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A chromosome-level genome
assembly of an early matured
aromatic Japonica rice variety
Qigeng10 to accelerate rice
breeding for high grain quality
in Northeast China
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Chuanzeng Liu1,3†, Lizhi Wang2,3,4, Bo Ma1,3, Yi Miao1,3,
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Hui Jiang5* and Junhe Wang2,4*

1Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China, 2Heilongjiang
Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial
Engineering Technology Research Center of Crop Cold Damage, Harbin, China, 3Northeast Branch of
National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China, 4Crop Cultivation and
Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China, 5Keshan Branch of
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Early-matured aromatic japonica rice from the Northeast is the most popular rice

commodity in the Chinese market. The Qigeng10 (QG10) was one of the varieties

with the largest planting area in this region in recent years. It was an early-matured

japonica rice variety with a lot of superior traits such as semi-dwarf, lodging

resistance, long grain, aromatic and good quality. Therefore, a high-quality

assembly of Qigeng10 genome is critical and useful for japonica research and

breeding. In this study, we produced a high-precision QG10 chromosome-level

genome by using a combination of Nanopore and Hi-C platforms. Finally, we

assembled the QG10 genome into 77 contigs with an N50 length of 11.80 Mb in 27

scaffolds with an N50 length of 30.55 Mb. The assembled genome size was

378.31Mb with 65 contigs and constituted approximately 99.59% of the 12

chromosomes. We identified a total of 1,080,819 SNPs and 682,392 InDels

between QG10 and Nipponbare. We also annotated 57,599 genes by the Ab

initio method, homology-based technique, and RNA-seq. Based on the

assembled genome sequence, we detected the sequence variation in a total of

63 cloned genes involved in grain yield, grain size, disease tolerance, lodging

resistance, fragrance, and many other important traits. Finally, we identified five

elite alleles (qTGW2Nipponbare, qTGW3Nanyangzhan, GW5IR24, GW6Suyunuo, and

qGW8Basmati385) controlling long grain size, four elite alleles (COLD1Nipponbare,

bZIP73Nipponbare, CTB4aKunmingxiaobaigu, and CTB2Kunmingxiaobaigu) controlling cold

tolerance, three non-functional alleles (DTH7Kitaake, Ghd7Hejiang19, and

Hd1Longgeng31) for early heading, two resistant alleles (PiaAkihikari and Pid4Digu) for

rice blast, a resistant allele STV11Kasalath for rice stripe virus, an NRT1.1BIR24 allele for
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1134308/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1134308/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1134308/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1134308/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1134308/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1134308/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1134308&domain=pdf&date_stamp=2023-02-23
mailto:wangjunhe@haas.cn
mailto:hui@haas.cn
https://doi.org/10.3389/fpls.2023.1134308
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1134308
https://www.frontiersin.org/journals/plant-science


Jiang et al. 10.3389/fpls.2023.1134308

Frontiers in Plant Science
higher nitrate absorption activity, an elite allele SCM3Chugoku117 for stronger culms,

and the typical aromatic gene badh2-E2 for fragrance in QG10. These results not

only help us to better elucidate the genetic mechanisms underlying excellent

agronomic traits in QG10 but also have wide-ranging implications for genomics-

assisted breeding in early-matured fragrant japonica rice.
KEYWORDS

aromatic japonica rice, genome assembly, early-matured, northern limit region,
functional genes
Introduction

Rice (Oryza sativa L.) is a safe and staple food source for more

than half of the world’s population and serves as a model plant for

cereal genetic studies (Gross and Zhao, 2014). Novo sequencing and

genomic technologies have been widely applied in rice to promote

the shift of breeding schemes from conventional field selection to

genomic-assisted breeding (Gu et al., 2022). O. sativa subsp.

japonica/Geng and subsp. Indica/Xian are the two major

subspecies of cultivated rice (Zhang et al., 2016a; Nie et al., 2017).

The japonica/Geng rice planting area is 9.87 million ha, accounting

for approximately 32.9 percent of the total rice planting area in

China (Tang and Chen, 2021). Recently, the early-matured

japonica/Geng rice is becoming more and more important, and its

growing area was more than 4 million ha in Northeast China (Cui

et al., 2022). Two genome draft sequences of the cultivated rice

subspecies japonica/Geng Nipponbare and Indica/Xian 93-11 were

released in 2002 (Goff et al., 2002; Yu et al., 2002). In 2005, the

International Rice Genome Sequencing Project (IRGSP) published

the first completed version of the Nipponbare sequence

(International-Rice-Genome-Sequencing-Project, 2005). Over the

last two decades, several pan-genomes including 66 rice genomes

(Zhao et al., 2018b), 33 rice genomes (Qin et al., 2021), 111 rice

genomes (Zhang et al., 2022a),251 rice genomes (Shang et al., 2022),

and 12 japonica rice genome (Wang et al., 2023) were built

including IR64, R498, Zhenshan 97, Minghui 63, Taichung Native

1, LTH, Kitaake, IR8, N22, Huajingxian74, HR12, Basmati 334,

Dom Sufid, Huazhan and Tianfeng at the chromosome level, and

Shennong265, DJ123, WR04-6, Suijing18, Koshihikari, Basmati,

Kongyu-131, and Guangluai-4 at scaffold level have been

assembled and released with unprecedented speed (Mahesh et al.,

2016; Zhang et al., 2016b; Du et al., 2017; Li et al., 2017; Nie et al.,

2017; Stein et al., 2018; Zhao et al., 2018b; Jain et al., 2019; Choi

et al., 2020; Tanaka et al., 2020; Panibe et al., 2021; Li et al., 2021a;

Yang et al., 2022; Zhang et al., 2022b). These assembled genome

sequences will be helpful in pinpointing new causal variants that

underlie complex agronomic traits and identifying many of the

genome-specific loci that were absent from the Nipponbare

reference genome. However, most of these varieties are Indica/

Xian rice or landrace. Nevertheless, the genome of japonica/Geng
02
differs significantly from that of indica/Xian (Nie et al., 2017). Since

the release of the finished version genome of Nipponbare, only

seven genomes at the scaffold level of early-matured japonica/Geng

varieties in northern region of China including Shennong265,

Liaogeng5, Yanfeng47, Suijing18, Longgeng31, Daohuaxiang2

(Wuyoudao4), and Kongyu-131 were released (Nie et al., 2017; Li

et al., 2018; Zhao et al., 2018b; Wang et al., 2023). Only

Daohuaxiang2 and Suijing18 were belong to early-mature

aromatic type. The public availability of japonica/Geng genomes

at the chromosome level, especially for the early-mature aromatic

type, remains largely blank (Nie et al., 2017). Moreover, a few

genomes are not enough to represent the whole genomic content of

the japonica rice. The novo assembled genomes of an early-mature

aromatic variety would be advantageous for functional genomics

and genome research. For example, if there is structural variation in

the particular variety and the reference genome in the candidate

region, the guiding role of the reference genome would be limited.

So, there is still a need for de novo genome assembly for various

purposes especially in early-mature aromatic rice breeding research.

Fragrant and long grain are key grain quality traits that directly

influence the global market price of rice (Hui et al., 2022). The

basmati rice and jasmine rice are the two most popular fragrant

indica rice in the world. However, consumers from East Asia,

including North China, Japan, and Korea tend to prefer japonica

rice (Lu et al., 2022). So, the aromatic long grain rice from Northeast

China, represented by Wuyoudao4 (WYD4), is the most famous

rice in the Chinese market. WYD4 had a superior quality, but also

had a number of defects, most importantly, poor lodging resistance,

lack of cold tolerance and blast resistance, and late maturity (Gao

et al., 2012). In 2019, Qiqihar Branch of Heilongjiang Academy of

Agricultural Sciences developed Qigeng10 (QG10) to solved these

defects of WYD4. The plant area of QG10 was 0.4 million ha in the

recent three years. QG10 has been a major variety of early matured

aromatic long grain rice in Northeast China. The construction of a

high-quality chromosome-level genome of QG10 is very important

for improving the efficiency of rice genetic mechanism studies for

desirable agronomic traits, such as eating quality, cold tolerance,

lodging tolerance and early maturity, as well as accelerating the

process of high-quality rice breeding in cold region of northeast

China by design (Li et al., 2021a). Here, we produced a high-
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precision QG10 chromosomal genome by performing whole-

genome sequencing in the Nanopore platform (Lin et al., 2021),

followed by the Hi-C-assisted assembly mount technology (Van

Berkum et al., 2010). Our results provided several functionally

important candidate alleles for the grain length, cold tolerance,

early heading, disease resistance, lodging resistance, and nitrate-use

of rice breeding in cold region of northeast China.
Materials and methods

Materials

The early-matured aromatic long-grain japonica rice variety

QG10, which was developed by our own group, was licensed for

release in 2019 and is now widely planted in Heilongjiang province

in Northeast China. It was a semi-dwarf rice variety with a lot of

superior traits such as long panicle, long grain, aromatic, and good

quality (Figures 1A-D). It was selected from the cross between two

aromatic japonica/Geng rice Wuyoudao4 (WYD4) and Suigeng4

(SG4) (Figure 1E). The seedlings of QG10 were grown on the

agricultural farm of the Qiqihar Branch of Heilongjiang Academy of

Agricultural Sciences. Field management practices were performed

according to the most commonly followed agricultural practices of

local farmers. The leaves, stems, roots, and panicles at heading

stages from plants grown in the experimental station were collected

in liquid nitrogen for isolating RNA. The young leaves of a single

young plant were used to isolate genomic DNA.
Oxford Nanopare sequencing
and genome assembly

The high molecular weight genomic DNA of QG10 was

extracted from the 15-day-old leaf tissues following a modified
Frontiers in Plant Science 03
CTAB method. Whole genome sequencing was done following the

standard instructions of the Ligation Sequencing Kit (Nanopore,

Oxford shire, UK). The quantified DNA was randomly sheared, and

fragments of ∼20 kb were enriched and purified. Then, a 20-kb

library was constructed and sequenced on the Nanopore

PromethION platform according to the manufacturer’s protocols

(Jiang et al., 2020).

De novo genome assembly of Nanopore sequence was

performed as follow: The raw Nanopore reads were error-

corrected and assembled using CANU (v1.7.1) (Koren et al.,

2017), followed by Smartdenovo (https://github.com/ruanjue/

smartdenovo) assembly, followed by three rounds of polishing

with Racon (Vaser et al., 2017), followed by three rounds with

Pilon v0.3.0 using the Illumina PCR-free paired-end reads (Walker

et al., 2014). Genome completeness was also assessed using the algae

dataset of BUSCO v2.0 (Simão et al., 2015).
Hi-C library construction and sequencing

A Hi-C fragment library with a 300-700 bp insert size was

constructed from the genomic DNA of the QG10. Briefly, adapter

sequences of raw reads were trimmed and low-quality PE reads

were removed for clean data. The library was sequenced on the

Illumina HiSeq4000™ platform by Biomarker Technologies

(Beijing, China). The clean Hi-C reads were first truncated at the

putative Hi-C junctions and then the resulting trimmed reads were

aligned to the assembly results with the software package bwa

aligner (Li and Durbin, 2009). Only uniquely alignable pair reads

whose mapping quality of more than 20 retained for further

analysis. Invalid read pairs, including dangling-end and self-cycle,

re-ligation, and dumped products, were filtered by the software

package HiC-Pro v2.8.1 (Servant et al., 2015). The 96.25% of unique

mapped read pairs were valid interaction pairs and were used for

the correction of scaffolds and clustered, ordered, and orientated
A B D

E

C

FIGURE 1

The of plant type, panicle phenotype, seeds phenotype, grains phenotype and pedigree of QG10. (A) The plant type of QG10; (B) The panicle
morphology of QG 10; (C) The seed morphology of QG10; (D) The grain morphology of QG10; (E) The pedigree of QG10.
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scaffolds onto chromosomes by the software package LACHESIS

(Burton et al., 2013).
Genome assembly and Hi-C scaffolding

Before chromosome assembly, we first performed a preassembly

for error correction of scaffolds which required the splitting of

scaffolds into segments of 50 kb on average. The Hi-C data were

mapped to these segments using the software package BWA

(version 0.7.10-r789) (Li and Durbin, 2009). The uniquely

mapped data were retained to perform assembly by using the

software package LACHESIS (Burton et al., 2013). Any two

segments which showed an inconsistent connection with

information from the raw scaffold were checked manually. These

corrected scaffolds were then assembled with the software package

LACHESIS. After this step, placement and orientation errors

exhibiting obvious discrete chromatin interaction patterns were

manually adjusted.
Gene prediction and genome annotation

The RNA of QG10 were isolated from the mixed tissues (leaves,

culms, roots, and panicles) following the manufacturer’s protocol

(Wang et al., 2023). We then performed the sequencing on the

Illumina HiSeq 2500 platform according to the manufacturer’s

instructions. The repetitive sequence of the genome based on the

principle of structure prediction and de-novo prediction was

constructed with the software package LTR_FINDER v1.05 (Xu

and Wang, 2007) and the software package RepeatScout v1.0.5

(Price et al., 2005). The PASTE Classifier was used to classify the

database (Hoede et al., 2014). Then it was merged with the database

of Repbase as the final repeat sequence database (Jurka et al., 2005).

And then the software package RepeatMasker v4.0.6 was used to

predict the repeat sequence of the QG10 genome based on the

constructed repetitive sequence database (Tarailo‐Graovac and

Chen, 2009). the software packages Genscan (Burge and Karlin,

1997), Augustus v2.4 (Stanke and Waack, 2003), GlimmerHMM

v3.0.4 (Majoros et al., 2004), GeneID v1.4 (Alioto et al., 2018), and

SNAP (Korf, 2004) were used for de-novo prediction. The software

package GeMoMa v1.3.1 was used for prediction based on

homologous species (Keilwagen et al., 2016; Keilwagen et al.,

2018). The software packages Hisat v2.0.4 (Kim et al., 2015) and

Stringtie v1.2.3 (Pertea et al., 2015) were used for assembly based on

reference transcripts, and the software packages TransDecoder v2.0

and GeneMarkS-T v5.1 (Tang et al., 2015) were used for gene

prediction. The software package PASA v2.0.2 was used to predict

Unigene sequences without reference based on transcriptome data

(Campbell et al., 2006). Finally, the software package EVM v1.1.1

(Haas et al., 2008) was used to integrate the prediction results

obtained by the above three methods. The predicted gene sequences

were compared with NR, KOG, GO, KEGG, TrEMBL, and other

functional databases by the software package BLAST v2.2.31
Frontiers in Plant Science 04
(-evalue 1e-5) (Altschul et al., 1990) to perform KEGG pathway,

KOG function, GO function and other genes functional

annotation analysis.
Identification of genomic sequence
variation in important genes

The whole-genome assemblies sequences of QG10 were

compared with the r ice re ference genome sequence

(Oryza_sativa_MSU7 version) using the software package

MUMmer v3 (Kurtz et al., 2004). According to the results from

the software package MUMmer, the sequence variations and SVs

were further re-called using the software package BLAST. The

synteny/inversion comparison were analysis by using

GenomeSyn_Win.v1 (Zhou et al., 2022). At the site of each

sequence variant, the genotypic information for QG10,

Nipponbare, and the elite variety having important genes was

called according to the results of the one-to-one alignments. The

allelic information of sequence variants was detected based on gff

files from the Oryza_sativa_MSU7 version. The software packages

ClustalW v1.8.3(Thompson et al., 1994) and BLAST v2.2.31 were

used for re-detected the sequence variations and detailed haplotype

analyses for the well-characterized genes in rice (Zhao et al., 2018b).
Results

Nanopore sequencing and
genome assembly

We sequenced QG10 genomic DNA to generate about 73.52Gb

of Nanopore sequencing raw data. After data quality control, the

clean data volume was 63.23Gb containing 3,279,893 reads with a

total of 166.34-fold sequencing depth. The reads with 10 -20 kb and

20 - 30 kb sequencing length were account for 51.56% (Table 1).

The mean reads length of clean sequencing data was 19.28 kb with

an N50 length of 25.64 kb. The clean Nanopore sequencing data was

re-corrected with the software package Canu (Koren et al., 2017).

Then the third-generation sequencing data was re-corrected with

the software package Racon (Vaser et al., 2017) for three rounds.

Then, the second-generation data were used for three rounds of

correction by Pilon (Walker et al., 2014) software, and the stain was

removed according to NT alignment. Finally, we obtained a 380.15

Mb genome sequence with the contig N50 was 12.24 Mb. The

completeness estimated by Benchmarking Universal Single-Copy

Orthologs (BUSCO) was 98.12%.
Genome assembly and Hi-C scaffolding

We conducted the assembly in a stepwise fashion following a

previously reported approach (Jiang et al., 2020). TheHi-C sequencing

raw data was filtered, and the splice sequences and low-quality reads
frontiersin.org
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were removed to obtain high-quality clean data. The mapped data was

obtained by sequence alignment of clean data with the preliminarily

assembled genome. Finally, effective Hi-C data were used for further

assembly of the draft genome sequence. LACHESIS software was used

for clustering, sorting, and orientating the preliminary assembled

genome sequence, and finally, the genomic sequence at the

chromosome level was obtained. Finally, we assembled the genome

(QG10) into 77 contigs with an N50 length of 11.80Mb in 27 scaffolds

with an N50 length of 30.55 Mb. The assembled genome size was

378.31Mb and the 65 contigs constituted approximately 99.59% of the

whole genome. Visualization of the Hi-C signals indicated that 12

square matrix areas in the Hi-C heat map displayed significant

differences from the background. These scaffolds were anchored into

chromosomes 1–12, respectively (Figure 2A; Table 2).

According to the whole genome comparison, the genome of

QG10 showed four sequence inversions with a length of about 0.5-2

Mb compared with the Nipponbare genome at the position of about

14-16 Mb on chromosome 4, 30-31 Mb on chromosome 5, 5.5-6 Mb

on chromosome 8, and 5.5-6Mb on chromosome 10 (Figure 2B).We

identified 1,080,819 SNPs and 682,392 InDels between QG10 and

Nipponbare on 12 chromosomes (Figures 2C, D).
Genome annotation and repeat analysis

We annotated the repeat regions in our QG10 assembly by

Repeat Masker and detected 492,503 repetitive regions with 177.52

Mb repeat length that contained 242,211 Class I retrotransposons,

223,439 Class II DNA transposons, 833 Potential Host Gene, and

2,222 simple sequence repeats (Table 3). The repeat regions make

up 46.7% of the QG10 assembly genome.

We predicted 39,465 genes by the Ab initio method, 56,999 genes

by the Homology-based method, and 24,998 by RNA-seq. Finally, a

total of 57,599 genes were integrated with the prediction results

obtained by the above three methods by using the software package
Frontiers in Plant Science 05
EVM v1.1.1 (Table 4). A total of 723 tRNA, 306 rRNA, 194 miRNA,

and 5,392 pseudogenes were also predicted. 94.11% of the genes could

be annotated intoNR,GO,KOG,KEGG, and other databases (Table 5).
Sequence variants of the genes controlling
grain length

We investigated the sequence variations in 19 cloned genes

controlling grain size, including GW2 (Song et al., 2007), GS2 (Hu

et al., 2015), qTGW2 (Ruan et al., 2020), BG1 (Liu et al., 2015), OsLG3

(Yu et al., 2017), OsLG3b (Yu et al., 2018), GS3 (Fan et al., 2006),

qTGW3 (Hu et al., 2018), GS5 (Li et al., 2011), GW5 (Weng et al.,

2008), GS6 (Sun et al., 2013), GW6 (Shi et al., 2020), TGW6 (Ishimaru

et al., 2013),GW6a (Song et al., 2015),GL6 (Wang et al., 2019),GLW7

(Si et al., 2016), GW7 (Wang et al., 2015), qGW8 (Wang et al., 2012),

andGS9 (Zhao et al., 2018a), to explain the long grain of QG10. A total

of five grain size elite alleles (qTGW2Nipponbare, qTGW3Nanyangzhan,

GW5IR24,GW6Suyunuo, and qGW8Basmati385) were identified controlling

grain size inQG10 (Figure 3). The qTGW2 allele inQG10was identical

to Nipponbare having the key variants (G/A) at -1818 bp in the

promoter region (Figure 3A). The qTGW3 allele in QG10 had the key

splicing-site mutation as Nanyangzhan, which was a long-grain indica

rice (Figure 3B). The GW5 allele in QG10 was found without the

critical loss of the 1,212 bp deletion mutation as IR24 a long narrow

grain indica rice (Figure 3C). The GW6 allele in QG10 had the key

mutation (6 bp) as Suyunuo, which was a wider grain indica rice

(Figure 3D). The qGW8 allele in QG10 had the five variants as

Basmati385, a long narrow grain indica rice (Figure 3E). Tracing the

origin of these genes, it was found that qTGW3 (Nanyangzhan type),

GW5 (IR24 type),GW6 (Suyunuo type), and qGW8 (Basmati385 type)

belonged to indica subspecies, while qTGW2 (Nipponbare type) were

mainly derived from japonica subspecies. In addition, these genes

controlling grain type are all rare genotypes in japonica rice and have

important application value in long grain type japonica rice breeding.
TABLE 1 The Reads length distribution of Nanopore sequencing clean data.

Length ReadsNum TotalLength Percent AveLength

2000-5000 390,870 1,364,569,685 2.15% 3,491.10

5001-10000 506,104 3,711,926,879 5.87% 7,334.31

10001-20000 1,160,503 17,449,235,975 27.59% 15,035.92

20001-30000 620,853 15,157,158,521 23.97% 24,413.44

30001-40000 319,208 10,994,112,170 17.38% 34,441.84

40001-50000 158,764 7,047,880,953 11.14% 44,392.18

50001-60000 73,874 4,015,077,789 6.34% 54,350.35

60001-70000 31,197 2,004,190,092 3.16% 64,243.03

70001-80000 11,756 872,009,657 1.37% 74,175.71

>80000 6,764 616,167,771 0.97% 91,095.17
Length: each length range of reads; ReadsNum: the number of sequences in each length range; TotalLength: indicates the total length of sequences in each length. Percent: indicates the proportion
of the number of sequences in each length range to the total number of sequences. AveLength: Average length of sequences in each length range.
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A B
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FIGURE 2

Characteristics of Qigeng10 (QG10) genome and synteny examining, SNPs and InDels mining, Synteny/Inversion comparison with Nipponbare. (A),
Visualization of the Hi-C signals in the whole genome of QG10. (B), Chromosomal synteny among QG10 and Nipponbare reference genomes of
rice. (C), Distribution of SNPs between QG10 and Nipponbare. (D), Distribution of InDels between QG10 and Nipponbare.
TABLE 2 The statistics information of Hi-C assembly data.

Group Cluster Num Cluster Len Order Num Order Len

Chr1 4 43,382,979 4 43,382,979

Chr2 4 36,173,705 3 36,097,194

Chr3 6 37,757,262 6 37,757,262

Chr4 4 35,918,009 4 35,918,009

Chr5 4 30,375,008 4 30,375,008

Chr6 4 30,649,707 4 30,649,707

Chr7 5 29,809,605 5 29,809,605

Chr8 8 30,022,072 6 29,599,970

Chr9 7 23,219,349 7 23,219,349

Chr10 10 24,170,793 9 24,102,177

Chr11 9 30,667,739 7 30,544,885

Chr12 12 27,708,367 6 26,854,597

Total(Ratio %) 77(96.25) 379854595(99.92) 65(84.42) 378310742(99.59)
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Sequence variants of the genes controlling
cold tolerance

Cold tolerance is the key agricultural trait controlling rice

production and geographic distribution. We investigated the

sequence variations in 10 cloned genes controlling cold tolerance,

including bZIP73 (Liu et al., 2018), COLD1 (Ma et al., 2015), Ctb1

(Saito et al., 2010), CTB2 (Li et al., 2021b), CTB4a (Zhang et al.,

2017), HAN1 (Mao et al., 2019), ltt1 (Xu et al., 2020), OsLTPL159

(Zhao et al., 2020), qLTG3-1 (Fujino et al., 2008), and qPSR10 (Xiao

et al., 2018), to explain the high cold tolerance of QG10. A total of

four e l i te a l le les (COLD1Nipponba r e , bZIP73N ipp onba r e ,

CTB4aKunmingxiaobaigu, and CTB2Kunmingxiaobaigu) were identified as

controlling cold tolerance in QG10 (Figure 4). The COLD1 allele in

QG10 was identical to Nipponbare to have the key SNP in the

fourth exon region (Figure 4A). The bZIP73 allele in QG10 was

found having the key SNP mutation (G/A) as Nipponbare

(Figure 4B). The CTB4a allele in QG10 was found to have the ten

mutations as Kunmingxiaobaigu, which was a cold tolerance variety
Frontiers in Plant Science 07
from Yunnan Province (Figure 4C). The CTB2 allele in QG10 was

found also have the ten key SNPs as Kunmingxiaobaigu

(Figure 4D). The COLD1 (Nipponbare type) and bZIP73

(Nipponbare type) all belong to japonica subspecies. The CTB4a

(Kunmingxiaobaigu type) and CTB2 (Kunmingxiaobaigu type)

were all rare alleles in Northeast japonica rice and have important

application value in Northeast japonica rice breeding.
Sequence variants of the genes controlling
early heading

The heading date is one of the most important factors

determining rice distribution and the final yield. We investigated

the sequence variations in 11 cloned genes related to early heading

under long-day conditions, including DTH7 (Gao et al., 2014),

Ghd7 (Xue et al., 2008), Ghd8 (Yan et al., 2011), Ehd1 (Doi et al.,

2004), Ehd3 (Matsubara et al., 2011), Ehd4 (Gao et al., 2013), Hd1

(Yano et al., 2000), Hd3a (Kojima et al., 2002), Hd6 (Takahashi
TABLE 3 The statistics information of repeat regions in QG10 assembly.

Type Number Length Rate (%)

Class I 242,211 123,543,619 32.50

Class I/DIRS 5,336 6,334,743 1.67

Class I/LARD 87,163 17,713,596 4.66

Class I/LINE 20,531 5,686,323 1.50

Class I/LTR/Copia 25,386 14,961,322 3.94

Class I/LTR/Gypsy 64,824 68,053,651 17.90

Class I/LTR/Unknown 24,079 13,886,683 3.65

Class I/PLE 1,264 547,500 0.14

Class I/SINE 11,311 2,290,288 0.60

Class I/TRIM 1,493 457,017 0.12

Class I/Unknown 824 603,012 0.16

Class II 223,439 57,701,667 15.18

Class II/Crypton 22 1,816 0.00

Class II/Helitron 21,248 6,000,821 1.58

Class II/MITE 18,642 3,713,793 0.98

Class II/Maverick 256 45,395 0.01

Class II/TIR 123,736 34,429,300 9.06

Class II/Unknown 59,535 16,608,349 4.37

Potential Host Gene 833 431,292 0.11

SSR 2,222 754,226 0.20

Unknown 23,798 5,059,225 1.33

Total 492,503 177,517,691 46.70
Type: repeat sequence type, DIRS: Dictyostelium intermediate repeat sequence; LARD: large retrotransposon derivative; LINE: long interspersed nuclear element; LTR: long terminal repeat; PLE:
Penelope-like element; SINE: short interspersed nuclear element; TRIM: terminal-repeat retrotransposons in miniature; MITE: miniature inverted-repeat transposable element; TIR: terminal
inverted repeat; SSR: simple sequence repeat. Number: the number of repeats obtained; Length: total length of the predicted repeat sequence; Rate (%): the proportion of repeats in the total
genome.
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et al., 2001), Hd16 (Hori et al., 2013), and Hd17 (Matsubara et al.,

2012). Among these heading date genes, only the DTH7, Ghd7, and

Hd1 haplotypes were found to have non-functional alleles. The

DTH7 allele in QG10 was found to have the three mutations as

Kitaake, which originated at the northern limit of rice cultivation in

Hokkaido, Japan (Figure 5A). Kitaake is reported insensitive to day

length, short in stature, and completes its life cycle in about 9 weeks

(Jain et al., 2019). The Ghd7 allele in QG10 was found having the

critical mutations as Hejiang19, which is an early-maturity rice

variety in Heilongjiang Province (Figure 5B). The Hd1 allele in

QG10 was found to have the non-functional allele as Longgeng31,

which is the major plant rice variety in Heilongjiang Province

(Figure 5C). These results indicated that the heading gene
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combinations of Hd1, DTH7, and Ghd7 determined the early

heading in QG10 in the northernmost province of China.
Sequence variants of the genes controlling
disease resistance

Blast is one of the most devastating rice diseases in Heilongjiang

Province. We investigated the sequence variations in 14 cloned rice

blast-resistant genes, including Pi5 (Lee et al., 2009), Pi21 (Fukuoka

et al., 2009), Pi36 (Liu et al., 2007), Pi37 (Lin et al., 2007), Pi54 (Sharma

et al., 2010), Pi56 (Liu et al., 2013), Pia (Okuyama et al., 2011), Pish

(Takahashi et al., 2010), Pit (Hayashi and Yoshida, 2009), Pita (Bryan
TABLE 4 The statistics information of the predicted genes.

Method Software Species Gene number

Ab initio

Genscan – 36,995

Augustus – 33,891

GlimmerHMM – 72,642

GeneID – 51,130

SNAP – 48,464

Homology-based GeMoMa

Oryza_sativa_9311 47,215

Oryza_sativa_MSU7 60,679

Oryza_sativa_rapdb 38,019

Oryza_sativa_R498 52,424

Arabidopsis_thaliana 22,123

RNAseq

TransDecoder – 57,661

GeneMarkS-T – 30,053

PASA – 34,939

Integration EVM – 57,599
Method: The strategy used in gene prediction; Software: Software used for gene prediction; Species: Species. Gene number: The number of genes predicted.
TABLE 5 The statistics information of the annotated genes.

Annotation database Annotated number Percentage (%)

COG_Annotation 12,901 22.40

GO_Annotation 38,790 67.34

KEGG_Annotation 9,038 15.69

KOG_Annotation 20,498 35.59

Pfam_Annotation 32,058 55.66

Swissprot_Annotation 24,932 43.29

TrEMBL_Annotation 54,193 94.09

nr_Annotation 54,007 93.76

All_Annotated 54,206 94.11
Annotation database: the annotation database. Annotated number: the number of genes annotated to the corresponding database; Percentage (%): indicates the percentage of genes annotated to
the database.
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et al., 2000), Pigm (Deng et al., 2017), Pid2 (Chen et al., 2006), Pid3

(Shang et al., 2009), and Pid4 (Chen et al., 2018), to explain the blast

resistance. Finally, only two blast resistance genes, Pia and Pid4, were

found in QG10. The Pia allele in QG10 was found to have the resistant

genotype as Akihikari, which encodes a nucleotide-binding site (NBS)

and a C-terminal leucine-rich repeat (LRR) domain protein

(Figure 6A). The Pid4 allele in QG10 was found to have the resistant

genotype as Digu, which encodes a coiled-coil nucleotide-binding site

leucine-rich repeat (CC-NBS-LRR) protein (Figure 6B). The Pia

(Akihikari type) was the major blast-resistant gene in Northeast

China. The Pid4 (Digu type) was a rare allele in japonica rice and has

important application value in Northeast japonica rice breeding.

Rice stripe virus (RSV), an RNA virus belonging to the genus

Tenuivirus and transmitted by small brown planthoppers, causes one of

the most destructive rice diseases (Wang et al., 2014). RSV has become

more and more serious in Heilongjiang province in recent years. But,

almost the majority of japonica varieties cultivated in Heilongjiang are
Frontiers in Plant Science 09
highly susceptible to RSV (Wang et al., 2014). The STV11 was the first

cloned resistant gene of RSV, which encodes a sulfotransferase

(OsSOT1) catalyzing the conversion of salicylic acid (SA) into

sulphonated SA (SSA) (Wang et al., 2014). The STV11 allele in QG10

was found to have the resistant genotype as Kasalath, which is a high-

resistance indica landrace (Figure 6C). The STV11QG10 was a useful

resistant gene in japonica rice breeding.
Sequence variants of fragrance, fertilizer
use efficiency and other yield
related genes

Fragrant rice is popular among consumers worldwide because its

market price ismuchhigher than that of nonfragrant rice. Fragrantwas

found to be controlled by BADH2 in rice (Chen et al., 2008). The

BADH2 in QG10 was the typical badh2-E2 type of a 7-bp deletion as
A

B

D

E

C

FIGURE 3

The allelic information of sequence variants in qTGW2 (A), qTGW3 (B), GW5 (C), GW6 (D), and qGW8 (E) controlling grain size.
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DHX2 that caused fragrance (Figure 7A). We also investigated the

sequence variations in three cloned grain number genes (Gn1a

(Ashikari et al., 2005), GNP1 (Wu et al., 2016), and SPIKE (Fujita

et al., 2013)), and three lodging-resistance genes (Sd1 (Spielmeyer et al.,

2002), SCM2 (Ookawa et al., 2010), and SCM3 (Yano et al., 2014)).

Only the SCM3 allele in QG10 was found to have the key allele as

Chugoku117, which is a stronger culms rice variety in Japan

(Figure 7B). There was no elite grain number gene found in QG10.

NRT1.1B is a key gene controlling the nitrogen-use efficiency (NUE) in

rice (Hu et al., 2015). The NRT1.1B allele in QG10 was found to have

the indica variation, which has higher nitrate absorption

activity (Figure 7C).
Discussion

Indica genome introgression and large SVs
were found in Qigeng10

Japonica/Geng and Indica/Xian are the two major subspecies of

Asian cultivated rice (Zhang et al., 2016a). Owing to long-term
Frontiers in Plant Science 10
differentiation and adaptation, both Indica and Japonica rice contain

many favorable genes. Therefore, combining the favorable genes of the

two subspecies has great value for creating genotypes with greater yield

potential, stronger stress resistance, and better quality (Gu, 2010). Over

the past 50 years, the combination of plant ideotypes and favorable

vigor through hybridization between indica and japonica rice has

greatly contributed to yield improvements in modern japonica rice in

Northeast China (Tang and Chen, 2021). In recent years, a series of

high-yielding and good-quality japonica cultivars have been obtained

from hybridization of Indica/Japonica and the cultivation area of them

was more than 4 million ha in Northeast China (Cui et al., 2022). The

new fragrant early japonica rice cultivar QG10 was derived from a

cross between ‘Wuyoudao4 and Suigeng4’, whichwere all derived from

the hybridization of Indica/Japonica. In recently, Wang et al. (2023)

chose six interrelated modern Chinese temperate japonica varieties

and six related Japanese japonica varieties to investigate genome

enhancement in temperate japonica varieties during modern

breeding. They found many large SVs in Zhonghua11 (ZH11),

Liaogeng5 (LG5), and Daohuaxiang2 (DHX2/WYD4). These large-

fragment in the same location introgression from indica were also

found in QG10 on chromosomes 4, 8, and 10 (Figure 2B). Several
A

B

D

C

FIGURE 4

The allelic information of sequence variants in COLD1 (A), bZIP73 (B), CTB4a (C), and CTB2 (D) controlling cold tolerance in rice.
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FIGURE 5

The allelic information of sequence variants in DTH7 (A), Ghd7 (B), and Hd1 (C) controlling heading date in rice.
A

B

C

FIGURE 6

The allelic information of sequence variants in Pia (A), Pid4 (B), and STV11 (C) controlling disease resistance in rice.
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indica superior alleles including qTGW3Nanyangzhan, GW5IR24,

GW6Suyunuo, qGW8Basmati385, Pid4Digu, STV11Kasalath, NRT1.1BIR24,

and badh2-E2 were also be found in QG10. This information

indicated that the indica genome introgression was common in the

modern temperate japonica rice breeding inNortheast China. Superior

alleles were found in Qigeng10 and had important value for breeding

in Northeast China
Superior alleles were found in Qigeng10
and had important value for breeding in
Northeast China

Greater yield potential, stronger stress resistance, and better

quality (longer grain and fragrant) are key agronomy traits that

directly influence the market price of rice. Consumers in East Asia,

including North China, Japan, and Korea tend to prefer longer

fragrant japonica rice (Lu et al., 2022). So, the longer fragrant

japonica rice from Northeast China, represented by Daohuaxiang2

(DHX2/WYD4), is the most famous rice in the Chinese market.

QG10 was derived from DHX2 and solved some defects of DHX2

including poor lodging resistance, lack of cold tolerance, weak blast

resistance, and late maturity. Therefore, the construction of a high-

quality genome of ‘QG10’ is essential for further improvement of this

cultivar or its progenies, as well as accelerating the process of fragrant

japonica rice breeding, by providing genomic resources that could be

directly applied to fragrant japonica rice cultivars. In this study, we
Frontiers in Plant Science 12
found five superior alleles (qTGW2Nipponbare, qTGW3Nanyangzhan,

GW5IR24, GW6Suyunuo, and qGW8Basmati385) controlling long grain

size inQG10. To compare the phenotype of different gene haplotypes

in rice germplasm, we investigated the grain shape traits and days to

heading of 3k cultivars in the website (https://www.rmbreeding.cn/)

(Wang et al., 2020). The results showed that the functional haplotype

of QG10 controlling longer and slider grain (Figures 8A-E) and early

heading (Figure 8f-h). Most of them was belong to the rare alleles for

controlling longer grain and were less application in rice breeding in

Northeast China. The blast resistant alleles (Pid4Digu), RSV allele

(STV11Kasalath), and NUE allele (NRT1.1BIR24) were also belong to

the rare alleles for rice breeding in Northeast China. In the future, we

will develop molecular assisted markers for the improvement of

japonica rice varieties in Northeast China, and expanded the gene

pool of japonica rice in Northeast China.
Conclusions

In this study, we present chromosome-level genome assembly of

an early-matured aromatic long-grain japonica rice variety Qigeng10

by using a combination of Nanopore and Hi-C platforms. The total

assembly size is 378.31Mb with an N50 length of 30.55 Mb. A total of

18 superior haplotypes including five long-grain alleles

(qTGW2Nipponbare, qTGW3Nanyangzhan, GW5IR24, GW6Suyunuo, and

qGW8Basmati385), four cold tolerant alleles (COLD1Nipponbare,

bZIP73Nipponbare, CTB4aKunmingxiaobaigu, and CTB2Kunmingxiaobaigu),
A

B

C

FIGURE 7

The allelic sequence variants of BADH2 (A), SCM3 (B), and NRT1.1B (C) in rice.
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three non-functional heading date alleles (DTH7Kitaake, Ghd7Hejiang19,

andHd1Longgeng31), two blast resistant alleles (Pia Akihikari and Pid4Digu),

a rice stripe virus resistant allele STV11Kasalath, a higher nitrate

absorption allele NRT1.1BIR24, a lodging resistant allele

SCM3Chugoku117, and the typical aromatic allele badh2-E2, were

identified in QG10. This information will accelerate the process of

fragrant japonica rice breeding in Northeast China, by providing

genomic resources that could be directly applied to fragrant japonica

rice cultivars or development of molecular assisted markers for the

improvement of japonica rice varieties.
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Comparison of grain shape traits and days to heading between different gene haplotypes in 3k panel.
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