategy is

to breed cultivars that escape high temperature at flowering because

of their EMF trait has been effectively applied in rice.

Under simulated continuous warming, Nanjing 11 began

flowering after 7 am, with one flowering peak between 9 and 10

am and one between 11 and 12 am. However, qEMF3 advanced the

flowering peak of Nanjing 11 to 7-8 am, thereby improving

thermotolerance (Hirabayashi et al., 2015; Jagadish, 2020). In

addition, when post-flowering stage is exposed to high night

temperatures, respiration is accelerated, resulting in higher carbon

loss, and affecting starch accumulation, thus reducing rice yield

(Bahuguna et al., 2017; Impa et al., 2021). In conclusion, early

flowering can protect spike heads and preserve fertility when plants

experience high temperatures. We can systematically evaluate the

start and peak of the FOT, select suitable varieties, or modify the

FOT to protect crops from high temperatures during propagation

and thus improve yields.
2.3 Influence of high temperature
on maturation

Grain filling occurs during the maturity stage and involves the

conversion of sucrose produced by photosynthesis into starch,

which is the major carbohydrate in rice and an important

determinant of grain quality and yield (Tang et al., 2018). The

starch in rice grains is mainly derived from sugars produced in the

grains after anthesis and from sugars that are redistributed from

other vegetative tissues, such as stems and leaf sheaths. For

reactivating assimilates stored in vegetative tissues and
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transferring them to grains, whole-plant senescence should be

initiated (Yang and Zhang, 2006). Delaying the senescence results

in insufficient grain filling, with large amounts of carbohydrates

remaining unused in the straw (Plaut et al., 2004).

High temperature during grain filling can reduce rice yields by

50% (Sreenivasulu et al., 2015). It can also cause the failure of grain

filling in rice and wheat by affecting the accumulation of starch

granules, ultimately resulting in yield losses (Chen et al., 2017; Impa

et al., 2021). High-temperature stress during grain filling also

induces DNA methylation in the promoters of abscisic acid

(ABA) catabolic genes and a-amylase genes, which can delay the

germination of the resulting seeds (Suriyasak et al., 2020).

High temperature affects starch accumulation in rice grains via

the following mechanisms: Firstly, high temperature can shorten

the grain filling period, resulting in insufficient grain filling and

inadequate starch accumulation, thus reducing grain yield (Chen

et al., 2021b). Secondly, high temperature can reduce the gene

expression and bioactivity of key enzymes involved in the

conversion of sucrose to starch in endosperm, reducing the rate

of starch synthesis and thus affecting total starch content and starch

accumulation patterns, especially the amylose content of

endosperm starch (Yamakawa and Hakata, 2010; Zhang et al.,

2021; Shirdelmoghanloo et al., 2022). Thirdly, high temperature

can inhibit photosynthesis in other vegetative organs such as stems

and leaf sheaths, resulting in an insufficient supply of fixed carbon

from vegetative organs to spikelets, a slower grain filling rate, and a

lower grain weight (Yang and Zhang, 2010).

Spermidine (Spd) is an important bioactive polyamine in plants.

Exogenous Spd treatment enhances thermotolerance in seeds by

regulating starch and polyamine metabolism and reducing high-

temperature-induced damage during grain filling. Spd treatment

increased the accumulation of OsSAP5 (stress-associated protein 5,

an A20/AN1 zinc finger domain protein). When OsSAP5 was

heterologously overexpressed in Arabidopsis thaliana, the 1,000-

grain weight and thermotolerance of seeds were significantly

enhanced. OsSAP5 may be involved in Spd-mediated

thermotolerance during seed development (Chen et al., 2021b).

Fibrillin 1 (OsFBN1) and the heterodimers formed by ONAC127/

129 (two seed-specific NAM/ATAF/CUC domain transcription

factors) are also involved in plant growth and grain filling under

high-temperature stress (Li et al., 2019; Ren et al., 2021). Rice

mutants with deletions of CPHSP70-2 are sensitive to high

temperatures and show substantial chalkiness in grains, which

seriously affects their yield and quality (Jiang et al., 2021; Yang

et al., 2021).

Some studies have shown that grain filling is related to the

overall thermotolerance of plants, and most thermosensitive lines

show impaired grain filling under high-temperature stress (He et al.,

2018; He et al., 2021). The loss-of-function mutants of ERECTA are

thermosensitive, and their seeds are smaller than those of the wild

type (WT) (Shen et al., 2015; Wu et al., 2022b). High temperature

not only reduced the size and yield of rice seeds, but also affected the

quality of endosperm (Nevame et al., 2018). The grains of rice

grown under normal conditions are round, full, and transparent

after filling. However, the rice chalkiness rate (chalkiness is the

opaque part of the endosperm in the rice kernel and contain a lower
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density of starch granules as compared to vitreous ones) increased

significantly and the grain weight decreased after high-temperature

stress (Wada et al., 2019; Wang et al., 2022a). This has seriously

affected the quality of rice and the cooking taste of consumers.

Therefore, thermotolerant varieties can be screened by measuring

seed size, weight, and the frequency of chalky grains.
3 Heat stress responses in rice

How do plants sense high temperatures? Numerous studies on the

model plant Arabidopsis have revealed multiple “thermosensors,”

including the Ca2+ channel proteins CNGCs (cyclic nucleotide-gated

calcium channels) and ANNs (annexins) (Zheng et al., 2012; Li et al.,

2018a), RNA thermometers, alternative splicing, changes in DNA/

chromatin structure (H2A.Z), photoreceptor phytochrome B, and

EARLY FLOWERING 3 (ELF3), which exhibits liquid–liquid phase

separation. Recent studies have shown that TT3.1 located on the

plasma membrane can transfer heat signals to chloroplasts and

improve the thermotolerance of rice (Zhang et al., 2022a). Together,

these thermosensors sense high temperatures in the environment and

efficiently, repeatedly, and stably transmit heat signals to downstream

response factors (Vu et al., 2019; Guihur et al., 2022). On the other

hand, research into rice has mainly focused on the response to high-

temperature stress in recent years, but it is well established that high-

temperature stress can cause protein misfolding and accumulation of

high levels of reactive oxygen species (ROS) in rice, which reduce plant

thermotolerance (Li et al., 2022).
3.1 Heat stress and transcriptional
regulation

When plants are under heat stress, they initiate a heat shock

response, which is induced by the accumulation of denatured

proteins and the transient influx of calcium through specific

calcium-permeable channels in the plasma membrane (Zheng

et al., 2012; Li et al., 2018a). When rice is subjected to heat stress,

a series of heat shock genes are induced, among which heat shock

proteins (HSPs) and heat shock factors (HSFs) play crucial role in

plant thermotolerance. HSPs can be divided into HSP100, HSP90,

HSP70, HSP60, HSP40, and small HSPs; these proteins defend cells

against damage (Muller and Rieu, 2016; Wang et al., 2020). HSPs

function as molecular chaperones to enhance protein folding and

prevent the accumulation of unfolded proteins in cells under high-

temperature stress (Ding et al., 2020). OsHSP101 positively

regulates tolerance to high temperature and acquired heat shock

memory in rice. CHLORPLAST-LOCALIZED HEAT SHOCK

PROTEIN 70 (OsHSP70CP1) is essential for chloroplast

development under high-temperature conditions (Kim and An,

2013). In addition to HSPs, other related components have been

discovered and placed in a complex regulatory network. HSFs are

key components of the plant heat-stress response that play

important roles in heat-stress memory. To date, 25 OsHSF genes

have been identified in rice (Mittal et al., 2009). Exogenous

expression of OsHSFA2e enhanced thermotolerance in transgenic
Frontiers in Plant Science 05
Arabidopsis (Yokotani et al., 2008). Under high-temperature

conditions, OsHSFA2d is alternatively spliced into OsHSFA2dI,

the transcriptionally active form of OsHSFA2d, which participates

in the heat-stress response (Cheng et al., 2015).
3.2 Heat stress and physiological
adaptations

High-temperature stress inhibits anthocyanin accumulation in

rice by suppressing the expression of various genes in the

anthocyanin biosynthetic pathway. On the other hand,

anthocyanins are widely recognized as antioxidant factors in plant

cells with high ROS scavenging ability. And it is known that high-

temperature also causes the accumulation of ROS in plant cells,

which eventually leads to plant death. The presence of antioxidants

is necessary to maintain the dynamic balance of ROS in plants and

protect them from the adverse effects of high-temperature stress

(Zaidi et al., 2019). High-temperature stress leads to the production

of reactive oxygen species, which in turn disrupts the membrane

system of cysts, chloroplasts, and plasma membranes. Inactivation

of the photosystem, reduction of photosynthesis and inactivation of

rubisco affect the production of photoassimilates and their

distribution. This ultimately affects flowering, seed filling, size,

number, and maturity of rice seeds, thus hindering crop

productivity (Miyazaki et al., 2013; Lal et al., 2022). In addition,

high temperature is also one of the environmental factors that cause

premature leaf senescence in plants. Respiration is very sensitive to

high temperatures. The abundance of CYTOCHROME C

OXIDASE (COX), the key protein of respiration, decreased

significantly when subjected to prolonged high temperature stress

(Rashid et al., 2020). The decrease in respiration rate was predicted

to be greater for thermotolerant rice (Ferguson et al., 2020). In order

to reduce the damage to the plant, when suffer from high

temperatures, the leaves open their stomata by increasing

transpiration, which in turn has the effect of reducing the surface

temperature of the leaves. On the other hand, sustained high

temperatures can lead to plant death by causing massive water

loss, reduced membrane mobility and permeability, and stomatal

closure (Cochard et al., 2007; Liu et al., 2016).
3.3 Heat stress and phytohormones

Plant hormones also regulate thermotolerance in rice via

independent or interconnected pathways. Moreover, the

applicat ion of exogenous plant hormones affects the

thermotolerance of rice (Fahad et al., 2016). Salicylic acid (SA)

enhances stress resistance in plants and plays an important role in

regulating rice thermotolerance. Under high-temperature

conditions, SA reduces the accumulation of ROS in anthers to

prevent premature degradation caused by tapetal programmed cell

death, thereby alleviating pollen abortion (Feng et al., 2018;

Nadarajah et al., 2021). Brassinosteroids (BRs) function in plant

morphogenesis and abiotic stress tolerance. Application of BRs can

significantly improve the thermotolerance of plants (Ren et al.,
frontiersin.org
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2022). And BRs induce thermotolerance in plants under high-

temperature stress by increasing the synthesis of HSPs and the

expression of genes encoding protective enzymes (Hwang and Back,

2019). Ethylene-mediated signaling pathways help reduce oxidative

damage, maintain chlorophyl l content , and enhance

thermotolerance in rice seedlings under high-temperature stress.

Ethylene also affects rice thermotolerance by regulating

carbohydrate metabolism, antioxidant systems, and thus

photosynthesis (Gautam et al., 2022).

In general, Abscisic acid (ABA) normally plays a positive

regulatory role in rice in response to high-temperature stress. For

example, ABA can prevent pollen abortion under high-temperature

stress by regulating sugar metabolism in rice spikelets (Rezaul et al.,

2019). Rice endogenous ABA content can be regulated by 9-CIS-

EPOXYCAROTENOID DIOXYGENASE (OsNCED1), which

positively regulates thermotolerance in rice seedlings by increasing

endogenous ABA content, thereby improving antioxidant capacity,

and activating the expression of heat and ABA-related genes

expression (Zhang et al., 2022b). However, ABA also plays a

negative regulatory role in regulating thermotolerance in rice. High

temperature causes the accumulation of ABA in rice, which inhibits

seed germination (Liu et al., 2019). ABA is a negative regulator of

thermotolerance in high temperature susceptibility (hts) plants with

semi-rolled leaves by modulating energy homeostasis. More

interesting, exogenous ABA significantly decreased thermotolerance

of hts plants, but clearly enhanced thermoresistance of WT (Li et al.,

2020b). The function of ABA on heat stress is important and

comprehensive. More research work may be needed to clarify the

comprehensive function of ABA in response to heat in detail.

Jasmonic acid (JA) and its methyl ester play important roles in

plant responses to biotic and abiotic stresses. HEAT-TOLERANCE

GENE ONCHROMOSOME 3 (HTG3) regulates thermotolerance in

rice by upregulating two heat-responsive JASMONATE ZIM-

DOMAIN (JAZ) genes (Wu et al., 2022a). Auxin plays an

important role in maintaining spikelet fertility, and decreased levels

of the active auxin indole-3-acetic acid (IAA) can cause pollen

abortion. High temperature stress induced rice spikelet sterility by

inhibiting pollen tube elongation and interfering with auxin

homeostasis in the pistil (Zhang C et al., 2018; Zhang N et al., 2018).

Increases in global temperature seriously affect rice yields, making

it crucial to understand the roles of different phytohormones and

their crosstalk in regulating the thermotolerance of rice. To date, few

studies have focused on the roles of endogenous plant hormone

signaling in thermotolerance in rice. This line of research will be

crucial for maintaining the growth and yield of rice and enhancing its

ability to withstand adverse environmental conditions. Designing

strategies to reduce yield losses in rice may involve using the

components of phytohormone signaling networks to breed varieties

with altered expression levels of important stress-response regulators.
3.4 Heat stress involved in
complex stresses

A variety of stresses co-occur in rice fields, the most common of

which are heat and drought stress. The response of rice to combined
Frontiers in Plant Science 06
stress factors is unique, with rapid adjustments at the physiological

and molecular levels (Yadav et al., 2022). High temperatures are

often associated with water deficit. Plants normally close their

stomata in response to rapid water loss from plant tissues or the

soil, but this can lead to increased tissue temperatures due to

impaired transpiration. In addition, high temperatures can lead to

drought stress through evapotranspiration (Jin et al., 2015).

Exposure to combined heat and drought stress can lead to the

production of ROS, triggering protective responses such as

increasing the expression and activity of ROS-scavenging enzymes

and molecules. Rice senses stress signals through signaling sensors

including Ca2+ and ROS to activate transcription factors such as

bZIP, MYB/MYC, WRKY, AP2/EREBP, and NAC (Yang et al.,

2022). In addition, increasing the expression of CATALASE (CAT),

ASCORBATE PEROXIDASE (APX), and GATA28a genes helped

protect thermotolerant rice variety N22 from lethal damage when

heat and drought co-occurred (Yadav et al., 2022). In some parts of

the world, where salt stress and high-temperature stress coexist, the

accumulation of flavonoids helps regulate endogenous

phytohormone levels in rice and balances Na+/K+ levels, allowing

plants to resist combined salt and heat stress (Jan et al., 2021).

Some genes might help rice survive under combined high-

temperature and salt stress. For example, overexpression of SATIVA

INTERMEDIATE FILAMENT (OsIF ) he lped stabi l i ze

photosynthetic mechanisms under both stresses, resulting in

significantly higher yields than those of the WT (Soda et al.,

2018). DEHYDRATION-RESPONSIVE ELEMENT-BINDING

PROTEIN 1C (OsDREB1C) positively regulated heat and salt

tolerance (Wang et al., 2022c). Moreover, DEHYDRATION-

RESPONSIVE ELEMENT-BINDING PROTEIN 1C (OsDREB1G)

and SAP AND MIZ 1 (OsSIZ1) positively regulated drought, heat,

and salt tolerance (Mishra et al., 2018; Wang et al., 2022c).

Most studies of the effects of abiotic stress on rice reported to

date have focused on the effects of a single stress on plant growth

and development. However, rice often faces stressful conditions in

addition to high-temperature stress, making it crucial to study the

effects of combinations of stresses. Studying the coping mechanisms

of rice under combined stress can help maintain plant growth and

improve yields in the face of complex environments.
4 Phenotypes associated with high-
temperature adaptation in rice

The development of thermotolerant varieties is an important goal

of rice improvement. Finding quick and convenient methods for

identifying them will help achieve this goal. Diurnal respiration (Rd)

is the most plastic physiological characteristic of plants under high-

temperature stress. Studies have predicted that plants with higher

thermotolerance would show greater decreases in respiration rates

under high-temperature stress (Ferguson et al., 2020). However, more

research is needed to confirm this notion. Nevertheless, we can

preliminarily predict that a certain variety has strong

thermotolerance by examining the following thermotolerance-

related phenotypes (Table 1) in rice and perhaps other plant species.
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4.1 Root phenotypes at high temperature

Roots play a vital role in absorbing, transporting, and storing water

and nutrients, as well as anchoring plants. Thermotolerant rice varieties

usually have larger (including more lateral roots and branches) and

stronger root systems compared with thermosensitive varieties (Tiwari

et al., 2022). For example, plants overexpressing Big Grain 1 (OsRBG1)

showed enhanced thermotolerance, and three-week-old plants had
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longer roots than the WT (Lo et al., 2020). Plants overexpressing

HIGHER YIELD RICE (OsHYR) also hadmore adventitious roots, with

greater length and thickness, than the WT (Ambavaram et al., 2014).

ZINC-FINGER PROTEIN (OsZFP350)-overexpressing plants showed

enhanced thermotolerance, and root volume and length at the seedling

stage were significantly larger than those of the WT under normal

conditions (Kang et al., 2019), as was the case for OsRCc3 (encoding a

rice root special gene)-overexpressing plants (Li et al., 2018b). Loss-of-
TABLE 1 Thermophenotypes and physiological phenotypes of rice.

Gene Expression
(loss/over) Thermophenotype Organ Physiological Phenotype

OsRBG1 over
thermotolerant

root Roots and young shoots are longer than WT (Lo et al., 2020).
(Lo et al., 2020).

OsNSUN2 loss
thermosensitive

root Roots are significantly shorter at the four-leaf stage (Zhu and Zhang, 2020).
(Zhu and Zhang, 2020).

OsRCc3 over
thermotolerant

root Roots are stronger than those of the WT (Li et al., 2018b)
(Li et al., 2018b)

OsZFP350 over
thermotolerant

root
The root volume and length at seedling stage are significantly higher than those of the WT,
and the aboveground biomass are also significantly higher than that of the WT (Kang et al.,
2019).(Kang et al., 2019).

OsPL loss
thermotolerant root,

leaf
Roots are longer than those of the WT, and the leaves were purple and grew slowly at the
later stage of filling (Akhter et al., 2019).(Akhter et al., 2019)

OsHYR over

thermotolerant
root,
leaf

The roots are longer and thicker. The leaves are bright and dark green (Ambavaram et al.,
2014).(Ambavaram et al.,

2014).

OsPSL50 loss
thermosensitive Stem,

leaf
The plants are short and prematurely senescent at heading stage (He et al., 2021).

(He et al., 2021)

OsGSK1 loss
Thermotolerant

stem The plants are dwarf, short (Koh et al., 2007).
(Koh et al., 2007).

OsPDT1 loss
thermosensitive

stem The plants are dwarfed (Deng et al., 2020).
(Deng et al., 2020).

OsSPL7 loss thermosensitive stem The plants grow slowly and the plants are stunted (Hoang et al., 2019).

OsFKBP20-
1b

loss
Thermosensitive

stem The plants have retarded growth (Park et al., 2020).
(Park et al., 2020)

OsHSA1 loss
thermosensitive

stem,
leaf

The plants are short and the leaves are albino. Chloroplast development is slower than WT
and eventually returned to green, but the spike is still lighter than those of the WT. (Qiu
et al., 2018).(Qiu et al., 2018).

OsHTS1 loss
Thermosensitive stem,

leaf
The plants are short, with reduced chlorophyll contents and lighter-colored leaves (Chen
et al., 2021a).(Chen et al., 2021a).

OsHSP40 loss
Thermosensitive

leaf Leaves are smaller than those of the WT (Wang et al., 2022b).
(Wang et al., 2022b)

OsMDHAR4 over
Thermosensitive

leaf
The plants have lower percentages of completely closed stomata than WT after high
temperature treatment (Liu et al., 2018),(Liu et al., 2018)

OsqEMF3
near-isogenic
line IR64 +
qEMF3

thermotolerant

flower The plants advance flowering by about 2 hours (Bheemanahalli et al., 2017).(Bheemanahalli et al.,
2017)
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function mutants of PURPLE LEAF(OsPL) showed enhanced

thermotolerance and had longer roots than the WT (Akhter et al.,

2019). By contrast, loss-of-functionmutants ofOsNSUN2 (encoding an

RNA 5-methycytosine methyltransferase) were thermosensitive and

had significantly shorter roots than theWT (Tang et al., 2020; Zhu and

Zhang, 2020). Therefore, examining root length, number of lateral

roots and branches, and root biomass can provide important

information for studying plant thermotolerance.
4.2 Stem phenotypes at high temperature

Plant height reflects the growth state of a plant and may

therefore be related to thermotolerance. Loss-of-function mutants

of OsHST1 (encoding a b-ketoacyl carrier protein reductase)

showed severe hypersensitivity to high temperature at the

seedling stage and a dwarf phenotype under normal conditions

(Rana et al., 2019; Chen et al., 2021a). Similarly, loss-of-function

mutants of PHOTOPERIOD-THERMOSENSITIVE DWARFISM 1

(OsPTD1), SPTTED LEAF 7 (OsSPL7), HEAT-SENSITIVE ALBINO

1 (OsHSA1), and OsFKBP20-1b (belonging to the immunophilin

family) showed decreased thermotolerance and a stunted

phenotype under normal conditions (Qiu et al., 2018; Hoang

et al., 2019; Deng et al., 2020; Park et al., 2020). By contrast,

OsZFP350-overexpressing plants were more thermotolerant and

taller than the WT under normal conditions (Kang et al., 2019).

Therefore, rice thermotolerance may be related to plant height, that

is, thermosensitive plants are short, and thermotolerant ones are

tall. However, not all plants conform to this rule. For example, loss-

of-function mutants of GLYCOGEN SYNTHASE KINASE 3-LIKE

GENE 1 (OsGSK1) showed decreased thermotolerance, but plants

overexpressing OsGSK1 showed a dwarf phenotype (Koh et al.,

2007). Further experiments are required to examine the potential

connection between plant height and thermotolerance.
4.3 Leaf phenotypes at high temperature

As the main sites of photosynthesis and transpiration and the

largest organs exposed to the environment, leaves play an important

role in plant growth and development. Leaf size, color, shape, and

other morphological characteristics directly affect photosynthesis in

rice, thus affecting grain yield (Kumar et al., 2021; Vitoriano and

Calixto, 2021). Leaves of loss-of-function mutants of OsHSP40 were

significantly smaller than those of the WT (Barghetti et al., 2017;

Wang et al., 2022b). Leaf color is an important morphological

characteristic in rice breeding (Liu et al., 2012). Chlorophyll content

of the thermosensitive mutant of OsHTS1 (encoding a thylakoid

membrane-localized b-ketoacyl carrier protein reductase) was

lower than that of the WT, and leaf color was lighter (Chen et al.,

2021a). Chloroplasts of the thermosensitive mutant of OsHSA1

developed slowly and showed albinism, which was alleviated during

growth, but leaf color was still lighter in the mutant than in the WT

(Qiu et al., 2018). By contrast, thermotolerant OsHYR-

overexpressing plants had darker green leaves than the WT

(Ambavaram et al., 2014).
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We propose that leaf color is related to thermotolerance in rice;

thermotolerant rice generally has dark leaves, and thermosensitive rice

has lighter leaves. Bread wheat genotypes of the stay-green type showed

high chlorophyll content and low canopy temperature under both

control and high-temperature stress conditions. Maintaining the green

phenotype can mitigate the harmful effects of high-temperature stress

by maintaining grain yield and biological production (Latif et al., 2020).

Increasing chlorophyll content also improved thermotolerance in

ryegrass. Treating ryegrass with sodium copper chlorophyllin

increased chlorophyll accumulation, downregulated chlorophyll

catabolic and senescence genes, and enhanced H2O2 scavenging by

the peroxidase pathway, thus inhibiting heat-induced leaf senescence

(Yu et al., 2022). Therefore, measuring the chlorophyll content and

photosynthetic rate of plants may help in screening plants for

thermotolerance. In addition, the senescence rate of leaves, stomatal

opening, and leaf temperature regulation might be used as an indicator

to identify the thermotolerance of rice. PREMATURE SENESCENCE

LEAF 50 (PSL50) mutant are highly sensitive to high temperatures (He

et al., 2021). Inhibition of MONODEHYDROASCORBATE

REDUCTASE (OsMDHAR4) expression enhances thermotolerance

by inducing stomatal closure in rice plants (Liu et al., 2018).

Increasing leaf temperature negatively regulates the thermotolerance

of hts mutant (Li et al., 2020b). Leaf area and thickness could also be

used as an index to identify thermotolerant plants. Thicker leaves have

higher chlorophyll content and photosynthetic efficiency. Moreover,

the larger the leaf area, the higher the relative number of stomata and

the transpiration rate and thus the better the heat dissipation and

the thermotolerance.
4.4 Flowers phenotypes at
high temperature

Abnormalities in both anther and ovary development affect

spikelet fertility. The well-known highly thermotolerant rice variety

N22 showed higher spikelet fertility than the WT after high-

temperature stress (Poli et al., 2013; Shi et al., 2022). Altering the

time offlowering, such as flowering early in the morning, could help

protect crops from high-temperature stress in the environment,

thus reducing the damage that crops suffer during flowering. The

near-isogenic line IR64 + qEMF3 advanced flowering time by about

2h, overcoming heat-induced spikelet sterility (Bheemanahalli et al.,

2017). Moreover, qEMF3 advanced the flowering time of Nanjing

11 by about 1.5 h, thereby improving the thermoresistance of this

variety (Hirabayashi et al., 2015; Jagadish, 2020). Therefore,

statistical analysis of flowering time and spikelet fertility might

represent another effective means to identify thermoresistant

rice varieties.
5 Concluding remarks

With the gradual increase in the global population, the

worldwide demand for crops is increasing. By 2050, the global

agricultural output may need to increase by 60%–110% to meet the

demands of the growing population (Ray et al., 2013). However,
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over the past century, global temperatures have been steadily

increasing, which poses great challenges to the global economy

and food security. The rise in ambient temperature is a complex

variable with many effects depending on duration and degree.

Different plant species have relatively stable optimum growth

temperatures throughout their life cycles, and the same plant also

has different optimum growth temperatures at different stages of

growth and development. Hence, plants have evolved complex,

rigorous mechanisms to regulate growth and development to adapt

to changing environmental temperatures. When the ambient

temperature exceeds the optimum temperature for a plant, the

plant is in a state of high-temperature stress.

In view of the complexity of plant responses to high temperature

and the importance of rice for global agriculture, this review provides

an important theoretical basis for identifying new thermotolerant rice

varieties according to the physiological morphology and molecular

regulatory mechanisms involved in plant growth and development

under high-temperature conditions. Higher than optimum

temperatures during each period of rice growth and development

affect the overall plant growth. High temperatures can lead to delayed

germination, reduced pollen viability, and abnormal ovary

development and affect the accumulation of starch grains, among

other phenotypes, thus affecting rice production (Chen et al., 2017;

Zhao et al., 2018; Afzal et al., 2019; Liu et al., 2019).

In recent years, many studies have focused on how to mitigate

the effects of high-temperature stress in rice, but we still have a long

way to go before fully understanding the thermotolerance

mechanism of rice, optimize its quality, and improve its ability to

cope with high-temperature stress. The roles of HSPs and HSFs in

high-temperature stress are still an important focus of research on

rice thermotolerance (Afzal et al., 2019; Wang et al., 2022b). The

high-temperature stress response mechanisms in the model

organism Arabidopsis have been well investigated by previous

studies, the findings of which can be leveraged to expand our

understanding of thermotolerance in rice.

This paper also summarizes other physiological phenotypes in

roots, stems, leaves, and flowers thereby providing a theoretical

basis for further research on genetic variation of rice and screening

of thermotolerant varieties. We suggest that root length, leaf color,

plant height, flowering time, spikelet fertility and grain filling

should be studied as preliminary and rapid statistical indexes for

thermoresistant varieties. In addition, leaf senescence rate,

stomatal opening and leaf temperature are also very important

for rice to cope with high temperature stress. This research

direction can help to rapidly screen thermotolerant rice varieties
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and improve the resistance of rice to unfavorable environmental

conditions, but little research has been conducted on this aspect.

Of course, the thermoresistant varieties selected need to be moved

from the natural living environment into the laboratory to

conduct in-depth exploration of their endogenous regulation

and metabolic ability, which will be a future research direction.

And effects of high temperature on grain quality are also

meaningful research filed in the future. The above provides a

theoretical basis for ensuring sustainable agricultural development

in the face of global warming, as well as achieving high, stable, and

safe crop yields to meet the demand for food production from a

growing global population.
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