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Introduction: Traditional evaluation procedure in National Turfgrass Evaluation

Program (NTEP) relies on visually assessing replicated turf plots at multiple testing

locations. This process yields ordinal data; however, statistical models that falsely

assume these to be interval or ratio data have almost exclusively been applied in

the subsequent analysis. This practice raises concerns about procedural

subjectivity, preventing objective comparisons of cultivars across different test

locations. It may also lead to serious errors, such as increased false alarms, failures

to detect effects, and even inversions of differences among groups.

Methods: We reviewed this problem, identified sources of subjectivity, and

presented a model-based approach to minimize subjectivity, allowing objective

comparisons of cultivars across different locations and better monitoring of the

evaluation procedure. We demonstrate how to fit the described model in a

Bayesian framework with Stan, using datasets on overall turf quality ratings from

the 2017 NTEP Kentucky bluegrass trials at seven testing locations.

Results: Compared with the existing method, ours allows the estimation of

additional parameters, i.e., category thresholds, rating severity, and within-field

spatial variations, and provides better separation of cultivar means and more

realistic standard deviations.

Discussion: To implement the proposed model, additional information on rater

identification, trial layout, rating date is needed. Given the model assumptions,

we recommend small trials to reduce rater fatigue. For large trials, ratings can be

conducted for each replication on multiple occasions instead of all at once. To

minimize subjectivity, multiple raters are required. We also proposed new ideas

on temporal analysis, incorporating existing knowledge of turfgrass.
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1 Introduction

The National Turfgrass Evaluation Program (NTEP) is an

internationally renowned turfgrass research program. Starting from

1981, NTEP has coordinated trials and collected data on a variety of

turfgrass species at locations across the United States and Canada (Xie

et al., 2022). At each testing location, replicated turf plots of different

cultivars are established, maintained, and visually evaluated by trained

raters periodically on various traits of interest. Experienced raters

usually mentor new raters following rating guidelines set by NTEP.

Evaluated traits have traditionally included overall quality, color,

density, resistance to diseases and insects, tolerance to biotic or

abiotic stresses, and more recently expanded to drought and traffic

tolerance. Over the years, NTEP has created a unique data repository,

providing rich information for characterizing and selecting turfgrass

cultivars for various applications.

NTEP adopted a 1-9 integer scale to assess traits of selected

turfgrass cultivars (hereinafter referred to as the NTEP scale). It was

originally used by turfgrass researchers in the 1980s in the

northeas tern reg ion of the United Sta tes (persona l

communication with Dr. Bill Meyer of Rutgers University), which

resembles the 9-point hedonic scale. Developed by David R. Peryam

and his colleagues (Peryam and Girardot, 1952; Peryam and

Pilgrim, 1957), the 9-point hedonic scale was originally used to

measure the food, i.e., the stimuli, preferences of soldiers, i.e., the

subjects, in the U.S. Armed Forces in the 1950s. Since then, it has

become the most widely used scale for testing consumer preferences

and acceptability of foods and beverages (Lim et al., 2009). The

original 9-point hedonic scale is a balanced bipolar scale centered

around a neutral position with four positive and four negative

categories on each side. The categories are labeled with phrases

ranging from “Dislike Extremely” to “Like Extremely” (Table 1),

representing a continuum from dislikes to likes.

Response to the 9-point hedonic scale is an ordinal variable as

its categories have a natural order (Seddon et al., 2001). In

subsequent analysis, the categories are generally assigned with

numerical values from 1 to 9, respectively, such that parametric

statistical models can be utilized. For the NTEP scale, a trained rater

walks through all plots in serpentine order in each rating event,

assigning an integer from 1 to 9 directly for a particular trait of
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interest where 1 is typically the poorest/lowest and 9 is the best/

highest. Similar to analyzing responses to a 9-point hedonic scale,

the analysis of NTEP rating data treats the ordinal variables as

numerical values, which may lead to serious errors, such as

increased false alarms, i.e., detecting non-existing effects, failures

to detect effects, and even inversions of differences among groups

(Bürkner and Vuorre, 2019). There is abundant literature, e.g., Lim

et al. (2009), Liddell and Kruschke (2018), on the reasons for these

problems. Some important ones are summarized here.
1. The categories in the 9-point hedonic scale are not

equidistant, which was first discovered by the

Psychometric Laboratory at the University of Chicago

(Jones and Thurstone, 1955; Jones et al., 1955), and

confirmed in later studies (Moskowitz, 1971; Moskowitz

and Sidel, 1971; Moskowitz, 1977; Moskowitz, 1980).

2. The 9-point hedonic scale lacks an absolute zero point.

While there is a neutral position (i.e., the INDIFFERENT

category or the "5"), it varies from subject to subject, even

across different measurements by the same subject.

3. The general tendency of subjects to avoid using the extreme

categories (Hollingworth, 1910; Stevens and Galanter,

1957; Parducci and Wedell, 1986) makes the scale

vulnerable to ceiling and flooring effects. This truncates

the 9-point scale, limits the scale’s ability to identify

extreme stimuli, and skews the response data.
As a derivation of the original 9-point hedonic scale, the NTEP

scale also yields ordinal data. Such data only provide rudimentary

information on the hedonic magnitude and cannot directly be used

to compare hedonic perceptions across different raters. In the

current evaluation process, a turf plot’s rating for a specific trait,

e.g., turf quality, depends on the rater’s severity in the rating event.

Given the same plot, it will likely score higher when the rater is

lenient or lower when severe, giving rise to subjectivity. In other

words, for a specific rater’s turf quality ratings, we know a “3” plot

has better turf quality than a “2” plot. But we cannot conclude a “3”

plot rated by A is better than a “3” plot rated by B in turf quality

without adjusting for rater severity. Considering the temporal

nature of the evaluation process, even for the same rater on the
TABLE 1 Replication of the questionnaire designed for studying soldiers’ preferences in the field.

FOOD
ITEM

LIKE INDIFFERENT DISLIKE

Not
Tried

Cream Gravy Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

Bread Putting Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

Cheese Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

French Fried
Onions

Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely

Not
Tried

Lettuce
Wedges

Like
Extremely

Like Very
Much

Like
Moderately

Like
Slightly

Neither Like Nor
Dislike

Dislike
Slightly

Dislike
Moderately

Dislike Very
Much

Dislike
Extremely
f
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same trait, consistency is not guaranteed at different times of the

year. Another source of subjectivity relates to the scale categories,

which are not equal distances or of the same levels. To meaningfully

aggregate data collected from different rating events across different

testing sites, both sources of subjectivity need to be addressed.

However, current methods, e.g., the additive main effect and

multiplicative interaction (AMMI) method, analysis of variance

(ANOVA) (Ebdon and Gauch Jr., 2002a; Ebdon and Gauch Jr.,

2002b), and linear mixed model (LMM), are not adequate and suffer

the same errors when they were applied to ordinal data directly.

Inspired by Rasch Rating Scale Model (Andrich, 1978), we propose

a latent scale model to minimize subjectivity, hereinafter referred to

as NTEP RSM (NTEP Rating Scale Model), allowing more objective

comparisons of cultivars across different raters and research groups.

We also demonstrate how to fit the described model in a Bayesian

framework, using datasets on overall turf quality ratings in the 2017

NTEP Kentucky bluegrass trials. The model is programmed in Stan

(Lee et al., 2017) via Python. Stan is a probabilistic programming

language for statistical modeling, inference, and computation.

Although demonstrations are done for overall turf quality rating,

this approach works for other traits of interest evaluated using the

1-9 NTEP rating scale.
2 Model specifications

2.1 NTEP RSM

We started by constructing a latent scale based on the

probability distribution of raw ordinal data. The model predicts

the decision between two adjacent categories using a threshold

parameter on the latent scale. The 1-9 scale is re-indexed in the

following sections as 0-8 categories for conciseness in mathematical

notations. At a given test location, let Yni denote the rating assigned

to plot n in rating event i, the logarithmic ratio of the probability of

plot n assigned to category s to that of plot n assigned to s–1 can be

expressed by the following equation,

ln½ Pr(Yni = s)
Pr(Yni = s − 1)

� = qn − bi − ts (1)

where
Fron
i=1,2,…,I is the index for each rating event during the trial;

n=1,2,…,N is the index for each plot;

s=1,2,…,M is the index for category thresholds;

M(M ≤ 8) is both the maximum rating score after reindexing

and the number of thresholds;

qn is the perceived turf quality of plot n in a specific rating

event;

bi measures rating severity in rating event i;

ts is the threshold at which at Pr(Y=s–1) = Pr(Y=s).
Constraints were placed on bI and tS to add a meaningful zero

to the scale. Both parameters were constrained to be the negative

sum of the other parameters, respectively. We further assume q, b,
tiers in Plant Science 03
and mbolt are normally distributed. For an unbiased rater in a

rating event (b=0), the probability density curves for each category
are illustrated in Figure 1. The vertical dash lines indicate category

thresholds located at the points where the probability of a cultivar

being assigned to two adjacent categories is equal. Note that these

thresholds are not necessarily equidistant. In Figure 1, if a cultivar

is located in a category (i.e., between two adjacent thresholds),

then the response in that category has the greatest probability. The

x-axis represents the constructed latent scale. It is continuous and

equidistant, with a zero indicating the average level of overall turf

quality. While the average level in individual rating events might

vary (b≠0), we assume the average levels for each research group

at different test locations are the same, allowing scale matching

across different testing locations. Once subjectivity effects, i.e., b
and t, were estimated and removed, q can be further analyzed. In

this study, we partitioned q into cultivar and plot location effects,

that is,

q = h + LOC (2)

where h is the cultivar effect, reflecting the intrinsic quality of a

cultivar, and LOC is the plot location effect due to spatial

heterogeneity of the field. We further assume cultivar effects

follow normal distributions with a mean of 0 and a variance of

s2. The plot location effect was modeled as a Gaussian process with

a zero mean and covariance function K,

LOC( · ) ∼ N(0,K( · )) (3)

The covariance function K(·) implemented here is an

exponential quadratic function. For two plots i and j in the same

trial at a specific testing location,

K( · ja , r,se)ij = a2 exp  (
d2ij
2r2

) + dijs
2
e (4)

where a, r, and se are hyperparameters defining the covariance

function; dij is the Kronecker delta function with value 1 if i = j and

0 otherwise; dij is the Euclidean distance between centers of the two

plots. As this is a Bayesian model, priors for parameters and

hyperparameters are required. We adopted weakly informative

priors: t3(0,1) for a, s and se; Inv–Gamma(5,5) for r.
FIGURE 1

Hypothetical category probability curves for nine ordered categories
as used in NTEP rating scale.
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2.2 Parameter recovery with NTEP RSM

To ensure that model parameters are identifiable, the following

parameter recovery test was performed to evaluate the model. We

first generated a synthetic dataset from 3 replications of 10 cultivars

rated monthly for 5 years by 5 raters. The entry effects are random

draws from a normal distribution with a mean of 0 and a standard

deviation of 0.7 (s = 0.7). Plot location effects are generated from a

Gaussian process with an assigned mean vector and covariance

matrix with a = 0.15, r = 2.5, se = 0.2. Rating severity is a vector of

five evenly spaced numbers over [–0.8,0.8], and category threshold

is a vector of eight evenly spaced numbers over [–2,2]. All

parameters, functions, and simulated data can be found in the

Github repository. The simulated data were fit to the NTEP RSM

for parameter recovery.
2.3 Linear mixed model

To compare with the existing method, we also implemented the

following LMM for each testing location,

Y = h + u + ϵ (5)

in which quality rating, Y, was treated as a continuous variable

and partitioned into a fixed effect of cultivars, h, and a random effect

of rating event, u. ϵ denotes the residual that the model does

not explain.
2.4 Model implementation

The NTEP RSM model is implemented in Stan (version

2.29.1) with a Python interface (version 3.10.4). The same

model was fitted to data collected from each trial location, and

posterior sampling of model parameters was generated by four
Frontiers in Plant Science 04
Markov chain Monte Carlo chains, each with 1,000 iterations. The

first 500 iterations were discarded to minimize the effect of initial

values, and the rest were thinned by taking every other sample to

reduce sample autocorrelation. The convergence of chains was

confirmed via visual inspection and examining the R̂ values of all

parameters and the log posteriors. Model codes and output files

can be found at https://github.com/QhenryQ/ntep-rsm. The

LMM is implemented with the Python package Statsmodels

(Seabold and Perktold, 2010).
3 Results and discussions

3.1 Preliminary data analysis

Kentucky bluegrass is a cool-season turfgrass that grows best

when temperatures are between 60-75°F and goes dormant in hot,

dry summer and cold winter. Given this behavior, turf quality data

is only collected from May to October in northern trial locations,

while in the southern trial locations, data is usually collected all year

round. Figure 2 presents monthly histograms for all the raw turf

quality rating data. In most months, the quality rating showed good

symmetry and central tendency around 5 or 6. In January and

February, turf quality ratings were only available from Raleigh, NC,

and Stillwater, OK. We noticed decreased turf quality ratings and

the number of categories assigned in both locations. For example,

the February overall turf quality ratings at Stillwater, OK, were

found to have a range of [3, 6], with a median of 4. This is

presumably due to raters’ adjustment to the dormancy of

Kentucky bluegrass. The significant reduction of turf quality in

dormancy makes it difficult for raters to distinguish cultivars.

Ceiling and flooring effects were also observed at other locations,

e.g., the overall turf quality data at East Lansing, MI, and Raleigh,

NC, ranged from 2 to 9, while that for data at West Lafayette, IN,

from 2 to 8.
FIGURE 2

Histogram of raw overall turf quality ratings for each month at seven test locations.
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3.2 NTEP RSM results

3.2.1 Category thresholds
“How is Rater A’s 5 different from Rater B’s 5?” This type of

question is inevitable when it comes to the comparison of cultivars

following the current NTEP procedure. However, such a question

cannot be answered without proper definitions of categories, which

in our model, are done by identifying category thresholds. These

thresholds are points on the latent scale at which a rater is equally

likely to select two adjacent response options (Andrich and Luo,

2003). We also assumed there are fixed distances among the

category thresholds for raters within the same research group at

the same location. This assumption is reasonable given that

experienced raters of the same research group usually train newer

raters. Estimation of category thresholds from the data provides

important feedback on category definitions and how the scale is

utilized by each research group, allowing us to ensure raters are

adequately differentiating cultivars. When adjacent thresholds are

too far apart, a category becomes too wide and less informative; on

the other hand, when adjacent thresholds are close, a category

becomes too narrow, indicating underutilization of the scale (see

Guidelines for Rating Scales and Andrich Thresholds). We

examined the non-terminal categories used at seven testing

locations (Figure 3) . Their widths spanned the range of [0.07,

4.76] on the logit scale, e.g., Category 2 at Adelphia, NJ, only

spanned 0.59 logits, while category 8 at Stillwater, OK, was 3.54

logits. Category thresholds are generally required to be in ascending

order concordant with the category numbers, i.e., ordered

thresholds (Andrich, 2011). Disordered thresholds imply a higher

rating may not be assigned as a turf cultivar advances along the

scale. Such inconsistency of raters is usually the result of too many

options or/and poor category definitions in scale development.

Estimated category thresholds from all testing locations, ranging

from -6.64 to 6.05, were in order. Large variations were observed in

the range of category thresholds. Category thresholds at East

Lansing, MI, and Stillwater, OK, spread more than 10 logits,

while those in Adelphia, NJ, only spanned 4.5 logits.
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3.2.2 Rating severity
Defining category thresholds is not sufficient to answer the

question of rater variation. On the constructed latent scale, category

thresholds can still slide left (indicating a lenient rating event) or

right (indicating a severe rating event). In many fields, severity can

be treated as a constant for a given rater. That is to say, whenever

the rater conducts a rating, he/she is always the same in terms of

severity. However, this might not be true during the evaluation of

turfgrass. For new raters, it takes time to achieve consistency; for

trained raters, some may adjust their severity to credit cultivars that

perform well under harsh environmental conditions or at different

times of the year (personal communications with NTEP raters).

Historically, there have been two sets of rating criteria for reference

standards in NTEP. One is based on an optimal growth

environment (e.g., light, temperature, soil moisture) and

management regime (e.g., mowing height, fertilization rate), while

the other is based on the actual environment or management

regime. Using either criterion, the rater must idealize his/her

reference standards to compare against all treatments and assign

a quality score using a scale of 1 to 9. With the first criterion, we

expect consistency of raters regardless of the rating time of the year

since the best plot is defined considering all possible growth

environments and management regimes. With the second, raters

could be either severe or lenient depending on the environment or

management regimes at the rating time. We examined the

consistency in rating severity estimates of 10 raters who have

performed more than 3 ratings across different months. For each

rater, we fit a trend line for their rating severity across different

months of the year using the weighted scatterplot smoothing

(LOWESS) method. No strong trends were observed for raters in

St. Paul, MN, West Lafayette, IN, and Adelphia, NJ, while strong

seasonal patterns were seen for raters in the other four locations

(Figure 4). One potential confounding factor in the current

definition of rating severity is the seasonality of turfgrass quality.

It is also worth noting that while the model focuses on point

estimates for the average turf quality, the actual turf quality of cool-

season turfgrass is not a constant; instead, it varies over time with

strong annual seasonality. Unfortunately, the current data do not

provide sufficient information, e.g., the exact rating dates, for

investigation on how rating severity changes in response to the

seasonality of turf quality. Standard deviations of rating severity per

rater ranged from 0.13 to 0.97 on the logit scale. Considering the

category widths, such variation in severity for a given rater could

lead to changes in rating categories.

3.2.3 Field spatial variation
We implemented a Gaussian process to estimate the spatial

variation within a specific trial. The traditional cultivar comparison

method based on ANOVA or LLM assumes uniform growth

conditions within a trial, which is hardly achievable due to

heterogeneity in soil texture, seeding depth, elevation gradient,

etc. Thus, removing field spatial effect is important for reliable

cultivar comparison results. Figure 5 visualizes the spatial variation

estimated by our model at seven testing locations, in which every

pixel represents a plot as defined by row and column number. The
FIGURE 3

The latent scale partitioned by category thresholds into NTEP rating
categories at seven test locations.
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level of spatial heterogeneity varied from trial to trial; some were

higher, e.g., the trial at East Lansing, MI, while some were lower,

e.g., the trial at Adelphia, NJ. Noticeably, we observed large edge

effects from the trial at Logan, UT, the diagonal division from the

trial at St. Paul, MN, and the localized hot spots from trials at East

Lansing, MI, and Raleigh, NC. The estimated field spatial variation

provided turfgrass researchers with a high-level summary of their

trials, which can help improve experimental design and allow better

differentiation of cultivars.
Frontiers in Plant Science 06
3.2.4 Cultivars comparison across testing
locations

Our model quantifies and removes confounding factors at each

location, i.e., rating severity and field spatial effect, allowing a more

reliable and accurate cultivar comparison. An additional

assumption is required for scale alignments to compare cultivars

across different testing locations. We assume the average levels for a

turfgrass cultivar, as perceived by raters at different NTEP testing

locations, are roughly the same. In Figure 6, we compared the
FIGURE 4

Rating severity estimates and monthly trend lines of ten raters at seven test locations.
FIGURE 5

Field spatial variation at seven test locations.
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performance of two example cultivars by aligning the average levels

at seven testing locations. Each angular axis represents the latent

logit scale at corresponding testing locations, where zero indicates

the average level. For ‘After Midnight,’ it performed above average

at Adelphia, NJ, Stillwater, OK, and Raleigh, NC, and below average

at St. Paul, MN, East Lansing, MI, Logan, UT, and West Lafayette,

IN. ‘Kenblue’ performed below average at all locations. When

comparing the two, the distance between the logit values

estimates how much one cultivar is better than the other at each

location. After Midnight outperformed Kenblue at all testing

locations except East Lansing, MI, and West Lafayette, IN. The

comparison of all evaluated cultivars can be found in

Supplementary Materials and the GitHub repository.

3.2.5 Effect sizes
Effect size quantifies the strengths of relationships between

variables and determines their practical importance in the study.

One way to determine the effect size is by examining the percentage

of variance the effects explain. Figure 7 illustrates the variance

percentage explained by the model’s estimated parameters. At all

locations except Logan, UT, the effect of field spatial variation is the

smallest of the three. In contrast, the effect of rating severity is the

largest at all locations but at Adelphia, NJ. Notably, there are seven

raters at Adelphia, NJ, compared with 1 to 3 raters at other

locations, highlighting the importance of gathering opinions from

more raters during cultivar evaluation. The percentage of variance
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explained by cultivar effect varied drastically, from a merely 4% at

Logan, UT, to as much as 79% at Adelphia, NJ. Quantifying and

removing these confounding factors is thus essential when

evaluating and comparing cultivars in field trials.
3.3 Comparison with LMM

The advantages of NTEP RSM over the currently-adopted

LMM are three-folded. First, it allows the estimation of additional

parameters, namely category thresholds, rating severity, and field

spatial variation. All three parameters are essential for rater

training, better utilization of the whole scale, and understanding

of the field conditions. Second, NTEP RSM separates mean

estimations of the evaluated cultivars better. To name a few of the

numerous examples, Blue Gem (NAI-13-9), MVS-130, Heartland

(NAI-14-187), AKB3241, and RAD 553 all received the same mean

estimation of -0.261 at East Lansing, MI, from LLM, while the mean

estimates from NTEP RSMwere 0.030, -0.020, -0.145, -0.268, -0.580

respectively. Similar patterns were observed for DLFPS-340/3556,

Paloma (PST-K13-139), DLFPS-340/3552, J-1138 at St. Paul, MN;

DLFPS-340/3556, A16-2, NuRush (J-3510) at West Lafayette, IN;

and DLFPS-340/3548, A16-17, Barvette HGT®, NK-1 at Logan, UT.

Detailed comparison for all cultivars can be found in Among the

seven test locations, the largest discrepancies between the two

models’ output were seen at Logan, UT. At the same time, the

smallest were observed at Stillwater, OK (Table 2). It is important to

highlight the robustness of the current LMM approach despite all

the merits of NTEP RSM. Last but not least, RSM provides more

realistic standard deviation estimations, while the currently-

adopted LMM generates the same standard deviations for all

cultivars at each location. Given the different genetic backgrounds

of cultivars, they are unlikely to have the same standard deviations.
3.4 Parameter recovery with NTEP RSM

The highest value for R̂ was 1.0 for all parameters and the log

posterior, suggesting that all four chains have converged. As shown

in Figure 8, all except three of the 95% credit intervals include zero,

indicating the model’s ability to recover the original values of

the parameters.
3.5 Discussions

Despite the promising results, there are at least two major

challenges that lie ahead for the successful implementation of the

proposed model. The first and foremost is the lack of data. While

NTEP has done a remarkable job of gathering, cleaning, organizing,

and storing historical data on cultivar evaluation, a significant

amount of valuable data are left out in this process. This includes

but is not limited to rater identification, trial layout, rating dates,

field gradient, etc. Luckily, researchers generally record and

preserve such information at each trial location. Additional work

is required to incorporate such data into the current NTEP

database. Second, there are too few raters at some trial locations.
FIGURE 6

Performance of After Midnight and Kenblue at seven test locations.
FIGURE 7

Percentage of explained variance by different effects estimated by
the model.
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The fundamental debiasing mechanism of the proposed model is to

aggregate individuals’ opinions on the same cultivar into an

objective and collective opinion. Multiple raters are required to

ensure accurate estimations of the collective opinion on the tested

cultivar. As mentioned above, one limitation of the proposed model

is the absence of a seasonality component. As a cool-season

turfgrass, Kentucky bluegrass thrives during the fall and early

spring and slows significantly in growth during the hot summer

months. The proposed model focuses on estimating the overall

quality for a given cultivar over the entire testing period but cannot

provide a quality estimation at a given time of the year. We tested

year and month effects as independent Gaussian variables; however,

as pointed out by one reviewer, it was unrealistic that months have

the same effect across different years. We agree with the reviewer

and are exploring better ways to improve the proposed model. A

potential approach is the multiple-output Gaussian process model

(Li et al., 2021) that incorporates the seasonal grown pattern of

Kentucky bluegrass as a prior distribution. This requires additional

information on the rating dates. Once implemented, it will allow the

analysis of the temporal variation of cultivars, which caters to needs

such as mixing/blending cultivars based on spring green up,

comparison of cultivars on growth potential at a given time of the
Frontiers in Plant Science 08
year (Woods, 2013). Now that the model assumes raters are

consistent in all rating event, we encourage small trial sizes at

each testing location. Smaller trials reduce the risk of rater fatigue

during rating, thus helping raters to maintain better consistency.

For trials with too many cultivars, we recommend ratings be

conducted on each replication on separate occasions instead of

finishing all the plots at once. Regarding the rating scale, researchers

should attempt to achieve a uniform distribution (Bond and Fox,

2013) of category thresholds. NTEP is currently working towards a

data ingestion, analysis, and visualization pipeline, with the

objectives to provide timely feedback to raters during the reason,

to help raters to utilize the rating scale better, and to service a larger

audience. NTEP also need to set standards for cultivar average,

representing the zero point on the scale, such that results of cultivar

comparisons across time and location are accurate and reliable.
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