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A hyperspectral plant health
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Ralph F. Fritsche3, Insuck Baek1, Diane E. Chan1

and Moon S. Kim1

1Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, U.S. Department
of Agriculture, Beltsville, MD, United States, 2Amentum, NASA Kennedy Space Center, Merritt Island,
FL, United States, 3Exploration Research and Technology, NASA Kennedy Space Center, Merritt Island,
FL, United States
Compact and automated sensing systems are needed to monitor plant health for

NASA’s controlled-environment space crop production. A new hyperspectral

system was designed for early detection of plant stresses using both reflectance

and fluorescence imaging in visible and near-infrared (VNIR) wavelength range

(400–1000 nm). The prototype system mainly includes two LED line lights

providing VNIR broadband and UV-A (365 nm) light for reflectance and

fluorescence measurement, respectively, a line-scan hyperspectral camera,

and a linear motorized stage with a travel range of 80 cm. In an overhead

sensor-to-sample arrangement, the stage translates the lights and camera over

the plants to acquire reflectance and fluorescence images in sequence during

one cycle of line-scan imaging. System software was developed using LabVIEW

to realize hardware parameterization, data transfer, and automated imaging

functions. The imaging unit was installed in a plant growth chamber at NASA

Kennedy Space Center for health monitoring studies for pick-and-eat salad

crops. A preliminary experiment was conducted to detect plant drought stress

for twelve Dragoon lettuce samples, of which half were well-watered and half

were under-watered while growing. A machine learning method using an

optimized discriminant classifier based on VNIR reflectance spectra generated

classification accuracies over 90% for the first four days of the stress treatment,

showing great potential for early detection of the drought stress on lettuce

leaves before any visible symptoms and size differences were evident. The

system is promising to provide useful information for optimization of growth

environment and early mitigation of stresses in space crop production.
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1 Introduction

In fresh produce production systems to be deployed in future

NASA spacecraft, monitoring plant growth and health during crop

development from seedling to harvest is needed to ensure the food

safety and security of pick-and-eat salad crops consumed by

astronauts during cis-lunar, lunar, and Martian missions (Monje

et al., 2019). Currently, plant monitoring in growth chambers

onboard the International Space Station (e.g., NASA’s Veggie and

Advanced Plant Habitat) is conducted by estimating plant growth

rates based on photographic analysis of daily increments in leaf

area. This limited approach cannot detect plant stresses, nutrient

deficiencies, and diseases, which usually develop days before any

visible leaf changes are observed (Massa et al., 2016; Zeidler et al.,

2019). There is a need for novel sensing techniques that can monitor

plant health before visible symptoms appear. Compact and

automated sensing systems that require minimal crew

intervention are preferred for better fit in volume-limited plant

growth chambers. Early stress detection ensures the food safety of

the crops produced for human consumption.

Nondestructive optical sensing methods and imaging-based

technologies have rapidly progressed and been adopted for plant

phenotyping (Zhao et al., 2019; Yang et al., 2020). High-throughput

phenotyping (HTP) platforms have been developed by public and

private sectors for use under both natural field conditions and

controlled environments in various applications. The field-based

HTP platforms may use aerial-based or ground-based approaches

for crop phenotyping. The aerial-based systems typically carry

miniaturized and lightweight airborne sensors on unmanned

aerial vehicles (UAVs), such as multi-rotor, fixed wing, and

flying-wing UAVs as well as helicopters and blimps (Yang et al.,

2017). The flight heights and speeds of UAVs can enable crop

canopy imaging at field level to cover an entire plot within minutes.

The ground-based systems have been built based on manually

pushed carts (White & Conley, 2013), self-propelled tractors

(Jiang et al., 2018), and overhead systems supported by gantry

(Virlet et al., 2017) or cable (Bai et al., 2019). These systems can

implement multiple sensing modalities for long-exposure

measurements at plant level owing to their high sensor payloads

and battery capacities. Crop phenotyping can also be carried out at

leaf level using portable sensing devices such as a handheld

hyperspectral imager (Wang et al., 2020). The measurements of

individual leaves can be combined with geo-location information to

create geo-referenced data for mapping plant health in the field. On

the other hand, the HTP platforms for controlled-environment

agriculture have been developed mainly for use in greenhouses and

growth chambers, and can collect high quality phenotypic data

from plants with low variability due to relatively uniform

environments. Such collection is usually limited and difficult

under natural field conditions. Large-scale commercial

phenotyping systems designed for the greenhouses usually use

plant-to-sensor approaches for automated inspection of plants on

conveyor belts viewed from the side or overhead with multiple

integrated imaging sensors (Ge et al., 2016). For the growth

chambers, the phenotyping systems are generally configured in a

sensor-to-plant setup to inspect the plant samples from above (Lien
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et al., 2019). The sensors can also be installed on robotic arms (e.g.,

eye-in-hand cameras) to conduct indoor phenotyping for individual

plant samples (Bao et al., 2018).

Various imaging modalities have been developed for evaluating

plant characteristics, such as growth, stress, and disease. Examples

include color imaging for morphology and geometry inspection,

near-infrared imaging for leaf water content assessment,

fluorescence imaging for chlorophyll content evaluation,

hyperspectral imaging for stress monitoring, thermal imaging for

leaf temperature measurement, and 3D imaging for shoot and canopy

structure profiling (Li et al., 2014). Hyperspectral imaging can

simultaneously obtain both spectral and spatial information from a

target, which makes it a powerful tool for many food and agricultural

applications (Qin et al., 2017). Under controlled indoor

environments, close-range hyperspectral reflectance imaging

commonly uses halogen lamps for broadband illumination of

plants and has been applied to plant phenotyping (Mishra et al.,

2017). A variety of hyperspectral image analysis methods have shown

promising results for detecting early onset of plant stress and disease

(Lowe et al., 2017). Fluorescence imaging is another useful technique

for plant monitoring applications, such as evaluation of plant

resistance to pathogens (Rousseau et al., 2013) and detection of

plant diseases (Pérez-Bueno et al., 2016). Recently, 3D imaging

techniques have been combined with close-range hyperspectral

imaging to reduce geometry effects of various plant structures on

the spectral and spatial data, such as using a line laser scanner based

on triangulation principle (Behmann et al., 2016) and a depth sensor

based on time-of-flight principle (Huang et al., 2018). Integrating

multimodal imaging modalities generally can enhance the sensing

capabilities for plant phenotyping (Jiang et al., 2018; Bai et al., 2019;

Nguyen et al., 2023). However, few sensing systems have been

reported on combining reflectance and fluorescence imaging

techniques into one system for in situ plant monitoring applications.

Traditional hyperspectral imaging systems based on separated

spectrographs and cameras are bulky and heavy, difficult to move

frequently or to fit into small spaces. Existing commercial

greenhouse phenotyping systems are generally too large as well.

Also, the high-power halogen lights commonly used for

hyperspectral reflectance imaging generate a lot of heat, which is

not ideal for illuminating tender plants at close range. Recently, all-

in-one small hyperspectral cameras have been introduced to the

market, which made it possible to develop compact imaging

systems. Examples include a handheld hyperspectral camera with

an integrated scanner for plant disease detection (Behmann et al.,

2018), a snapshot hyperspectral camera on a microscope for

bacteria identification in dairy products (Unger et al., 2022), and

a miniature line-scan hyperspectral camera on a UAV for maize

phenotyping (Nguyen et al., 2023). With the advancement of the

LED technologies, broadband LED lights can provide an alternative

for the traditional halogen lights for the reflectance measurement,

which is particularly important when sample heating is a concern,

such as in biomedical applications (Stergar et al., 2022). To develop

next-generation hyperspectral imaging systems able to

autonomously monitor plant health and food safety in future

manned space missions, an interagency agreement has been

established between USDA Agricultural Research Service (ARS)
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and NASA Kennedy Space Center (KSC) to leverage their

complementary areas of expertise—ARS sensing technology

development and KSC space crop production. As a first step of

this collaborative research, this study aimed to develop a compact

and automated hyperspectral prototype system for installation in a

KSC plant growth chamber to conduct imaging experiments on

pick-and-eat salad crops grown under controlled environments.

The system was designed to collect both hyperspectral reflectance

and fluorescence images within a single imaging cycle using

broadband and UV-A LED lights. Specific objectives of this

methodology paper were to (1) present the system design,

development, software, calibration, operation, and hyperspectral

image processing methods for plant samples and (2) demonstrate

the system’s performance and capability with an example

application for detecting drought stress for lettuce.
2 Materials and methods

2.1 Hyperspectral plant health monitoring
system

2.1.1 System development
The hyperspectral imaging system developed for automated

health inspection of plants grown in a controlled-environment

chamber is schematically illustrated in Figure 1. Since the system

is designed for the confined space of the growth chamber to perform

frequent imaging passes of stationary plants, all major hardware

components, including lighting, camera, and translation stage, must

be compact and lightweight for an overhead imaging setup. This

sensor-to-sample arrangement differs from our previously
Frontiers in Plant Science 03
developed hyperspectral systems that generally image moving

samples using stationary lights and cameras (sample-to-sensor)

(Kim et al., 2011). The system uses two LED line lights to

illuminate the plant samples for hyperspectral image acquisition

—one to provide visible and near-infrared (VNIR) light for

reflectance imaging and, separately, the other to provide

ultraviolet-A (UV-A) excitation light for fluorescence imaging.

Specifically, LEDs at five VNIR wavelengths (428, 650, 810, 850,

and 915 nm) and one UV-A wavelength (365 nm) are used in the

two lights (UX-CLL509-C428C650IR810IR850IR915-24Z-US2 and

UX-CLL509-UV365-24Z-US2, Metaphase Technologies, Bristol,

PA, USA). Intensities of the LEDs at the six wavelengths can be

independently adjusted by two digital dimming controllers (three

channels each). Each light is mounted using two pivot joints at an

angle of approximately 10° from the vertical position and has a full

rod focal lens to create a narrow and structured beam

(approximately 54 cm long and 1.5 cm wide on sample surface)

with high intensity and concentrated light for a narrow, linear field

of view. Each of the two line lights are enclosed in aluminum

housings with minimum heat generation during rapid

image acquisition.

A compact line-scan hyperspectral camera (microHSI 410,

Corning Specialty Materials, Keene, NH, USA) is used to measure

light reflectance/fluorescence from the plant samples in the VNIR

wavelength range (400–1000 nm). A miniature solid block Offner

imaging spectrograph and a CMOS focal plane array detector (12-

bit and 1936×1216 pixels) are integrated in a small-form-factor

package for the all-in-one hyperspectral camera. A wide-angle low-

distortion lens with 5 mm focal length (Edmund Optics, Barrington,

NJ, USA) allows imaging coverage of the full width of the growth

chamber (53.3 cm) within the height of the chamber. A long-pass
FIGURE 1

A compact and automated hyperspectral reflectance and fluorescence imaging system for plant health monitoring in a controlled-environment
growth chamber.
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(>400 nm) gelatin filter (Wratten 2A, Kodak, Rochester, NY, USA)

in front of the lens removes the UV-A excitation source peak at 365

nm and thus second-order effects around 730 nm. The lights and

camera are on a manual translation stage (Thorlabs, Newton, NJ,

USA) to enable 5 cm vertical adjustment for imaging plants of

different heights. The manual stage is mounted on a linear

motorized stage with a stroke of 80 cm (Intelligent Actuator, Los

Angeles, CA, USA) that translates the lights and camera for

overhead line-scan image acquisition. A reflectance standard

panel with a custom size of 50×5 cm2 (Labsphere, North Sutton,

NH, USA) is mounted under the camera’s origin position at one end

of the chamber for flat-field correction to the reflectance images of

the plants. When imaging is not actively taking place, a ceiling-

mounted LED plant grow light (RX30, Heliospectra, Gothenburg,

Sweden) provides continuous, simulated full-spectrum sunlight for

photosynthesis in the plants. The growth chamber equipped with

the imaging system is placed in a dark room to avoid the influence

of ambient light on both plant growth and imaging.

2.1.2 System software
Imaging system software was developed using LabVIEW

(v2017, National Instruments, Austin, TX, USA) in the Microsoft

Windows 10 operating system on a laptop computer to provide a

user-friendly graphic interface (Figure 2). Software development

kits (SDKs) from the hardware manufacturers were used in the

LabVIEW programming environment to communicate with major

hardware components, including the VNIR and UV-A LED lights,

the LED plant grow light, the hyperspectral camera, and the

motorized translation stage. Functions from both the SDKs and

LabVIEW were used to implement hardware parameterization and

data transfer tasks, such as User Datagram Protocol (UDP) for LED

light control, Universal Serial Bus (USB) for camera control,

LabVIEW Vision Development Module (VDM) for image display

and processing, and serial communication for stage movement
Frontiers in Plant Science 04
control. Image acquisition can be started manually at any time or

automatically using a timed imaging function (e.g., once a day at 9

AM). During image acquisition, a pair of reflectance and

fluorescence images along with an original spectrum and a spatial

profile are displayed and updated line by line to show the scan

progress in real time. After each measurement, the reflectance and

fluorescence images collected from the same scene are saved

separately in a standard format of band interleaved by line (BIL)

with timestamps appended to the filenames. The saved images can

be processed and analyzed offline using in-house programs

developed by MATLAB (R2022a, MathWorks, Natick, MA, USA).

2.1.3 System operation
When an imaging cycle is initiated manually or automatically,

the LED plant grow light is turned off to eliminate interference to

the hyperspectral image acquisition. The VNIR line light is then

turned on for 30 s to stabilize the LED output at five wavelengths.

Then, the motorized translation stage begins moving towards the

far end of the growth chamber. As the stage moves, the

hyperspectral camera continuously collects line-scan reflectance

signals while passing over the reflectance standard and then the

plant samples below. When the sensing unit reaches the far end of

the chamber, the reflectance image acquisition is completed and the

VNIR light is turned off. Then, the UV-A line light is turned on and

the camera begins continuous collection of line-scan fluorescence

signals as the stage reverses movement back toward the origin

position. When the stage reaches its original starting position, the

UV-A light is turned off, completing one full imaging cycle that

produces a pair of hyperspectral images, one reflectance and one

fluorescence, for the same scene of the plant samples. Finally, the

LED plant grow light is turned back on to continue providing

simulated sunlight to the plants. In addition to the continuous

moving mode, the system can also conduct incremental step-by-

step hyperspectral scanning (i.e., stop-and-go mode), which
FIGURE 2

In-house developed LabVIEW software for system control and hyperspectral image acquisition from plant samples.
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generally does not need image registration to align the reflectance

and fluorescence images of the same scene when identical step size

is used for both imaging modes.

2.1.4 System calibrations
Spectral calibration was conducted for the hyperspectral camera

using five standard pencil calibration lamps, including argon,

krypton, neon, xenon, and mercury-neon, to map pixel indices to

wavelengths based on a linear regression model (Figure 3). For a

total of 1216 pixels along the spectral dimension of the detector, it

was found that pixel indices of 401–700 corresponded to the

wavelength range of 408–1001 nm with an interval of 1.98 nm.

Hence, only 300 pixels in the VNIR region are collected for the

spectral acquisition. On the other hand, for spatial calibration of the

system using a lens with 5 mm focal length and a working distance

of 214 mm, the length of the instantaneous field of view (IFOV) of

the camera was determined to be 484 mm across all 1936 spatial

pixels, resulting in a spatial resolution of approximately 0.25 mm/

pixel along the direction of the scanning line. For the moving

direction of the imaging unit along a predetermined distance, the

spatial resolution depends on the translation speed of the stage and

the number of total scans. For example, using a moving speed of 20

mm/s, it will require 40 s to scan 800 lines for one-way travel over

an 800-mm distance, resulting in an approximately 1 mm/pixel

spatial resolution. To synchronize continuous line-scan image

acquisition and translation stage movement, the moving speed of

the stage is automatically determined by the system software based

on the independently selected exposure time of the camera (i.e., low

speed for long exposure time and high speed for short exposure

time). Based on test results with the current laptop using selected

exposure times and corresponding stage moving speeds, an

empirical reciprocal relationship was found between the moving

speed (V in mm/s) and the exposure time (T in s) (i.e., V=1/T). For
Frontiers in Plant Science 05
example, for the exposure times of 0.05 and 0.1 s, the moving speeds

were determined to be 20 and 10 mm/s, respectively. Note that this

relationship may be affected by actual frame rate and USB data

transfer speed when the camera is connected to different computers.
2.2 Hyperspectral image processing

This section describes procedures for processing raw

hyperspectral reflectance and fluorescence images, including

spectral and spatial averaging, flat-field correction, background

removal, and image registration. Dragoon lettuce (Lactuca sativa)

samples planted in 10 cm square soil pots were used to demonstrate

the image processing results. Note that all images presented in this

paper were acquired using the continuous scanning mode. The

hyperspectral reflectance and fluorescence images were acquired

from the standard panel and the lettuce in the pot using 0.05 s

exposure time, 1200 spatial pixels, and 350 line scans over a 350 mm

distance, which generated two 1200×350×300 (X×Y×l) raw

hypercubes. Initial smoothing of the spectral and spatial data was

performed on the 3-D raw images by averaging across groups of

three neighboring pixels in the spectral dimension (l) and also

across groups of four neighboring pixels in the camera’s scanning

line direction (X), which created two 300×350×100 reduced

hypercubes with a spatial resolution of 1 mm/pixel in both X and

Y dimensions and a spectral interval of 5.94 nm. Using the VNIR

reflectance values of the standard reference panel (i.e., 100%), flat-

field correction (Kim et al., 2001) was conducted to convert the

intensity values in the averaged image to relative reflectance values

(0–100%).

To remove the background of the lettuce, correlation analysis

was used to identify an optimal two-band reflectance ratio (i.e.,

Rl1/Rl2, where Rln denotes single-band reflectance image at
A B

FIGURE 3

Spectral calibration for the hyperspectral camera using (A) standard pencil calibration lamps (two spectral lines selected from each lamp) and (B) a
linear regression model.
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wavelength of ln) to segregate the leaves from the soil. Reflectance

spectra of the lettuce and the soil were extracted from regions of

interest (ROIs) that were manually selected from a single-band

image at 815 nm (high reflectance for lettuce). The spectra of the

lettuce and the soil were labeled with 1 and 2, respectively.

Correlation coefficients were calculated between all two-band

ratios of the ROI spectra and the label values. The ratio image

that gave the highest correlation was converted to a binary mask

image by a single threshold value computed using Otsu’s method

(Otsu, 1979). To align the reflectance and fluorescence images of the

same sample, a white paper printed with a grid of black dots was

used as a calibration template for feature-based image registration

with reflectance as a fixed image and fluorescence as a moving

image. In-house programs developed by MATLAB were used to

execute all the image processing procedures.
2.3 Application to plant drought stress
detection

The hyperspectral plant health monitoring system is intended to

be used for early detection of abiotic stresses (e.g., drought,

overwatering, and nutrient deficiencies) and plant diseases (e.g.,

bacterial, fungal, and viral) for crops grown under controlled

environments. A pilot study for detecting plant drought stress was

conducted to demonstrate the performance and capability of the

system, using Dragoon lettuce, a mini green romaine previously

grown on the International Space Station. Each individual lettuce

plant, of twelve total plants divided into two sets of six, was grown in

mix of soil and arcillite (v:v=3:7) in a 10 cm square pot for a total of

28 days after seeding. The plants were cultivated under an air

temperature of 23°C, a relative humidity of 65%, a CO2

concentration of 3000 ppm (simulating spacecraft cabin air), and a

photoperiod of 16 h light and 8 h dark using a LED plant grow light

providing a photosynthetic photon flux density (PPFD) of 300 µmol

m−2 s−1 and a spectral output of 90% red, 1% green, and 9% blue.

Note that in this experiment, the plant samples were grown under a

LED grow light that was not in the imaging chamber. Two different

moisture treatments for the soil were started on Day 12 after planting

(i.e., stress Day 1) so that six lettuce samples were grown under well-

watered conditions (control) and six were under-watered (drought

stress). Each set of six pots was arranged in a 2×3 array on a tray

placed inside the growth chamber. Moisture in each tray was

controlled by an automated watering system that periodically

watered the plants with nutrient solution to maintain a pre-

determined volumetric moisture content (VMC), which was

measured by a soil moisture sensor. The VMCs for the control

and drought treatments were set as 50% and 30%, respectively. Thus,

the average moisture content of the drought pots contained 100 ml

less water than the controls. After introduction of the drought stress,

hyperspectral images were taken over 13 days within a period of

three weeks (i.e., Week 1: Days 1–4, Week 2: Days 7–11, andWeek 3:

Days 14–17). Reflectance and fluorescence images were collected

from each tray using 1600 spatial pixels and 550 line scans across a

550 mm distance under a common camera exposure time of 0.05 s. It

took approximately 90 s to obtain two 1600×550×300 raw
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hypercubes. Image processing was performed using the procedures

described in Section 2.2, which generated two 300×360×100 reduced

hypercubes for each set of six lettuce samples.

Three methods, including leaf area, band-ratio, and machine

learning, were used for the drought stress detection. For all 13

sampling days in the three-week period, total leaf areas for each set

of six samples were estimated daily by counting the pixel numbers

in the plant mask images. Correlation analysis was then used to

identify a two-band ratio for the drought stress detection.

Reflectance spectra of control and drought lettuce samples were

extracted from masked images for each day, which were then

grouped into individual weeks for the correlation analysis. Last,

the potential of machine learning method for early detection of

drought stress was investigated using reflectance spectra of lettuce.

A pixel average-window method was first used to remove the plant

areas with large variations (e.g., leaf margins) and reduce the

number of spectra used in machine learning classifications. All

the lettuce pixels in the masked R815 images (high reflectance for

lettuce) were grouped into 3×3 pixel windows, in which mean (M)

and standard deviation (SD) of the pixel intensities were calculated.

In each window, if there were more than 10% of nine pixels (i.e., one

or more pixels) with the reflectance intensities beyond the range of

M ± 3SD, the whole window was removed for further analysis. The

nine spectra extracted from each remaining window were averaged

in the spatial domain. All mean spectra labeled with control and

drought were used for the machine learning classifications. Each of

nine labeled datasets from stress Days 1 to 11 was input to the

Classification Learner app in MATLAB, in which seven optimizable

classifiers, including Naive Bayes, decision tree, ensemble, k-nearest

neighbor (KNN), support vector machine (SVM), neural network

(NN), and discriminant analysis, were used to compare the

classification accuracies. Hyperparameter optimization functions

within the app were used for automated selection of the

hyperparameters for all the models to minimize the classification

error. To simplify the evaluation of misclassification costs and

model training and validation, equal penalty was assigned to all

misclassifications. Accuracies of the seven classification models for

the dataset on each stress day in the first two weeks were evaluated

using a five-fold cross-validation method. To minimize variations

from random dataset partitioning, training and validation of each

model was repeated for ten times. The average cross-validation

accuracy over the ten runs was used as the overall accuracy of

each model.
3 Results and discussion

3.1 Hyperspectral image processing results

Figure 4 shows reflectance image processing results for a lettuce

sample. After spectral and spatial averaging, a reduced hypercube

(Figure 4B) was first generated from the raw hypercube (Figure 4A).

Then, the reduced hypercube was converted to a reflectance

hypercube (Figure 4C) via the flat-field correction. The averaged

raw and reflectance spectra of the panel, the lettuce, and the soil at

three selected locations are plotted in Figures 4D, E, respectively.
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The lettuce sample shows a typical vegetation reflectance spectrum

in the VNIR region. The reflectance signals of the lettuce beyond

850 nm tend to drop and fluctuate toward 1000 nm due to relatively

low output of the 915 nm LEDs, spectrograph‐produced second‐

order effect (Kim et al., 2011), and a low quantum efficiency of the

detector in this wavelength range.

Removing the background of a lettuce sample in a soil pot is

demonstrated in Figure 5. The hyperspectral reflectance image was

collected and processed in the same way as those shown in Figure 4,

but with the addition of image cropping to center and contain the

whole plant pot in a reduced hypercube size of 130×130×100. The

ratio between 559 and 678 nm (i.e., R559/R678) gave the maximum

absolute correlation coefficient of −0.91 (Figure 5A). The selected

two wavelengths are marked on top of the mean spectra of the

lettuce and the soil (Figure 5B). Single-band images at 559 and 678

nm are shown in Figures 5C, D, respectively. The two mean spectra

exhibit opposite trends between 559 and 678 nm, indicating that

these wavelengths are effective selections for the correlation analysis

and band-ratio method for background removal. As shown in

Figure 5E, the contrast between the leaves and the background is

greatly enhanced in the ratio image of R559/R678. Lastly, a mask

image (Figure 5F) was obtained by applying a single threshold value

to the ratio image. Note that although the optimal wavelength pair

was selected based specifically on the reflectance spectra of the

lettuce and the soil, the ratio of R559/R678 is also effective for

removing other objects in the background, such as the pot, tray, and

drip irrigation tubing.

Figure 6 illustrates image registration, masking, and spectral

extraction for the hyperspectral reflectance and fluorescence images

collected from the same lettuce sample shown in Figure 5. An
Frontiers in Plant Science 07
overlap of R815 and F732 (i.e., single-band fluorescence image at

732 nm) images at their original spatial positions are shown in

Figure 6A, which clearly illustrates misalignment of the reflectance

and fluorescence images of the same scene. The registration result

from the calibration template showed that a simple horizontal

translation (10-pixel shift to the left for this case) is adequate to

align the fluorescence image with the reflectance image. Thus, the

double-image effect disappeared in the overlap of the registered

R815 and F732 images (Figure 6B). Note that same camera

exposure time of 0.05 s (thus same stage moving speed in

continuous scanning mode) was used to acquire both reflectance

and fluorescence images in this example. If different exposure times

are used, then step-by-step scanning mode or more advanced image

registration techniques may be needed to align the images. After the

registration, the mask image created using R559/R678 (Figure 6C)

can be used to mask both reflectance and fluorescence images

(Figures 6D, E, G, H). In addition, a pseudo RGB image (registered

and masked shown in Figures 6F, I, respectively) was generated

using red, green, and blue bands of the reflectance hypercube to

provide natural color and appearance for the lettuce sample. Based

on the masked images, spectra can be extracted from all the lettuce

pixels for further analysis. Mean and standard deviation (SD)

reflectance and fluorescence spectra of the lettuce sample are

plotted in Figures 6J, K, respectively. Due to chlorophyll a in the

lettuce leaf tissue, the reflectance spectra show an absorption peak at

672 nm and the fluorescence spectra show two red emission peaks

at 690 and 732 nm. In addition, owing to phenolic compounds in

the leaves (Chappelle et al., 1991), two broad blue and green

emission peaks with low fluorescence intensities were observed

around 450 and 530 nm, respectively.
A B

D E

C

FIGURE 4

Spectral and spatial averaging and flat-field correction for hyperspectral reflectance image of a lettuce sample. (A) raw, (B) reduced, and (C) reflectance
images at 815 nm, and (D) raw and (E) reflectance spectra of panel, lettuce, and soil.
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A

B D
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F
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FIGURE 5

Background removal of a lettuce sample: (A) correlation analysis for band-ratio selection to segregate lettuce from soil, (B) mean reflectance spectra
of lettuce and soil, reflectance images at (C) 559 nm and (D) 678 nm, (E) ratio image (R559/R678), and (F) mask image generated using R559/R678.
A B

D E F

G IH

J

K

C

FIGURE 6

Image registration for hyperspectral reflectance and fluorescence images of a lettuce sample: overlap of (A) original and (B) registered R815 and
F732 images, (C) mask image generated using R559/R678, (D) registered and (G) masked R815 images, (E) registered and (H) masked F732 images,
(F) registered and (I) masked pseudo RGB images, and (J) reflectance and (K) fluorescence spectra extracted from masked images.
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3.2 Plant drought stress detection results

3.2.1 Leaf area results
Results for the leaf area method are plotted in Figure 7. The

average pixel areas between control and drought plants on stress

Days 3, 4, 7 and 8 were compared using a two-sample t-test. The

pixel areas from drought plants on stress Days 3 and 4 were not

significantly different from the controls. However, they were

significantly different on stress Day 7 (13% less leaf area, p<0.02)

and Day 8 (29% less leaf area, p<0.001). The decrease in leaf area

caused by drought persisted until harvest.

3.2.2 Band-ratio results
Correlation coefficients calculated using the reflectance spectra

in Week 1 were low (Figure 8A), with a maximum of 0.22 at R821/

R869. When Week 2 data were used, the maximum correlation

increased to 0.55 at R690/R702 (Figure 8B). For each day in Week 2,

the contour plot of correlation coefficients showed a similar pattern

to that from using the data of the whole week. Mean reflectance

spectra of the control and drought samples in Weeks 1 and 2 were

normalized at 702 nm and are plotted across the wavelength range

of 540–740 nm in Figures 8C, D, respectively. In Week 1, there was

no notable spectral difference between 690 and 702 nm for the two

moisture treatments, which is the reason for the low correlation

coefficient (i.e., −0.07) at R690/R702 (Figure 8A). In Week 2,

however, the mean spectrum of the drought samples showed

higher reflectance at 690 nm than that of the control samples.

Both selected wavelengths of 690 and 702 nm are in the red edge

spectral region (690–740 nm), in which reflectance of the leaves is

sensitive to the change of the chlorophyll content in green plants

(Lowe et al., 2017). Single-band (R690 and R702) and band-ratio

(R690/R702) images of a control and a drought lettuce samples on

stress Days 4 and 9 are shown in Figures 8C, D, respectively. On

Day 4, the two ratio images exhibited similar intensity patterns for

the control and drought samples. On Day 9, however, the ratio

image of the drought sample showed higher intensities over most of
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the leaf areas, in great contrast to the lower intensities of the control

sample leaf areas.

Figure 9 shows pseudo RGB and band-ratio images of all the

lettuce samples in the first two weeks. The pseudo RGB images

show that there were no apparent differences for the natural color

and appearance of the lettuce grown under the two moisture

treatments. For the ratio images from stress Days 1 to 4 in Week

1, no obvious intensity differences were observed between the

control and drought samples. The first notable difference for the

drought samples appeared in the ratio image on stress Day 7, in

which all six plants showed higher ratio intensities than the

controls. In Week 2, the ratio values of R690/R702 of the drought

samples tended to increase over the whole leaf areas from stress

Days 7 to 11, while those of the controls generally remained

unchanged, except for some small leaf areas. From stress Days 9

to 11, the ratio images of the three drought samples on the bottom

row showed lower intensities than those of the three on the top row.

Such variations can probably be attributed to the non-uniform

water supply received by each individual pot. As the drought

samples were grown into stress Week 3, the ratio intensity

variations of the six plants increased and their ratio intensity

differences with the six control samples decreased (results not

shown). These results suggest that the band-ratio method can

detect the drought stress at approximately the same time as the

leaf area method, which may not be adequate for the goal of early

stress detection.
3.2.3 Machine learning results
Accuracies for differentiating the control and drought lettuce

samples using seven optimized classification models are shown in

Figure 10D using the five-fold cross-validation results from stress Days

4 (Figure 10A) and 7 (Figure 10E). For both days, the Naive Bayes and

the discriminant classifiers generated the lowest (worse than 65%) and

the highest (better than 90%) accuracies, respectively, and the

accuracies of other five classifiers fell between those two. Meanwhile,

the accuracies of all seven classifiers using the reflectance spectra on
FIGURE 7

Leaf area method for detection of drought stress of lettuce: total leaf areas on each sampling day estimated by pixel numbers in mask images of
control and drought lettuce samples.
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Day 7 are consistently higher than those using the data on Day 4.

Confusion matrices and receiver operating characteristic (ROC) curves

on these two selected days using the discriminant classifier are shown

in Figures 10B, F and Figures 10C, G, respectively. The classification

accuracies for Days 4 and 7 are 94.3% and 98.5%, respectively, and the

areas under both ROC curves are better than 0.98. Similar results were
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obtained for other days in the first two weeks. Since the discriminant

classifier gave the best overall classification performance, it was selected

for differentiating the control and drought lettuce samples in all nine

test days in the first two weeks, and the results are summarized in

Figure 10H. InWeek 1, the classification accuracies gradually increased

from Day 1 (90.7%) to Day 4 (94.3%). In Week 2, all the accuracies
A B

DC

FIGURE 8

Correlation analysis for band-ratio selection to differentiate control and drought lettuce samples using reflectance spectra from (A) Week 1 (stress
Days 1–4) and (B) Week 2 (stress Days 7–11). Normalized mean spectra and example single-band and band-ratio images for Weeks 1 and 2 are
shown in (C, D), respectively.
FIGURE 9

Reflectance band-ratio method for detection of drought stress of lettuce: pseudo RGB and ratio (R690/R702) images of samples grown under well-
watered (control) and under-watered (drought) conditions in the first two sampling weeks.
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FIGURE 10

Machine learning classification method for early detection of drought stress of lettuce using reflectance spectra extracted from hyperspectral images
of the leaves: average-window R815 images on stress Days (A) 4 and (E) 7, confusion matrices for stress Days (B) 4 and (F) 7 and ROC curves for
stress Days (C) 4 and (G) 7 using discriminant classifiers, (D) classification accuracies using seven optimized classifiers for stress Days 4 and 7, and (H)
classification accuracies using discriminant classifiers for all nine stress days in the first two weeks.
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were higher than 97.0% with a maximum of 99.0% on Day 8. Results

from this preliminary experiment suggest that the machine learning

method using an optimized discriminant classifier based on VNIR

hyperspectral reflectance images is promising for early detection of

drought stress for lettuce without any visible symptoms and leaf

size differences.

The results above demonstrate that the hyperspectral reflectance

imaging based on the broadband LED light can be potentially used for

plant health monitoring. The VNIR LED light provides an alternative

to the halogen light commonly used for the reflectance measurement,

which can avoid excessive heat from the halogen light projected to the

tender plants under a close-range imaging setup. As the next step of

this collaborative project, full-scale plant experiments with replications

will be conducted to collect image data from salad crops of multiple

species (e.g., lettuce, pak choi, mizuna, and radish) grown under

different abiotic and biotic stress treatments. Both separate and

combined use of the reflectance and fluorescence data for assessing

plant vigor will be investigated and compared. Spectral and image

fusion algorithms will be developed toward the goal of early detection

of plant stresses and diseases. The hyperspectral plant health

monitoring system has great potential to provide timely and useful

information for optimization of the growth environment and early

mitigation of plant stress and disease in space crop production systems,

as well as for other applications in controlled-environment agriculture.
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4 Conclusions

As a first fruit of a collaborative project between USDA ARS and

NASA KSC, a compact hyperspectral imaging prototype system was

developed and preliminarily tested for monitoring plant health in

controlled-environment space crop production. The prototype

system can acquire both hyperspectral reflectance and fluorescence

images in the visible and near-infrared region within a single imaging

cycle, which can provide rich spectral and spatial information to

potentially carry out early detection of abiotic stresses and plant

diseases in pick-and-eat salad crops. Compact and lightweight

hardware components, including two LED line lights, a

hyperspectral camera, and a motorized stage, were used to build

the imaging unit to ensure it can be integrated into the confined space

of a growth chamber to conduct overhead sensor-to-sample imaging.

The broadband and UV-A LED lights project a narrow and

structured beam to illuminate plant samples during rapid image

acquisition. Use of VNIR LED light instead of traditional halogen

light for reflectance can avoid excessive heat projected to the plant

samples under a close-range imaging setup. The in-house developed

system control software provides a user-friendly interface for plant

scientists to conduct imaging experiments. The performance and

capability of the developed system was demonstrated in a pilot study

on plant drought stress detection for Dragoon lettuce. A reflectance
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band-ratio method based on two wavelengths selected in the red edge

spectral region was found to be inadequate for early stress detection,

as it could only differentiate control and drought samples at the same

stage of growth as was possible from traditional leaf area estimation.

A machine learning method using an optimized discriminant

classifier based on VNIR reflectance spectra showed promise for

early detection of drought stress on lettuce leaves lacking visible

symptoms and size differences. To fully utilize the potential of

hyperspectral reflectance and fluorescence imaging techniques to

achieve the goal of detecting early onset of plant stresses and

diseases in the space crop production, full-scale experiments on

multiple species and treatments and the development of more

advanced spectral and image analysis and fusion algorithms are

planned as the next step of this project.
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