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Dynamic distress calls: volatile
info chemicals induce and
regulate defense responses
during herbivory

Nithya N. Kutty* and Manasi Mishra*

Department of Biosciences and Technology, Dr. Vishwanath Karad MIT-World Peace University,
Pune, Maharashtra, India
Plants are continuously threatened by a plethora of biotic stresses caused by

microbes, pathogens, and pests, which often act as the major constraint in crop

productivity. To overcome such attacks, plants have evolved with an array of

constitutive and induced defense mechanisms— morphological, biochemical,

and molecular. Volatile organic compounds (VOCs) are a class of specialized

metabolites that are naturally emitted by plants and play an important role in

plant communication and signaling. During herbivory and mechanical damage,

plants also emit an exclusive blend of volatiles often referred to as herbivore-

induced plant volatiles (HIPVs). The composition of this unique aroma bouquet is

dependent upon the plant species, developmental stage, environment, and

herbivore species. HIPVs emitted from infested and non-infested plant parts

can prime plant defense responses by various mechanisms such as redox,

systemic and jasmonate signaling, activation of mitogen-activated protein

(MAP) kinases, and transcription factors; mediate histone modifications; and

can also modulate the interactions with natural enemies via direct and indirect

mechanisms. These specific volatile cues mediate allelopathic interactions

leading to altered transcription of defense-related genes, viz., proteinase

inhibitors, amylase inhibitors in neighboring plants, and enhanced levels of

defense-related secondary metabolites like terpenoids and phenolic

compounds. These factors act as deterrents to feeding insects, attract

parasitoids, and provoke behavioral changes in plants and their neighboring

species. This review presents an overview of the plasticity identified in HIPVs and

their role as regulators of plant defense in Solanaceous plants. The selective

emission of green leaf volatiles (GLVs) including hexanal and its derivatives,

terpenes, methyl salicylate, and methyl jasmonate (MeJa) inducing direct and

indirect defense responses during an attack from phloem-sucking and leaf-

chewing pests is discussed. Furthermore, we also focus on the recent

developments in the field of metabolic engineering focused on modulation of

the volatile bouquet to improve plant defenses.

KEYWORDS

herbivory, defense responses, VOCs (volatile organic compounds), HIPVs, terpenoids,
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1 Introduction

Plants are sessile organisms that are very often exposed to

several biotic and abiotic stresses during their lifetime. To cope with

adverse conditions, plants produce an array of organic compounds

called secondary or specialized metabolites (Tisser et al., 2014).

Specialized metabolites can be defined as those metabolites that are

directly or indirectly involved in plant reproduction, development,

defense, and help in mediating ecological interactions with the

environment (Tisser et al., 2014). These are diverse compounds that

may or may not be produced in all parts of the plant. Accumulation

of specialized metabolites also vary from plant species to species,

thus contributing to the diversity of these compounds (Knudsen

et al., 2006; Dudareva et al., 2013). Based on the chemical structures,

they can be broadly classified as polyphenols (lignin, flavonoids, and

phenolic acids), nitrogen-/sulfur-containing compounds (alkaloids,

glucosinolates, and thiophenes), and terpenoids (including

carotenoids) (Tisser et al., 2014). Specialized metabolites also

include volatile organic compounds (VOCs), which are low

molecular weight molecules with low water solubility and high

vapor pressure (Muhlemann et al., 2014). VOCs mediate several

functions and act as chemical messengers during different biotic/

abiotic stress situations through their elevated levels of secretion

and emission (Muhlemann et al., 2014). Biotic stress affecting plants

includes attacks from herbivores and infections from bacteria,

fungi, and viruses (Suzuki et al., 2014). Herbivores can be further

classified based on their attacking mode into chewing herbivores,

which cause more cellular damage; mesophyll-feeding stylet feeders;

and phloem-feeding stylet feeders, which cause less structural

damage to plant tissue but can cause the source to sink shifts by

emptying the cellular contents (Kant et al., 2009). This review

focuses on how volatile compounds are produced dynamically

within the family Solanaceae under the attack of herbivores. The

diversity of VOCs produced by Solanaceous crops constitutively

and upon attack by different classes of herbivores is also discussed in

detail. Secretion and emission of VOCs from these crops during

pest attacks can also be affected by abiotic factors (Vázquez-

González et al., 2022). However, the influence of these factors

affecting plant defense is beyond the scope of this review and

have limited to biotic stresses. Furthermore, an attempt is made

towards understanding the mechanism of volatile-induced selective

defense strategies in these crops. Solanaceous crop plants are

considered as most important crops for not only fulfilling the

nutritional requirements of vegetables but also as a source of

drugs, ornamentals, and medicines (Yadav et al., 2016).

Solanaceous plants are attacked by major plant pathogens and

pests like bacteria, fungi, nematodes, oomycetes, parasites, and

lepidopteran insect pests (Strange and Scott, 2005). Solanaceous

plants are known for their distinct evolutionary history driven by

natural selection resulting into unique adaptations, signaling

molecules, and biochemical pathways involving several genes and

products (Poczai et al., 2022). Consequently, they have served as

important model plants for studying plant defense mechanisms. We

further highlight the ecological importance of these defense

mechanisms in the Solanaceae family concerning different types
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of pests and conclude by listing the possible modifications for

improved pest resistance through metabolic engineering in

Solanaceous crops.
2 Herbivore- induced plant VOCs

Approximately 1,700 VOCs have been identified from different

plant species (Dudareva et al., 2006). Based on their core chemical

structure and biosynthesis pathways, VOCs are classified as

terpenoids, benzenoids/phenylpropanoids, fatty acid derivatives,

and amino acid derivatives (Dudareva et al., 2006). These

compounds were initially considered metabolic waste products

but were eventually discovered to have important physiological

roles (Harrewijn and Piron, 1995). Plants produce VOCs from

almost all parts, including leaves, roots, flowers, and fruits into the

atmosphere (Dudareva et al., 2006). Among these plant parts, floral

volatiles constitute almost 90% of the total mixture of compounds.

Floral VOCs play a major role in the attraction of pollinators and

thereby help in plant reproduction (Dudareva et al., 2006). Plants

also emit VOCs from vegetative tissues, which are normally elevated

under biotic/abiotic stress conditions (Dicke and Baldwin, 2010).

These compounds also mediate plant defense and carry out tri-

trophic and allelopathic interactions. Root volatiles play a major

role in defense against nematodes and are actively involved in

plant–microbe interactions at the underground level (Huang et al.,

2019). The emitted aerial VOCs constitute the headspace of the

plants. Along with the emitted bouquet of VOCs, these compounds

can be secreted and stored as glycosyl-bound volatiles in plant

tissues (Song et al., 2018). The emission of VOCs is influenced by

different physical factors, including the circadian clock, light,

temperature, and humidity (Dudareva et al., 2006). The emission

rate of VOCs is also influenced by the developmental stage of the

plant, environmental factors, and presence/absence of abiotic/biotic

stress elements (Dudareva et al., 2006).

Herbivore-induced plant volatiles (HIPVs) refer to the class of

VOCs that are specifically released by plants during herbivory

(Dicke et al., 2009). Several HIPVs have been identified from

almost 200 families of plants (War et al., 2011). These

compounds may be released by the infected tissues or uninfected

tissues, thereby leading to an altered scent profile of the plant.

Furthermore, HIPVs act as information molecules conveying pest

attacks in host plants to parasitoids/predators and other

neighboring plants (Unsicker et al., 2009). Along with acting as

info chemicals, these VOCs also increase the defense responses in

plants (Mumm and Dicke, 2010). In recent times, several articles

have been published regarding the diversity of HIPVs. These

include the major classes, including GLVs, terpenoids,

phenylpropanoids/benzenoids, and even small molecules like

methanol and ethylene (Mumm and Dicke, 2010). The

biosynthesis of green leaf volatiles (GLVs) or fatty acid derivative

compounds is initiated by the deacetylation of galactolipids to free

linolenic acid and linoleic acid in the plastids (Feussner and

Wasternack, 2002). This is followed by the enzymatic activities of

lipoxygenases, alcohol dehydrogenases, and alcohol acyl
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transferases, leading to the production of C6 alcohols, aldehydes,

and esters (Kim and Grosch, 1981; Matsui et al., 1996; Grechkin,

1998; Howe et al., 2000). Linolenic acid also acts as a precursor

compound for the synthesis of jasmonic acid (JA), which is further

converted to methyl jasmonate (MeJA) and cis-jasmone (Seo et al.,

2001; Song et al., 2005). Another important class of HIPVs includes

terpenoid classes of isoprene (C5), monoterpenes (C10),

sesquiterpenes (C15), and irregular terpenes. The diversity of

terpenoid compounds is due to terpene synthases, which produce

these compounds from two inter convertible C5 units, isopentenyl

diphosphate (IPP) and its allelic isomer dimethylallyl diphosphate

(DMAPP) (McGarvey and Croteau, 1995; Bohlmann et al., 1998;

Dudareva et al., 2003; Sharkey et al., 2005). The biosynthesis

pathways of terpenoids are also compartmentalized in plastids

and cytosol (Poulter et al., 1981). The two terpenoid pathways,

the mevalonic acid (MVA) pathway (sesquiterpenes synthesis) and

the methylerythritol phosphate (MEP) pathway (monoterpenes

synthesis), and their regulatory factors have been studied in

model systems like Petunia hybrida, Arabidopsis thaliana, and

many other species (Dudareva et al., 2004). Phenylpropanoid/

benzenoid volatiles are derived from the aromatic amino acid,

phenylalanine (Humphreys and Chapple, 2002). Like terpenoid

compounds, extensive studies have been done to understand their

biosynthesis pathways and regulatory factors. Benzenoid volatiles

are synthesized from phenylalanine originating via the shikimate–

chorismate pathway and followed by the deamination of

phenylalanine to cinnamic acid by phenylalanine ammonia-lyase

(PAL) (Vogt, 2010). A few of the volatiles under this class include

methyl benzoate, methyl salicylate, benzyl alcohol, benzyl benzoate,

benzyl salicylate, eugenol, and isoeugenol (Vogt, 2010; Muhlemann

et al., 2014). Nitrogen-containing compounds such as 1H-indole

and methyl-2-amino benzoic acid are also produced from the
Frontiers in Plant Science 03
shikimate pathway (Muhlemann et al., 2014). A brief overview of

select classes of HIPVs along with their biosynthetic routes is

illustrated in Figure 1.

The diversity of these VOCs enables the plants to produce

specific cues under biotic stress such as herbivory. The production

of these volatile compounds during herbivory can be either

triggered by tissue damage or damage-associated molecular

patterns (DAMPs) or specific elicitors released by the pests

referred to as herbivore-associated molecular patterns (HAMPs)

(Meents and Mithöfer, 2020). The former is referred to as damage-

induced volatiles (DIVs), while the latter is often referred to as

herbivore-induced plant volatiles (HIPVs). Over the years, most of

the studies have been taken up on HIPVs as compared to DIVs

(Meents and Mithöfer, 2020). Recent studies have reported that

mechanical damage inflicted on the plant can trigger systemic

responses and herbivore resistance (Quintana-Rodriguez et al.,

2018; Heil, 2009; Duran-Flores and Heil, 2016). Here, we try to

identify the dynamic plasticity of the emitted volatiles from aerial

tissues of Solanaceae crops under herbivory and the consecutive

molecular responses related to defense and tri-trophic interactions.
3 Aroma compounds of Solanaceae
plants during herbivory

The Solanaceae family includes flowering plants, many of them

being economically important crops related to horticulture

(petunia), pharmacology (tobacco, mandrake, and jimsonweed),

and food (eggplant, potato, tomato, cherry, and gooseberry)

(Samuels, 2015). According to the Food and Agricultural

Organization (FAO) report, potatoes ranked sixth in the

production of primary crops almost accounting for 359,071
FIGURE 1

Overview of different classes of herbivore induced plant volatiles (HIPVs), including green leaf volatiles, terpenoids, and aromatic compounds along
with their biosynthesis pathways. In the figure, block arrows represent multiple biosynthetic steps involved. Abbreviations: acetyl-CoA, acetyl-
coenyzme A; DMAPP, dimethylallyl pyrophosphate; DMNT, 4,8-dimethylnona-1,3,7-triene; E4P, erythrose 4-phosphate; IPP, isopentenyl
pyrophosphate; PEP, phosphoenolpyruvate; TMTT, 4,8,12-trimethyltrideca-1,3,7,11-tetraene.
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thousand tons in 2022 (https://www.fao.org/3/CC2211EN/online/

CC2211EN.html#). This also indicates the economic importance of

these crops worldwide. One of the major problems faced by these

crops is the attack from pests and pathogens. According to FAO,

pests account for 20%–40% of the yield losses worldwide (https://

www.fao.org/3/CC2211EN/online/CC2211EN.html#). These crops

are affected by a variety of herbivores, including chewing

herbivores, mesophyll feeding stylet feeders, and phloem-feeding

stylet feeders (Kant et al., 2009). In the following sections, we

describe the diversity of VOCs produced under the attack of major

pests affecting agriculturally important Solanaceae crops (Table 1).
3.1 HIPVs and DIVs during attack of
chewing herbivores

Chewing herbivores such as caterpillars, miners, and borers

cause more harm to the plant tissues than the sucking pests. These

pests directly damage the cell membranes and cell walls. Along with

the tissue damage, it has been observed that chewing herbivores

trigger defense responses, including the emission of volatiles via

effectors. Effectors are molecules that can uplift/trigger defense

responses in host plants. They include oral secretions or

regurgitant, saliva, ventral eversible gland secretions, waste
Frontiers in Plant Science 04
products, ovipositional fluids, and herbivore-associated

endosymbionts (Kant et al., 2009). Chemically, they can be fatty

acid conjugates (e.g., volicitin), b-glucosidases, and small peptide

molecules (Mattiacci et al., 1995; Alborn et al., 1997; Mori et al.,

2001). The detection of the presence of volicitin and other volatile-

inducing fatty acid conjugates in oral secretions of tobacco

budworm and tobacco hornworm is one of the earliest reports in

Solanaceae crops (Halitschke et al., 2001; Mori et al., 2001). Ventral

eversible gland secretions of Spodoptera exigua caterpillars have also

been shown to significantly increase the production and emission of

GLVs ((E)-2-hexenal, (Z)-3-hexenal, (Z)-3-hexenyl acetate, and

(Z)-2-hexenol), monoterpenes (b-linalool and g-terpinene),
sesquiterpenes ((E)-b-caryophyllene, a-humulene, and b-
elemene), and methyl salicylate in tomato plants (Zebelo et al.,

2014). These effector compounds not only trigger the defense

responses of the host plant but also induce responses that can

attract predators of the pest. A study in potato plants, showing that

the treatment with volicitin, regurgitant from the insect larvae, and

MeJA treatment increased the attraction of Colorado potato beetles,

Leptinotarsa decemlineata (Say), in comparison to the mechanically

damaged potato plants even after 24 h (Landolt et al., 1999). This

indicates that the HIPVs produced in response to the effector

molecules secreted by the insect pests may also increase the

attractiveness of the host plant to the same/other pests.
TABLE 1 Diversity of herbivore-induced plant volatiles in Solanaceae crops.

S.
No. Plant Herbivore

Response of HIPVs

References
Terpenoids GLVs Phenylpropanoids/

benzenoids

Chewing herbivores

1 Nicotiana attenuata Manduca sexta + + –
Halitschke
et al., 2008

2 Solanum lycopersicum Spodoptera exigua + + +
Zebelo et al.,
2014; Disi
et al., 2017

3 Solanum tuberosum
Leptinotarsa
decemlineata (Say)

N.D. N.D. N.D.
Landolt et al.,
1999

4
Solanum tuberosum
Solanum lycopersicum

Tuta absoluta + – –
Chen et al.,
2021

5 Nicotiana tobaccum
Helicoverpa assulta
(Guene´e)

+ + –
Sun et al.,
2012

6 Nicotiana tobaccum Phthorimaea operculella – + –
Xiang et al.,
2020

7 Solanum lycopersicum Tuta absoluta + + +
Silva et al.,
2017

8 Capsicum annuum N.M +
Freundlich
et al., 2021

9 Solanum melongena
Leucinodes orbonalis
Guenee

+ + +
Nusra et al.,
2021

10 Solanum lycopersicum Tuta absoluta + + +
Ayelo et al.,
2021

(Continued)
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TABLE 1 Continued

S.
No. Plant Herbivore

Response of HIPVs

References
Terpenoids GLVs Phenylpropanoids/

benzenoids

11 Solanum tuberosum
Leptinotarsa
decemlineata (Say)

+ + +
Davidson-
Lowe, 2021

12 Solanum tuberosum
Leptinotarsa
decemlineata (Say)

+ + –
Gosset et al.,
2009

13 Solanum tuberosum Mamestra brassicae L. + + +
Schettino
et al., 2017

Mesophyll-feeding stylet feeders

14 Capsicum annuum Tetranychus urticae + + –
Zhang et al.,
2020

15 Solanum lycopersicum Tetranychus urticae + – +

Kant et al.,
2004;
Weinblum
et al., 2021

16 Nicotiana tobaccum Frankliniella occidentalis + – –
>Delphia
et al., 2007

17 Solanum lycopersicum Frankliniella occidentalis + – –

Escobar-
Bravo et al.,
2017; Chen
et al., 2018

18 Lycopersicon esculentum Tetranychus urticae + – –

van Schie
et al., 2007;
Falara et al.,
2014

19
Solanum sarrachoides Sendtner, S. villosum Miller and S.
scabrum Miller

Tetranychus evansi – + –
Murungi
et al., 2016

20
Nicotiana tabacum, Solanum melalonga, Datura
stramonium, Capsicum annuum

Tetranychus urticae Koch + + +
Van Den
Boom et al.,
2004

21 Solanum melongena L.
Frankliniella occidentalis
(Pergande)

N.D. N.D. N.D.
Liu et al.,
2022

22 Capsicum annuum and Capsicum chinense Frankliniella occidentalis + – –
Macel et al.,
2019

Phloem-feeding stylet feeders

23 Solatium berthaultii Myzus persicae (Sulzer) + – –
Gibson and
Pickett, 1983

24 Solanum tuberosum Myzus persicae + – –
Harmel et al.,
2007

25
Solanum melongena L.
Capsicum annuum

Myzus persicae + + +
Digilio et al.,
2012; Ali
et al., 2022

27
Solanum pennellii LA716 × Solanum lycopersicum
‘Moneyberg’

Besmia tabaci + – –

Bleeker et al.,
2009; Bleeker
et al., 2011

28 Solanum lycopersicon L. cv. Moneymaker Besmia tabaci + – +
Silva et al.,
2017

29 Solanum lycopersicum
Trialeurodes
vaporariorum

+ – –
Ayelo et al.,
2021
F
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'+': Emission of compound; '-': absence of emission of compound. ND, Not determined
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Tuta absoluta (Lepidoptera: Gelechiidae), a major pest of

Solanaceae crops, has shown differential behavioral responses to

VOCs emitted by the tomato and potato plants in their natural

conditions (Caparros Megido et al., 2014). According to the report,

enhanced emission of monoterpenes (a-pinene, sabinene, myrcene,

d-2-carene, a-phellandrene, d-3-carene, and b-phellandrene) was
found to be attractive for the pests in tomato plants and enhanced

emission of sesquiterpenes (b-caryophyllene, (E)-b-farnesene,
germacrene-D, and germacrene-D-4-ol) was found to be

attractive in potato plants. However, T. absoluta females did not

show any preference for oviposition according to these volatile cues.

Floral volatiles from tobacco, including (E)-b-ocimene, octanal,

(Z)-3-hexenyl acetate, (Z)-3-hexen-1-ol, nonanal, (Z)-3-hexenyl-

2-methyl butyrate, decanal, linalool, and (E)-b-caryophyllene, have
been found to be attractive for another chewing herbivore,

Helicoverpa assulta (Guene´e) (Lepidoptera: Noctuidae) (Sun

et al., 2012). The attraction of the pest Phthorimaea operculella to

tobacco plants mediated by GLVs has also been reported by Xiang

et al. (2020). Interestingly, geraniol, a monoterpene volatile has been

found to deter the oviposition of shoot and fruit borer on eggplant

(Ghosh et al., 2022).

Qualitative and quantitative differences in the emitted volatiles

have been observed in the tomato plants infested with T. absoluta

(Silva et al., 2017). Headspace analysis of these plants has shown a

consistent association with the emission of fatty acid derivative

compounds, including 3-methyl butan-1-ol, (Z)-2-penten-1-ol, (Z)-

3-hexen-1-yl-formate, (Z)-2-penten-1-yl butyrate, and few other

related compounds. An almost 10-fold increase in the emission of

volatiles, including terpenes, aromatic compounds, and fatty acid

esters, has been observed post-infestation. A recent metabolome

and volatilome analysis of eggplant and tomato post-infestation

revealed that differential accumulation of both metabolites and

VOCs was responsible for the pest resistance in eggplants (Chen

et al., 2021). Interestingly, the study also reported that the borer

showed differential behavioral responses during pre-and post-

infestation in both eggplants and tomatoes. Terpenes (nerolidol,

beta-Cyclocitral, 1,3-cyclohexadiene-1-carboxaldehyde, 2,6,6-

trimethyl, and beta-iso-methyl ionone) and a few other ketones,

heterocyclic esters, aldehydes, and alcohols emitted from tomato

plants could have attracted and/or stimulated the attack of pests,

while emission of nerolidol (terpene), 1,3-cyclopentadiene, 5,5-

dimethyl-1,2-dipropyl (olefin), and 2-butenoic acid, 3-hexenyl

ester (ester) due to mechanical damage or borer infestation from

eggplants could have repelled the pest or decreased its survival

(Chen et al., 2021). Among the other metabolites, two deterrent

compounds, viz., flavonoid compounds (6-hydroxy kaempferol-3-

O-rutin-6-O-glucoside) and quercetin-3-O-apiosyl (1 ! 2)

galactoside), were found to be produced in higher quantities in

eggplants. These flavonoids have been shown to modulate the

oviposition and feeding of herbivores in different crops

(Simmonds, 2001). The induction or enhanced emission of VOCs

during the attack of chewing herbivores has also been reported in

maize, rice, cotton, and legume crops (Leitner et al., 2005; Sobhy

et al., 2017; Qi et al., 2018; Arce et al., 2021).

Recently, GLVs have been shown to emit immediately because

of the mechanical damage caused during herbivory in plants,
Frontiers in Plant Science 06
including tomatoes, potatoes, lima beans, Arabidopsis, and even

trees (Meents and Mithöfer, 2020). Farag and Paré (2002) explained

how C6 GLV, (E)-2-hexenal triggers the defense responses,

including the emission of VOCs in tomatoes. Similar reports of

induction of defense through mechanical damage in cotton leaves

and Arabidopsis have also been reported (Rodriguez-Saona et al.,

2003, Yamauchi et al., 2018; Arce et al., 2021). The effects of

damage-induced volatiles seem to be contradictory in a few plants

even among Solanaceae family. Studies by Landolt et al. (1999)

reported that mechanical- damage-induced VOCs did not attract

Colorado potato beetles significantly in comparison to the VOCs

released in response to effector molecules released by larvae feeding.

Treatment with cis-3-hexenyl acetate (z3HAC), another GLV often

grouped under DIVs, did trigger defense responses in Capsicum

annuum (Freundlich et al., 2021). These reports are in line with a

well-known fact that damage helps in the recognition of attack by

plants but then is not completely sufficient to trigger the full plant

defense (Heil, 2009; Fürstenberg-Hägg et al., 2013; Acevedo

et al., 2015).
3.2 HIPVs during attack of mesophyll-
feeding stylet feeders

Mesophyll-feeding stylet feeders include mites and thrips. These

insects can empty the cell contents without causing more damage to

cell walls and plasma membranes. They primarily feed on the leaf

tissues via their stylet penetrating the stomatal openings or the

intercellular spaces of cells located on tissue surfaces (Bensoussan

et al., 2016). Most of the studies have focused on the emission of

VOCs from plants under attack by chewing herbivores, while

limited reports exist on the emission of HIPVs from plants under

attack by other types of feeding herbivores, including mesophyll-

feeding stylet feeders (Delphia et al., 2007). Two-spotted spider mite

(Tetranychus urticae) is a generalist pest that infects almost 150

crop species, including those from the Solanaceae family. Upon

infestation with these mites, a susceptible line of chili showed

increased emission of VOCs, specifically, (E)-2-4-Hexadiene and

methyl salicylate, while the resistant line showed enhanced emission

of sesquiterpene compounds. The emission of benzenoid volatiles

was found repressed in both the lines (Zhang et al., 2020). In

tomatoes, the infestation of T. urticae induced the emission of

terpenoids and methyl salicylate mediated by JA (Ament et al.,

2004). Contradictorily, in a different tomato cultivar under the

attack of T. urticae, enhanced emission of terpenoids, methyl

salicylate, and methyl benzoate induced via salicylic acid (SA)

signaling was observed (Weinblum et al., 2021). Time course

profiling of VOCs emitted from tomato leaves upon spider mite

infestation showed the enhanced emission of methyl salicylate,

4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT), trans-b-
ocimene, trans-nerolidol, and linalool, which relatively kept

increasing up to 5 days (Kant et al., 2004). Secondary metabolites,

including anthocyanins, were induced in tomato plants almost 5

days after the infestation, thus suggesting that the emission of

volatiles is part of the secondary response when mites infect the

plants. Delayed emission of terpenoid compounds upon spider mite
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infection almost after 5 days has also been reported in lima beans

and cucumber (Bouwmeester et al., 1999; Mercke et al., 2004). In

the case of chewing herbivores, which cause more damage to the

foliar tissues, emission of GLVs almost happens immediately in

comparison to the VOCs emitted by the plants infected by mites.

Another specialist herbivore, i.e., the tomato red spider mite

Tetranychus evansi, showed similar attractiveness to the foliar

volatiles emitted by cultivated African nightshade plants

(Solanum sarrachoides Sendtner, S. villosum Miller, and S.

scabrum Miller) and VOCs (unsaturated fatty acids) from

glandular trichomes of one of the plants studied, which deterred

the oviposition of the pest (Murungi et al., 2016). JA-mediated

induction of linalool synthase in trichomes of the leaf tissues during

spider mite infestation has been reported in tomato (van Schie et al.,

2007). Furthermore, Falara et al. (2014) identified a class of geranyl

linalool synthases in the Solanaceae family and other angiosperms

that are responsible for the production of defensive compounds.

They also reported that the corresponding genes can be expressed

by treatment with MeJA.

Western Flower Thrips, Onion thrips, and melon thrips have

also been shown to prey on the Solanaceae crops. Responses of

western flower thrips (Frankliniella occidentalis) to plant volatiles

when analyzed led to the identification of attractant and repellant

VOC molecules for the pest. p-Anisaldehyde, nerol, ethyl

nicotinate, and (E)-b-farnesene were found to be attractive at

several concentrations, while salicylaldehyde, a benzenoid

compound, was found to be repellent for the thrips (Koschier

et al., 2000). One of the early reports describing the emission of

induced VOCs by white flower thrips feeding was by Delphia et al.

(2007) in tobacco plants. VOCs, when analyzed after 4 days of a

high level of infection, showed the presence of terpenoid

compounds, including (E)-b-ocimene, linalool, b-caryophyllene,
unidentified sesquiterpene, farnesene, and nicotine, consistently.

Pest attack by western flower thrips in tomatoes has shown a

delayed increase in the production of terpenoid compounds (a-
pinene, d-carene, a-phellandrene, a-terpinene, limonene, and b-
phellandrene) via JA regulatory pathway by increasing the trichome

density in leaf tissues of the plant (Escobar-Bravo et al., 2017; Chen

et al., 2018).
3.3 HIPVs during attack of phloem-feeding
stylet feeders

Phloem-feeding stylet feeders include aphids and whiteflies

often grouped as sucking pests. They cause minimal damage to

the mesophyll cells and rather cause a shift in the plant’s source to

sink flow (Kant et al., 2009). One of the earliest report of the

production of HIPVs upon aphid (Myzus persicae (Sulzer)) attack

was in Solatium berthaultii Hawkes, which released (E)-b-
farnesene, a sesquiterpenoid compound from glandular hairs of

the shoot system (Gibson and Pickett, 1983). Interestingly, this

compound is also believed to be an aphid alarm pheromone

(Bowers et al., 1972). Harmel et al. (2007) also reported the

changes in the emission levels of terpene, (E)-b-farnesene, upon
infection of potato plants with Myzus persicae. Consistent emission
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of few fatty acid derivatives (hexanal, E-2-hexenal, Z-2-hexenal, and

their alcohols, decanal and phthalic acid, and cis-hexen-1-ol),

terpenoids (a-pinene, b-ocimene), and a benzenoid compound

(methyl salicylate) during aphid attack has been reported in

eggplant, chili, and tomato (Digilio et al., 2012; Cascone et al.,

2015; Ali et al., 2022). Consistent emission of limonene and (E)-b-
farnesene from Rhopalosiphum padi (Hemiptera: Aphididae)-

infected rice has been reported to increase the resistance of crops

against the pest (Sun et al., 2017). Attack of Lipaphis erysimi in

Arabidopsis plants showed enhanced emission of HIPVs when the

intensity of attack increased within 24 h. A few volatiles detected

include limonene, a-terpineol, benzaldehyde, phenylacetaldehyde,
and decan-3-ol (Lin et al., 2016). The emission of methyl salicylate

has also been reported from different crops under the attack of

aphids (Zhu and Park, 2005).

Whiteflies are another class of sucking pests that attack major

crops worldwide. They not only suck up the nutrients from the

plant tissue but also promote the growth of pathogenic fungi and act

as vectors for several viruses (Perring et al., 2018). Bemisia tabaci

(Gennadius) and Trialeurodes vaporariorum Westwood are two

prominent pests affecting several crops worldwide. The production

of a sesquiterpene zingiberene (Antonious and Kochhar, 2003) and

a fatty acid derivative (Fridman et al., 2005) by glandular trichomes

of wild tomatoes have shown deterrence to the infection of the pest.

The study by Bleeker et al. (2009) also showed that monoterpene p-

cymene was putatively repellent and revealed two additional

candidates, i. e., a-terpinene and a-phellandrene, against the pest

in tomato lines. Emission of Z-3-hexen-1-ol, a-pinene, a-
humulene, (E)-b-caryophyllene, methoxyphenyl oxime, azulene,

and 1,1-dimethyl-3-methylene-2-vinylcyclohexane was shown to

increase in egg plants infested by greenhouse whitefly, Trialeurodes

vaporariorum Westwood (Darshanee et al., 2017).

To summarize, feeding by chewing herbivores induces the

emission of GLVs, terpenes (monoterpenes, sesquiterpenes, and

homoterpenes), and, at times, methyl salicylate (limited reports)

due to the mechanical damage caused to the tissues, released effector

molecules, and the eggs laid by the pests on the Solanaceae crops

(Table 1). Mesophyll-feeding stylet feeders have been shown to

induce the emission of terpenoids, and fatty acid esters present in

the trichomes of the leaf tissue via JA signaling. Very few reports are

available on the effector molecules released by mites/thrips inducing

defense responses in the host plants (Steenbergen et al., 2018).

Phloem-feeding stylet feeders causing minimal damage to the plant

tissues release HIPVs like phenylpropanoids/benzenoids (methyl

salicylate, benzaldehyde), terpenes (E-b-farnesene), and fatty acid

esters (Figure 2). Leaf-chewing herbivores are known to activate the

JA signaling pathway. While phloem-sucking pests activate the SA

signaling pathway at times, even by switching off the JA signaling

pathway (Clavijo McCormick et al., 2012). A recent meta-analysis

of 236 experiments dealing with HIPVs released by chewing

herbivores vs. sucking pests reported higher total amounts of

volatiles, including GLVs and terpenoids being released by the

chewing herbivores as compared to the sucking pests that selectively

induce fewer compounds belonging to benzenoid/phenylpropanoid

and terpenoid classes (Rowen and Kaplan, 2016). Differential

emission of volatiles when two different types of pests are
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attacking the same crop plant has also been studied in the

Solanaceae family (Gosset et al., 2009; Silva et al., 2017).

Davidson-Lowe and Ali (2021) also studied the VOCs emission

pattern in potato plants under the co-occurrence of chewing and

sucking pests. The study reported that sucking pests preferred

uninfected plants over the plants that were already infected with

the Colorado potato beetle. Analysis of the emission of HIPVs by

plants under different biotic stress conditions can help in identifying

the volatile signatures, which may be used for early detection of pest

attacks, thereby reducing the crop losses incurred. This review being

limited to a few important agricultural crops of the Solanaceae

family may have overlooked any other classes of VOCs emitted

upon herbivory. In the following sections, we further discuss the

dynamic role of plant volatiles affecting direct and indirect defense

mechanisms in plants.
4 Multifunctionality of HIPVs in plant
defense

Plants emit specific blends of info chemicals upon mechanical

tissue damage and herbivore attack. HIPVs act as physiological

regulators that can prime plant defenses (Hu et al., 2021). Faster and

stronger activation of plant defenses in HIPV-exposed plants

leading to enhanced resistance in subsequent herbivore attacks is

known as “defense priming” (Engelberth et al., 2004; Kim and

Felton, 2013). HIPVs prime JA accumulation by modulating the

early defense signaling components and subsequently regulating the

transcription of jasmonate-responsive genes (Engelberth et al.,

2013; Erb et al., 2015). Jasmonates are known to be the key

regulators of plant defense and herbivore resistance. Therefore, it

is assumed that HIPVs increase plant resistance by regulating the JA

signaling pathway. The intricate molecular mechanisms underlying

the volatile-mediated defense priming have been explored in several

plants and discussed below.
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4.1 Regulation of GLVs in response to
herbivory

GLVs, namely, six-carbon aldehydes ((E)-2-hexenal), alcohols

((Z)-3-hexenol), and their esters ((Z)-3-hexenyl acetate) are

dramatically emitted by plants upon tissue damage or herbivore

attack (Engelberth et al., 2013; Ameye et al., 2017). GLVs being

produced from existing precursors are produced very rapidly upon

tissue damage. They are produced via the lipoxygenase (LOX)

pathway, the first product (Z)-3-hexenal being formed by the

oxygenation of linolenic acid catalyzed by LOX. The

isomerization of (Z)-3-hexenal yields (E)-2-hexenal, which is

directly toxic for the infesting herbivores. C6 aldehyde forms

are converted into corresponding C6 alcohols by alcohol

dehydrogenases followed by the action of acetyltransferases to

form esters (D’Auria et al., 2007). The intermediate product in

this pathway, linolenic acid 13-hydroperoxide (13HPOT), also

serves as a precursor for JA, which regulates the production of

herbivore-induced volatile terpenoids in damaged and undamaged

tissues. Hence, GLV and JA bio syntheses both support the effective

regulation of HIPV production by plants upon herbivory (Arimura

et al., 2009) (Figure 3). GLVs are released within seconds of tissue

damage from leaves and stem. Real-time volatile analysis studies in

Arabidopsis have shown peaking of (Z)-3-hexenal at 30–45 s, and

alcohol and ester form at 5 min following the damage (D’Auria

et al., 2007). It is assumed that (Z)-3-hexenal is the predominant

product at the tissue damage site, while alcohol and acetate are

formed in the vicinity of the wounded site owing to the ample

supply of (Z)-3- hexenal from directly disrupted tissues.

Presumably, NAD(P)H and acetyl-CoA from healthy leaves

support the production of alcohols and acetates, respectively.

Many studies have suggested the spatial differentiation of GLVs

between local and distal sites of herbivore damage or mechanical

tissue disruption. For instance, in maize and cotton leaves, acetate

forms were significantly emitted from the distal sites of herbivory or

when treated with MeJA. However, emission of all the GLVs with
FIGURE 2

Diversity of HIPVs emitted in Solanaceae crops under herbivory. Emission of higher amounts of VOCs including terpenoids, GLVs, and few aromatics
under the attack of chewing herbivores and mesophyll-feeding stylet feeders along with selective emission of aromatics, terpenoids, and few GLVs
under the attack of phloem feeding stylet feeders is shown. In set in the figures shows a representative cross-section of leaf tissue damage under
respective herbivory.
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local and distal differentiation was observed when leaves were

artificially damaged or subjected to herbivory (Farag et al., 2005;

Arimura et al., 2009). The detailed mechanism leading to the rapid

release of hexenal after herbivory or wounding is not yet clarified,

but high GLV emissions also upon photooxidative stress have

suggested that oxidative damage of membranes could be the

primary cause of induction of GLV emissions. Oxidative stress is

also considered one of the consequences of herbivore damage

(Mithöfer et al., 2004; Mithöfer et al., 2005). GLVs are released

immediately at the site of tissue damage and result in moderate

plant response specifically, priming the neighboring plants against

impending herbivory by inducing the chemical defenses. The

induction of several plant- defense-related genes that are induced

upon MeJA treatment has been observed upon treatment of

Arabidopsis plants with C6 volatiles— phenylpropanoid- related

genes such as phenylalanine ammonia-lyase, chalcone synthase,

dihydro flavonol reductase, and LOX pathway genes, including

LOX and allene oxide synthase (AOS) (Bate and Rothstein, 1998).
4.2 Regulation of volatile terpenoids in
response to herbivory

Terpenoids, the structurally diverse natural compounds, are

produced in plants via two biosynthetic pathways: i) the mevalonate

(MVA) pathway in the cytoplasm and ii) 2- C -methyl- D

-erythritol 4-phosphate (MEP) pathway in the plastids (Arimura

et al., 2009; Nagegowda and Gupta, 2020). Both pathways are

independent of each other but produce the same intermediate,

the five-carbon compound isopentenyl diphosphate (IDP).
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Substantial contribution of IDP from the MEP pathway has been

reported towards total sesquiterpene biosynthesis upon herbivory

(Bartram et al., 2006). The structural diversity of terpenoids is

brought about by the terpene synthases (TPSs), which can utilize

different prenyl diphosphates as substrates to synthesize

hemeterpenes (C5), monoterpenes (C10), sesquiterpenes (C15),

homoterpenes (C11 and C16), and diterpenes (C20). Hence, TPSs

significantly contribute to the plasticity of terpenoid blends

produced in response to herbivory (Arimura et al., 2008a). JA

and its precursors act as master switches for upregulating a

specific set of defense genes for terpenoid production. As a direct

response to mechanical tissue damage mimicking herbivory, JA

accumulation is observed locally leading to immediate upregulation

of the ocimene synthase gene in lima bean leaves (Arimura et al.,

2008b). Gene expression studies have shown the upregulation of

terpene synthase genes TPS7 (encoding for monoterpene, b-
ocimene) and TPS12 (encoding for (E)-b-caryophyllene) in

tomato plants damaged by caterpillars (Zebelo et al., 2014).

However, the release of de novo synthesized terpenes from plants

may take several hours to days (Turlings et al., 1998; Danner

et al., 2015).

The synergistic and antagonistic crosstalk among the influx of

calcium ions, JA, and ethylene signaling regulates terpenoid

biosynthesis. Plants show varied responses to sucking arthropods

and chewing insect pests. In plants damaged by sucking arthropods,

the specific terpenoid blend is regulated by the antagonistic

crosstalk of SA with JA, while chewing herbivores stimulate the

calcium influx, which acts as a secondary messenger for the

activation of the JA signaling pathway (Arimura et al., 2008a).

Generally, negative interactions between JA and SA signaling have
FIGURE 3

Schematic model of herbivore-induced defense signaling in plants. Role of specific early defense regulators and components comprising of Ca2+,
LRR-RLKs, MAPKs, WRKY transcription factors, and jasmonate biosynthesis genes leading to downstream defense gene expression to activate plant
defenses is illustrated. The role of GLVs and terpenoids in mediating the direct and indirect responses via tritrophic interactions is also exemplified.
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been reported, but this crosstalk can show variations depending

upon the degree of damage, timing, and the specific herbivore

leading to huge differences in the blend of terpenoids being emitted.

Ethylene plays a role in modulating the early signaling events like

cytoplasmic Ca2+ influx and downstream JA-dependent

biosynthesis, which in turn can regulate terpenoid production

(Figure 3). Moreover, chemical elicitors like fatty acid-amino acid

conjugates (FACs) present in oral secretions of lepidopteran larvae

synergistically induce plants to release HIPVs (Halitschke et al.,

2001; Yoshinaga et al., 2010). Oral secretions (OS) from fall

armyworm, Spodoptera frugiperda, have shown the presence of

proteolytic fragments Inceptin [+ ICDINGVCVDA −] and the

related peptides [+ (GE) ICDINGVCVDA −] eliciting rapid

production of JA, SA, and ethylene (Schmelz et al., 2007). b-
Glucosidase, volicitin, and caeliferins are other reported insect

oral elicitors known for inducing the production of HIPVs.

Contrary to this, very little is known about oral elicitors from

sucking arthropods except for oligogalacturonides, which are

assumed to induce Ca2+ influx due to cell wall digestion (Will

and van Bel, 2008).
4.3 Regulation of early defense signaling
and downstream gene expression

The molecular mechanism of integration of HIPVs into early

defense signaling leading to JA accumulation and subsequent

defense gene expression remains elusive demanding more

exploration. However, the role of specific early defense regulators

and components has been contemplated based on several research

studies. The first event after the damage of tissues by chewing

caterpillars is the influx of cytosolic Ca2+ owing to plasma trans-

membrane potential (Vm) depolarization (Asai et al., 2009; Zebelo

et al., 2012). Exposure to volatiles such as GLVs has shown

increased cytosolic Ca2+ flux in tomato and Arabidopsis plants.

The rise in cytosolic calcium ions is also accompanied by a burst of

reactive oxygen species (ROS), including hydrogen peroxide (H2O2)

and nitric oxide (NO) (Maffei et al., 2006). These events occurring

within seconds to hour(s) of insect damage are considered as early

plant defense responses. Ca2+ binding proteins like calmodulins and

Ca 2+ -dependent protein kinases further integrate the signal to

mitogen-activated kinases. Ye et al., 2019 reported direct induction

of leucine-rich repeat receptor-like kinase genes (OsLRR-RLK1) in

rice upon exposure to indole, a commonly emitted HIPV. This

study also reported subsequent priming of mitogen-activated

protein kinase (OsMPK3) and the WRKY transcription factor

gene (OsWRKY70) for stronger expression leading to jasmonate

accumulation and herbivore resistance (Ye et al., 2019). It was

concluded that LRR kinases have an upstream function in

perceiving the HIPVs. The activation of receptor-like kinases and

apoplastic O2
− and H2O2 production are supposed to be linked, but

the exact connection between these links is still not clear. H2O2

accumulation is known to upregulate the genes that encode for

antioxidative enzymes like superoxide dismutase, catalase,

ascorbate peroxidase, glutathione reductase, and monodehydro

ascorbate reductase under biotic and abiotic stress (González-
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Bosch, 2018). It is also anticipated that it may have specific

transcription factor targets within the WRKY gene family. In

maize, pre-exposure to GLVs has shown direct increased

expression of ZmMAPK6 and ZmWRKY12 genes (Engelberth

et al., 2013). These findings suggest that GLVs can directly induce

defense genes and strengthen the jasmonate signaling pathway.

Certainly, OsMPK3, OsWRKY70, and JA form a signaling cascade

and positively regulate the resistance to chewing herbivores in

plants (Figure 3). In addition, a clear role of reactive oxygen

species in the early perception and signaling to activate plant

defenses is established. Experiments with mutant plants deficient

in JA biosynthesis/signaling have also validated that a functional

jasmonate signaling pathway is required for HIPV-mediated

defense priming in plants (Ye et al., 2019). Therefore, changes in

the transcript level of defense-related genes and production of

subsequent metabolites, including terpenoids, occur hour(s) to

day(s) after the insect damage and comprise the late plant

defense responses.

Alternate mechanisms for the molecular basis of VOC

recognition have been suggested by a few studies advocating a

prominent involvement of transcriptional co-repressors bound to

VOCs in regulating the gene expression in plant cells (Nagashima

et al. , 2019). Direct binding of caryophyllene analogs

(sesquiterpenes) to TPL-like proteins (encoded by NtTPLs) and

dose-dependent responses upon overexpression were observed in

vitro and in vivo in tobacco BY-2 cells and tobacco plants,

respectively (Nagashima et al., 2019). Hence, a dual role of TPLs

as co-repressors for JA-mediated signaling and as VOC-binding

proteins have been proposed, which acts upstream of other

transcription factors. However, to generalize this finding, more

studies with other VOCs need to be performed. Nevertheless, such

reports lead to suggest that plants use VOC-sensing mechanisms

via nuclear proteins and not membrane-bound receptors.

Therefore, the exact mechanism of sense that leads to

transcriptional regulation of defense genes is an appealing topic

to be explored.

Defense-related enzymes like peroxidase (POD), polyphenol

oxidase (PPO), and lipoxygenase (LOX) show significantly higher

expression in plants damaged by caterpillars or aphids or

mechanically injured plants treated with insect oral secretions

(Zebelo et al., 2014; Pingault et al., 2021). All three enzymes are

components of the octadecanoid signal pathway, which regulates JA

production (Felton et al., 1989). LOXs catalyze the oxidation of

linolenic acid in the JA signaling pathway. PODs and LOXs are anti-

oxidative enzymes that limit the nutritional quality of the plants to

the insect herbivores, thereby increasing the resistance (Felton et al.,

1992). PPO is also an inducible enzyme known for its defensive role

against insect herbivores and pathogens (Zebelo et al., 2014). In

succession to high POD activity, upregulation of several genes,

including proteinase inhibitors, has been reported in tomatoes and

capsicum upon herbivory by caterpillars or treatment with insect

oral secretions (Damle et al., 2005; Mishra et al., 2012). In

Solanaceous plants, accumulation of proteinase inhibitors (PIs) in

the damaged and the undamaged leaves has been reported as one of

the major consequences of mechanical wounding or insect

herbivory. Generally, the responses to insect feeding have been
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observed to be more complex as compared to mechanical wounding

owing to the elicitors present in insect OS or regurgitant

(Hermsmeier et al., 2001; Mishra et al., 2012; Zebelo et al., 2014).

Systemin, an 18-amino acid peptide derived from a 200-amino acid

precursor prosystemin is known as proteinase inhibitor-inducing

factor (Pearce et al., 1991; Orozco-Cardenas et al., 1993) in

Solanaceous plants. Systemin has been identified as the systemic

signal owing to its phloem mobility, and its treatment shows

induced PI accumulation in plants (Narvaez-Vasquez et al., 1994).

In addition, coordinated synthesis of immunoregulatory signals like

ethylene, hydrogen peroxide, cytosolic calcium ion influx, and

plasma membrane depolarization leading to transcriptional

reprogramming by systemin has been reported (Ryan, 2000;

Kandoth et al., 2007). However, peptide mediator-like systemin

has not been identified in other families of plants in the context of

ant–herbivore defense. A series of elicitor peptides (ZmPeps) have

been reported in maize, which trigger the biosynthesis of herbivory-

associated VOCs and also regulate phytohormone biosynthesis and

the accumulation of transcripts related to anti-herbivore defense,

including proteinase inhibitors (Huffaker et al. , 2013;

Huffaker, 2015).
4.4 Indirect effects of HIPVs during
herbivory

HIPVs attract arthropod predators and parasitoids of

herbivores acting as an indirect means to repel insect pests (Dicke

et al., 1998; Reddy, 2002; Ayelo et al., 2021) (Figure 3). Parasitoids

use these volatiles as cues to search for their preys. Most of the

vegetative volatiles that have been identified in repelling herbivores

and attracting herbivore enemies are either terpenes ((E)-b-
Ocimene, (E)-b-Caryophyllene, (E)-b-Farnesene), or GLVs

(Isoprene) (Unsicker et al., 2009). For example, monoterpene

volatiles have been reported to repel the ovipositing females of

diamondback moth, and isoprene was shown to deter the tobacco

hornworm caterpillars from feeding on the isoprene-releasing

transgenic tobacco lines (Laothawornkitkul et al., 2008; Wang

et al., 2008). These interactions are specific to each insect–plant

interaction. For instance, Cotesia marginiventris, a parasitoid of

Spodoptera litura, gets attracted to Arabidopsis thaliana plants

emitting (E)-b-farnesene, (E)-a-bergamotene, and other

sesquiterpenes (Schnee et al., 2006). The indirect effect is

extended to even vertebrate predators of herbivores in a few

instances. More attacks from birds were observed on caterpillars

attached to infested trees emitting terpenes, specifically, (E)-b-
ocimene, linalool, and 4,8-dimethylnona-1,3,7-triene (DMNT)

(Mäntylä et al., 2008). While most of the reports on the volatile

attraction of herbivore enemies are on the aerial parts of the plants,

emissions from roots attracting the nematodes that prey on

attacking insect larvae are also known (Rasmann et al., 2005). For

example, a root-feeding pest, Diuraphis noxia, induces the emission

of a monoterpene volatile, 1,8-cineole, which is toxic and acts as a

repellant to Coleopteran insect pests (Tripathi et al., 2001). Roots of

Thuja occidentalis upon attack by Black vine weevils release volatiles

that attract the entomopathogenic nematodes (Van Tol et al., 2001).
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However, the tri-trophic interactions resulting from volatile

emissions are a result of the combined effects of above- and

below-ground herbivory. Methyl salicylate, a constituent of

insect-induced plant volatiles, has been reported to be very

effective for the indirect defense of plants by attracting many

insect predators and mites and inhibiting the oviposition of the

moths (Zhu and Park, 2005; Ulland et al., 2008).

HIPVs mediate the attraction of predators and induce defense

responses in neighboring plants (Baldwin and Schultz, 1983;

Rhoades, 1983; Turlings and Erb et al., 2018). Maize plants

exposed to GLVs from neighboring plants emit increased

quantities of sesquiterpenes, thereby activating the direct defenses

and attracting an important parasitoid of S. littura larvae, i.e., C.

marginiventris (Ton et al., 2007). Similarly, approximately 30

volatiles including methyl salicylate and methyl benzoate have

been reported from rice plants infested with S. frugiperda, which

collectively result in the attraction of natural enemies of S.

frugiperda such as C. marginiventris (Yuan et al., 2008). The

study by Arimura et al. (2001) reported that emitted VOCs from

lima- bean-infested plants by T. urticae activated the transcription

of pathogenesis-related and phenylalanine ammonia-lyase genes in

undamaged neighboring plants. Studies also showed where the

defense of receiver plants has increased upon exposure to HIPVs

in Solanaceae crops (Cascone et al., 2015; Angeles Lopez et al., 2012;

Dahlin et al., 2015). A recent study by Abdala-Roberts (2022) has

reported a lack of upregulation of insect resistance in receiving

potato plants due to exposure to HIPVs from Colorado potato

beetle-infested plants (emitter plants). Engelberth et al. (2004) has

shown priming of defense responses in maize plants upon exposure

to airborne VOCs. Holopainen et al. (2013) discussed the fate of

HIPVs once emitted from the host plant. VOCs such as terpenoids,

fatty acid esters, and methyl salicylate show different atmospheric

lifetimes under different environmental conditions in the presence

or absence of contaminants. Furthermore, these VOCs, when up

taken or absorbed by diffusion into plant tissues, undergo

reduction/oxidation reactions (metabolism), glycosylation, and

glutathionylation (Matsui, 2016). Thus, responses induced by

them can also vary from plant to plant and environment

to environment.
5 Metabolomics as a tool to
understand HIPVs and plant defense

The importance of plant VOCs are very crucial as signaling

molecules in plant defense and plant–plant/plant–insect

communication. Plant VOCs are the info chemicals that mediate

intra- and interspecific interactions (Dudareva et al., 2013).

However, several challenges concerning abiotic conditions, the

lifetime of VOCs in different environments, and limitations of

performing experiments at the field level to understand the actual

effect of HIPVs in inducing defense in crop systems must be

addressed. In recent times, metabolomics and transcriptomics

analysis have been carried out to understand metabolite

networking during the attack of pests especially for identifying
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metabolites responsible for inducing pest resistance in plants. For

example, Macel et al. (2019) have identified diterpene glycosides as

defensive compounds in pepper plants against thrips. Similarly, Liu

et al. (2022) identified quinic acid as a metabolite that offers

resistance against western flower thrips in eggplants. Progress in

-omics technologies in recent times have intensified our knowledge

of VOCs diversity, genes encoding enzymes that are responsible for

their biosynthesis, the regulatory mechanisms involved in their

formation, and downstream defense gene expression. Metabolomic

analysis, including volatilome studies, must be designed and taken

up in the field level studies to gain complete insight into the

dynamic plasticity of HIPVs produced, defense responses induced

in plants, behavioral changes in pests, allelopathic interactions

within the kingdom, and cross-kingdom species. However, several

technical challenges do exist in this domain including developing a

single sampling method to profile both volatile and non-volatile

metabolites (Maag et al., 2015).
6 Conclusion and future prospective

In this review, we try to summarize the diversity of HIPVs induced

by the attack of different types of herbivores in Solanaceae crops.

Furthermore, we highlight the multifunctional role of HIPVs in

regulating direct and indirect defense responses in Solanaceae crops

and provide a brief overview of upcoming “ omics” driven

methodologies in understanding plant–herbivore interactions. Truly,

these compounds act as infochemicals during herbivory in plants and

mediate several interactions at different trophic levels. Metabolic

engineering of floral and defense-related VOCs is a promising

approach to enhance plant chemo-diversity and mediate plant–insect

interactions to enhance insect resistance in crop plants. The

introduction of new gene(s) or upregulation or downregulation of

existing biochemical components have been some of the strategies

implemented in recent studies. Constitutive overexpression of (E)-b-
caryophyllene synthases in rice has shown improved above-ground

plant defense by attracting parasitoids (Degenhardt et al., 2009; Xiao

et al., 2012), while in maize, significant improvement in below-ground

plant defense from root pests was observed on restored emission of (E)-

b-caryophyllene (Degenhardt et al., 2009). The production of volatile

patchoulol with sesquiterpenes in transgenic tobacco shows deterrence

to tobacco hornworms, which otherwise show 20%–50%more damage

to the wild-type plants (Wu et al., 2006). Overexpression of strawberry

linalool/nerolidol synthase gene (FaNES1) in Arabidopsis results in

high emission of linalool, thereby repelling the aphids, Myzus persicae

(Aharoni et al., 2003). Transgenic tobacco plants overexpressing yeast

acyl-CoAD9 desaturase or the insect acyl-CoAD11 desaturase showed

elevated levels of GLV (Z)-3-hexenal, thereby leading to an increased

13-lipoxygenase activity, which regulates the defense pathway (Hong

et al., 2004). Heterologous expression of a sesquiterpene synthase gene

in Solanum lycopersicum (cultivated tomato) showed the production of

a novel insecticidal compound that increased resistance to whiteflies

and spider mites (Bleeker et al., 2012). Such reports suggest that it is

possible to improve the natural plant defensemechanisms bymetabolic

engineering of VOCs, providing an alternate pest management strategy
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(Khan et al., 2000; Dudareva and Pichersky, 2008; Zhou and Jander,

2021). However, the impact of altered VOC emissions on insect

behavior, effects on other tri-trophic interactions, and overall

ecological implications need to be explored to a larger extent to

implement these approaches in an agriculture setting. Other

significant methodological challenges that VOC engineering

encounters are negative effects on plant growth and development

owing to the limited carbon availability, the toxicity of the volatile

compounds to the non-target organisms, the formation of unpredicted

compounds, and no yield of desired volatile due to lack of biosynthetic

precursors (Dudareva et al., 2013). A more holistic view of plant

metabolic networks is the need of the hour to engineer plant- defense-

specialized metabolites to enhance insect resistance. The evolutionary

context of HIPVs must also be considered when designing such

modified crops. As Dicke and Baldwin (2010) suggested, these

HIPVs also function beyond distress signals and rather act as

infochemicals in an infochemical web in an ecosystem. Therefore,

metabolic engineering to improve plant fitness is a very fruitful area for

future research work.
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