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Many highly valued chemicals in the pharmaceutical, biotechnological, cosmetic,

and biomedical industries belong to the terpenoid family. Biosynthesis of these

chemicals relies on polymerization of Isopentenyl di-phosphate (IPP) and/or

dimethylallyl diphosphate (DMAPP) monomers, which plants synthesize using

two alternative pathways: a cytosolic mevalonic acid (MVA) pathway and a

plastidic methyleritritol-4-phosphate (MEP) pathway. As such, developing

plants for use as a platform to use IPP/DMAPP and produce high value

terpenoids is an important biotechnological goal. Still, IPP/DMAPP are the

precursors to many plant developmental hormones. This creates severe

challenges in redirecting IPP/DMAPP towards production of non-cognate

plant metabolites. A potential solution to this problem is increasing the IPP/

DMAPP production flux in planta. Here, we aimed at discovering, understanding,

and predicting the effects of increasing IPP/DMAPP production in plants through

modelling. We used synthetic biology to create rice lines containing an additional

ectopic MVA biosynthetic pathway for producing IPP/DMAPP. The rice lines

express three alternative versions of the additional MVA pathway in the plastid, in

addition to the normal endogenous pathways. We collected data for changes in

macroscopic and molecular phenotypes, gene expression, isoprenoid content,

and hormone abundance in those lines. To integrate the molecular and

macroscopic data and develop a more in depth understanding of the effects of

engineering the exogenous pathway in the mutant rice lines, we developed and

analyzed data-centric, line-specific, multilevel mathematical models. These

models connect the effects of variations in hormones and gene expression to

changes in macroscopic plant phenotype and metabolite concentrations within

the MVA and MEP pathways of WT and mutant rice lines. Our models allow us to

predict how an exogenous IPP/DMAPP biosynthetic pathway affects the flux of

terpenoid precursors. We also quantify the long-term effect of plant hormones

on the dynamic behavior of IPP/DMAPP biosynthetic pathways in seeds, and
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predict plant characteristics, such as plant height, leaf size, and chlorophyll

content from molecular data. In addition, our models are a tool that can be

used in the future to help in prioritizing re-engineering strategies for the

exogenous pathway in order to achieve specific metabolic goals.
KEYWORDS

metabolic engineering, mathematical modelling, multi level modelling, MVA (mevalonic
acid) pathway, MEP pathway, terpenoid synthetic biology
1 Introduction

Terpenoids are a family of molecules with more than 22,000

different natural products (Harborne et al., 1991; Tetali, 2019; Zhou

and Pichersky, 2020; Navale et al., 2021). Some family members

have various crucial biological functions. For example, in plants,

they work as hormones (gibberellin, abscisic acid, etc.),

photosynthetic pigments (chlorophyll, phytol, carotenoids),

electron carriers (ubiquinone, plastoquinone), mediators of the

assembly of polysaccharides (polyprenyl phosphates) and

structural components of membranes (phytosterols). They are

also used for other purposes, such as antibiotics, herbivore

repellents, toxins and pollinator attractants (Mcgarvey and

Croteau, 1995).

Plants synthesize terpenoids from two metabolic precursors:

Isopentenyl di-phosphate (IPP) and dimethylallyl diphosphate

(DMAPP). Two compartmentally separated pathways synthesize

these precursors (Figure 1). The mevalonic acid (MVA) pathway
02
converts acetyl-CoA (Ac-CoA) to IPP and DMAPP. This pathway

is mostly cytosolic, with a couple of reactions taking place in the

peroxisome. The MVA pathway starts with the condensation of

acetyl-CoA, a product of glycolysis, catalyzed by acetoacetyl-CoA

thiolase and HMG-CoA synthase, followed by the conversion of

HMG-CoA to mevalonate through HMG-CoA reductase.

Mevalonate is subsequently phosphorylated and decarboxylated to

yield IPP, which can be isomerized to DMAPP by the action of

isopentenyl diphosphate isomerase (IDI). IPP and DMAPP are then

used in the synthesis of phytosterols and ubiquinone (Mcgarvey and

Croteau, 1995). The enzyme 3-hydroxy-3-methylglutaril-CoA

reductase (HMGR) is a key enzyme in the regulation of the MVA

pathway (Schaller et al., 1995). The second terpenoid-producing

pathway is known as the methyleritritol-4-phosphate (MEP)

pathway. This pathway is compartmentalized in plastids. In this

pathway, glyceraldehyde 3-phosphate (G3P) and pyruvate derived

from the Calvin cycle serve as the primary carbon sources for IPP

and DMAPP production. The MEP pathway involves a series of
frontiersin.org
FIGURE 1

Representation of the two terpenoid biosynthesis pathways plus the ectopic pathway, the MVA pathway (left, cytosol and peroxisome) and the MEP
pathway (right, plastid). DXR: DXP reductoisomerase; MCT: 2-C-methyl-D-erythrtle 4-phosphate cytidylyl transferase; CDP-ME: 4-(Citidine 5’-
difosfo)-2-C-methyl-D-eritritol; CMK: 4-difosfocitidil-2-C-methyl-D-erythrtol kinase; CDP-MEP: 2-Fosfo-4-(cytidine 5’- diphospho)-2-C-methyl-
D-eritritol; MDS: 2-C-methyl-D-eritritol 2,4-cyclodifosphate synthase; MEcPP: 2-C-methyl-D-eritritol 2,4-cycdiphosphate; HDS: 4-hydroxy-3-
methylbut-2-en-1-il diphosphate synthase; HMBPP: 4-hydroxy-3-methylbut-2-in-1-il diphosphate; HDR: 4-hydroxy-3-methylbut-2-en-1-il
diphosphate reductase; IDI: isopentenyl diphosphate Delta-isomerase; PhyPP: phytyl diphosphate.
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enzymatic steps catalyzed by various enzymes, including 1-deoxy-

D-xylulose 5-phosphate synthase (DXS), 1-deoxy-D-xylulose 5-

phosphate reductoisomerase (DXR), and other downstream

enzymes. It is responsible for the production of carotenoids,

lateral chains of chlorophylls, plastoquinone, abscisic acid (ABA)

and tocopherols (vitamin E, precursors and derivatives) (Eisenreich

et al., 2001). Appendix S1 presents a more detailed description of

both pathways.

While both pathways function independently, there is ample

evidence of crosstalk between them (Hemmerlin et al., 2003;

Hemmerlin, 2013). There is evidence for the exchange of some

metabolic intermediates of the two pathways between

compartments (Bick and Lange, 2003; Hemmerlin et al., 2003;

Laule et al., 2003; Hemmerlin et al., 2006). The first intermediate

of the MEP pathway, DXP, can diffuse between the plastid and the

cytoplasm (Hemmerlin et al., 2003; Page et al., 2004; Lange et al.,

2015). At the level of IPP and DMAPP, this exchange was measured

to occur mainly in the plastid-to-cytoplasm direction, promoted by

a one-way symport system (Bick and Lange, 2003; Dudareva et al.,

2005). The direction of this metabolic exchange between cellular

compartments may depend on physiological state and species.

There is lack of convincing evidence that other intermediates of

both pathways can diffuse between the two compartments

(Hemmerlin, 2013). Hemmerlin et al. (2012) made an extensive

review of the literature covering the metabolic pathways themselves

(networks, regulation, biological advantage of having two separated

pathways, etc.), crosstalk between pathways and the potential of

terpenoid biosynthesis in bioengineered plants in biotechnology.

In recent years, synthetic biology has emerged as a powerful tool

for engineering production of isoprenoids, mostly into

Saccharomyces cerevisiae and other microbial hosts (Ro et al.,

2006; Ajikumar et al., 2010; Jiang et al., 2017; Kang et al., 2017;

Cravens et al., 2019; Luo et al., 2019; Gülck et al., 2020; Srinivasan

and Smolke, 2020; Liew et al., 2022; Zhang et al., 2022). While

microbial production is very attractive due to the speed and easiness

of genetically manipulating microorganisms, plant production

should remain center stage if we are to progress to a circular bio-

economy (Shih, 2018). Some of the earliest examples include the

modifications made to maize (Naqvi et al., 2009) and rice (Ye et al.,

2000), in order to increase their vitamin content. In general,

modulating metabolite levels in plants is attempted through

varying combinations of the following strategies: increasing

enzymatic activity, increasing availability of upstream precursors,

blocking leakage of the compound by gene silencing, or inducing

metabolite storage in a compartment (Zorrilla-López et al., 2013;

Kotopka et al., 2018; Maeda, 2019; Zhu et al., 2021; Yang et al.,

2022). Examples of plant modification to enhance production of

many complex isoprenoids became increasingly common (reviewed

in Liao et al. (2016)). For example, Kumar et al. modified the

chloroplast genome of tobacco leaves in a non-transmissible way to

code an exogenous MVA pathway (Kumar et al., 2012). A more

recent example is the enhancement in production of sesquiterpene

precursor FPP of the MEP pathway in tomato fruit (Chen et al.,

2023). As such, plants are a coveted target for engineering pathways

that produce high value terpenoid chemicals (Fuentes et al., 2016;

Georgiev et al., 2018; Gülck et al., 2020; Grzech et al., 2023).
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Pérez et al. (2022) used synthetic biology to create rice plants that

have a stable and transmissible ectopic plastidial MVA pathway that

coexists with the native MVA and MEP pathways and is expressed

in endosperm. The goal of that study was to circumvent the

regulation of the native MVA pathway and test the possibility of

producing an excess of terpenoids precursors that could feed the

biosynthesis of highly valuable terpenoids. They introduced three

different combinations of exogenous WR1, HMGS, HMGR, MVK,

PMK and MVD (Figure 1) genes encoding plastid-targeted

enzymes, collecting transcriptomic, metabolic, and phenotypic

data for the resulting mutant lines. The WR1 gene is a

transcription factor that induces the expression of genes related to

plastid glycolysis and fatty acid biosynthesis. HMGS codes for

hydroxymethylglutaryl-CoA synthase, HMGR codes for a 3-

hydroxy-3-methylglutaryl-coenzyme A reductase, MVK codes for

a mevalonate kinase, PMK codes for a phosphomevalonate kinase,

and MVD codes for a diphosphomevalonate decarboxylase.

Here, we further study the effect that adding this pathway has

on rice by creating and characterizing new rice lines with alternative

versions of the exogenous MVA pathway. Subsequently, we use

multilevel mathematical modeling to integrate the data of all

mutant lines, and predict the effect of genome modification on

the concentrations of metabolic intermediates and on the fluxes

going through the MEP, MVA, and ectopic plastidial MVA

pathways. We also quantify the long-term effect of plant

hormones on the dynamic behavior of IPP/DMAPP biosynthetic

pathways in seeds, and predict plant characteristics, such as plant

height, leaf size, and chlorophyll content from molecular data. In

addition, our models are a tool that can be used in the future to help

in prioritizing re-engineering strategies for the exogenous pathway

in order to achieve specific metabolic goals.
2 Materials and methods

2.1 WT and mutant rice lines

We created three types of mutant rice lines using the procedures

described in Pérez et al. (2022). Mutant Type I had exogenous

HMGR; Mutant Type II had exogenous HMGS, HMGR and MVK;

and Mutant Type III had exogenous HMGS, HMGR, MVK, PMK

and MVD. We placed these six transgenes (BjHMGS, tHMGR,

CrMK, CrPMK, and CrMVD) in three independent expression

cassettes driven by endosperm-specific promoters. A transit

peptide inserted at the beginning of the five enzymes in the MVA

pathway directs them to the plastid. See Pérez et al. (2022) and

Supplementary Appendix S1 for the full details.

To create the mutant lines, we bombarded seven-day-old

mature zygotic rice embryos (Oryza sativa cv. EYI105) with gold

particles coated with the transformation vectors. We recovered

transgenic plantlets and regenerated and hardened them off in

soil. Genomic DNA was isolated from the callus and leaves of

regenerated plants to confirm presence of the BjHMGS, tHMGR,

CrMK, CrPMK, CrMVD and OsWR1 through PCR (Pérez et al.,

2022). We recovered 12 independent type I mutant lines, 10

independent type II mutant lines, and 12 independent mutant lines.
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2.2 Hormone determination, gene
expression, and plant phenotypes

We analyzed all rice lines after 12 weeks of growing in soil.

For each line we measured chlorophyll levels and analyzed the

cytokinins trans-zeatin, zeatin riboside and isopentenyl adenine

(iP); the gibberellins GA1, GA3 and GA4; the auxin indole-3-acetic

acid (IAA); ABA; salicylic acid; jasmonic acid; and the ethylene

precursor 1-aminocyclopropane-1-carboxylic acid (ACC) as

described in Pérez et al. (2022) and Supplementary Appendix S1.

We also measured gene expression for BjHMGS, tHMGR,

CrMK, CrPMK, CrMVD, and the endogenous MVA and MEP

pathway genes OsHMGS, OsHMGR, OsMK, OsPMK, OsMVD,

OsDXS, OsDXR, OsMCT, OsCMK, OsMDS, OsHDS, OsHDR and

OsIPPI using qRT-PCR as described in Appendix S1.

We counted the number of leaves, measured the height of the

plants from the base of the stem to the maximum extension of the

flag leaf, and measured the length and maximum width of the last

expanded leaf as described in Pérez et al. (2022). We used a SPAD

meter at six points on the last expanded leaf to quantify leaf

chlorophyll. We multiplied length and maximum width of the

last expanded leaf by a correction factor of 0.75 to estimate leaf area.

All experimental measurements are provided in Supplementary

Data S1 and described in the results section of Appendix S1.
2.3 Mathematical modeling formalism

We used ordinary differential equation systems to model the

biosynthesis of IPP/DMAPP. The mathematical formalism used to

describe the flux dynamics is the saturating formalism (Sorribas et al.,

2007; Alves et al., 2008). This formalism allows us to approximate the

kinetics of any given reaction using a rational expression, where

parameters have physical interpretations that are analogous to those

found in classical enzyme kinetics rate expressions. In this formalism,

we approximate the rate of a reaction in an inverse space at an

operating point by:

v ≈
V
Qm

i=1 xiQm
i=1 (Ki + xi) +

Qp
b=1 (xb + Kb)

(1)

V parameters represent apparent saturation rate constants for the

reactions. Ki parameters represent apparent binding constants for the

substrate(s) or inhibitor(s) of the reaction. While no activators were

considered in ourmodel, these can also be included using this formalism.
2.4 The endogenous MVA and MEP
pathways

We modelled the wild type IPP and DMAPP production (i.e.,

the endogenous MVA and MEP pathways), using the canonical

reaction set for each pathway, shown in Figure 1. We modelled the

kinetics of each process, as well as those for the exchange fluxes of

IPP and DMAPP between cytoplasm and plastid, using the rate

expressions in Supplementary Tables S1–S3. We assume that the
Frontiers in Plant Science 04
organism is able to maintain homeostasis of Acetyl-CoA and

Acetoacetyl-CoA.
2.5 The ectopic MVA pathway in plastid

To model type I mutants, we added the reaction that transforms

HMG-CoApl into MVApl to the plastid, as well as the cytoplasm-

plastid exchange reactions for these two metabolites

(Supplementary Tables S3–S4).

We extended the model for type I mutants to create the model

for type II mutants. We included the reactions catalyzed by HMGS

and MVK to the plastid compartment (Supplementary Table S4).

Corresponding compartment exchange reactions for the substrates

and products of these enzymes are also added (Supplementary

Table S3).

We extended the model for type II mutants to create the model

for type III mutants. We added the metabolite MVPP to the plastid

by including the reaction that synthesize it. We also added the

reaction that transforms MVPPpl into IPPpl, (Supplementary Table

S4). The plastid-cytoplasm exchange flux of MVPPpl is included as

well (Supplementary Table S3).
2.6 Exchange of MVA and MEP pathway
metabolites between the cytoplasm and
the plastid

Under physiological conditions, IPP and DMAPP mostly flow

from the plastid into the cytosol (Bick and Lange, 2003). We

implemented this observation by assuming that metabolites flow

from the plastid to the cytosol at ten times the rate of the import

reaction from the cytosol. Bick and Lange (Bick and Lange, 2003)

also reported that other pathway intermediates were not actively

transported between the two compartments. Other studies confirm

this observation (for example, Wright et al. (2014)). However, those

same studies show that in mutants overexpressing DXS, there is a

second pool of MEcPP outside the chloroplast. In addition early

intermediates of the MVA pathway can be found in the plastid

space (Schneider et al., 1977).

Introducing an MVA pathway into the plastid as we did, may

cause changes in the flux of MVA intermediates between the plastid

and the cytoplasm. As such, we allowed for the possibility that

HMG-CoA, MVA, MVP and MVPP enter and leave the plastid,

albeit at very slow rates. Supplementary Table S3 summarizes all

reactions of material interchanged between plastid and cytosol.
2.7 Assembling the ordinary differential
equation models for each type of rice

Each metabolite has its own differential equation in the model.

The kinetic rate function, fj, for each process that produces a

metabolite M appears as a positive term in the differential

equation that determines the dynamic behavior of that

metabolite. Similarly, the kinetic rate function, fk, for each process
frontiersin.org
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that consumes a metabolite appears as a negative term in the

differential equation that determines the dynamic behavior of that

metabolite:

dMi

dt
=o

j
fj −o

k

fk (2)

For the wild type and for each mutant type we assemble a type-

specific system of ordinary differential equations (ODEs) that

describes the dynamic behavior of all metabolites in the system.

As such, we have four different ODE model types. These four

models describe the dynamic behavior of all metabolites in the

system in a type-specific manner.
2.8 Estimating rate constants, metabolite
concentrations and variations in enzyme
activity for each line

Supplementary Tables S5 presents the basal kinetic constants

for each reaction in the four model types. Supplementary Table S6

presents the concentrations for the independent variables of the

four model types.

To personalize the models and make them line specific we need

to weigh the rate constants of the relevant type-specific model by

the variations in enzyme activity of the individual line of interest. To

do so we searched the literature for information about the

correlation between changes in gene expression and enzyme

activities in the MEP and MVA pathways. As we found no such

information, we modeled variations in the enzyme activities of the

mutant lines as described in Comas et al. (2016): changes in gene

expression with respect to the WT are assumed to be proportional

to changes in protein activity. This is the simplest possible

assumption about the relationship between changes in gene

expression and changes in enzyme activity.

We implement this assumption in the models by explicitly

considering the enzymes that catalyze each reaction in the rate

expressions. As Vmax ≈ kcatEnzyme, the model for the WT sets the

enzyme activity to be 1 (the basal state). As we model mutant lines,

we assume that changes in gene expression are proportional to

changes in enzyme activity. Thus,

Enzymeline   i = Enzymewild   type � (Gene   expressionline   i=Gene   expressionwild   type)

(3)

In the end we obtained one line-specific model for the wild type

rice, 12 line specific models for type I mutant lines, 10 line specific

models for type II mutants, and 12 line specific models for type

III mutants.
2.9 Stability analysis

While many biological phenomena are rhythmic, overall,

biological systems survive because they can achieve homeostasis

(Wang et al., 2022). In other words, metabolism remains buffered
Frontiers in Plant Science 05
and stable against normal environmental fluctuations. This occurs

for the MEP pathway (Wright et al., 2014). Mathematically this

situation is described by a stable steady state. It is well known that,

when modeling homeostatic situations, lack of stability is a good

diagnostic tool for model incompleteness (Savageau, 1975; Grimbs

et al., 2007; Schmidt et al., 2011; Voit, 2013). For example, Ni and

Savageau (1996a; 1996b) used this type of diagnostic tool to predict

regulatory interactions that could stabilize a model of the red blood

cell metabolism. Because of this, we perform stability analysis of the

line-specific rice models in order to identify possible model

improvements that can stabilize unstable steady states.

An efficient way to assess stability is by calculating the

eigenvalues of the Jacobian matrix of the ODE system, which are

complex numbers (Voit, 2013). If the real parts of all eigenvalues are

negative, the system is stable. Otherwise, the system is unstable. The

Jacobian matrix is constructed by taking the partially derivatives of

the right-hand side of the ODEs (fi) with respect to each state

variable (xj), as shown in Eq. 4.

J = Dxf = fx =
∂ fi
∂ xj

=

∂ f1
∂ x1

∂ f1
∂ x2

∂ f2
∂ x1

∂ f2
∂ x2

… ∂ f1
∂ xn

… ∂ f2
∂ xn

⋮ ⋮
∂ fn
∂ x1

∂ fn
∂ x2

⋱ ⋮

… ∂ fn
∂ xn

0
BBBBBB@

1
CCCCCCA

(4)
2.10 Sensitivity analysis

In addition to steady state stability, another tool for model

diagnostic is steady state robustness. Reasonable models generate

steady states that are robust, and have low sensitivity to parameter

changes (Savageau, 1975; Voit, 2013). Sensitivity measures how

much a dependent variable or output changes when a parameter is

altered (Comas et al., 2016). Parameters with high sensitivities tend

to identify where information may be incomplete or inaccurate.

As such, we performed a sensitivity analysis to identify which

steps of the pathway could have additional regulation that we were

ignoring. We calculated logarithmic, or relative, steady-state

parameter sensitivities, which measure the “relative change in a

system variable (X) that is caused by a relative change in a

parameter (p)” (Voit, 1991):

�S(X, p) =
∂X=X
∂ p=p

=
∂ logX
∂ log p

(5)

This sensitivity analysis generates a matrix of sensitivities for

each line. Each element of the matrix (of dimensions m� n)

represents the sensitivity Si,j of metabolite Mi to parameter pj. To

facilitate visualization of sensitivity analysis results and comparison

between lines, we compressed the sensitivity analysis matrices for

each line in two ways.

First, to see how much a line is sensitive to a certain parameter

over all metabolites (variables of the system) we calculate the

following index (Comas et al., 2016):
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S 0
j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
on

i=1S
2
i,j

q
ffiffiffi
n

p (6)

In other words, we calculate the size (or Euclidean norm) of the

vector whose components are the sensitivity of each metabolite to

parameter pj, normalized by the number of metabolites in each

mutant line (for example, models for Type I lines have 16

metabolites, while those for Type III have 18). We use the

Euclidean norm of the sensitivity vectors as a way to represent

aggregate sensitivities with a single metric to facilitate visual

representation and analysis. Further, and because the number of

metabolites increases from type I to type II and from type II to type

III models, we make S 0
j comparable between models by

normalizing it by the number of metabolites considered in the

model. Second, to see how sensitive a metabolite is to all parameters

in a line we calculate the following index:

S 0
i =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
om

j=1S
2
i,j

q
ffiffiffiffi
m

p (7)

As with Eq 6, we calculate the size (or Euclidean norm) of the

vector whose components are the sensitivity of the same metabolite

 Mi to each parameter pj, normalized by the number of parameters

in each mutant line. We use the Euclidean norm of the sensitivity

vectors as a way to represent aggregate sensitivities with a single

metric to facilitate visual representation and analysis. Further, and

because the number of parameters increases from type I to type II

and from type II to type III models, we make S 0
j comparable

between models by normalizing it by the number of parameters

considered in the model.
2.11 Investigating hormone influence

To investigate if we could use plant hormone levels as predictors

of dynamic behavior in IPP/DMAPP biosynthesis in seeds we

performed correlation analysis between hormones and

metabolites, as well as genes, as described in Section 1.9 of

Appendix S1. Significant effects were then included in the ODE

models using one of two possible formalisms:

Mi = aHgij
j , (8)

Mi = a(
Hj

K +Hj
)gij (9)

whereMiis the concentration of metabolite i in the model, Hj is

the level of hormone j at twelve weeks, and a and g are constants.

We chose between the two alternatives in the following way. First

we adjust a linear model of Log[Mi] as a function of Log[Hj�. A
combination of low adjusted R2 and high jgijj suggests a potentially
strong influence of the hormone levels on metabolite

concentrations (high d jgijj) over a small range of hormone levels

(low adjusted R2). In this situation, we assumed a saturation effect

and used Eq 9 to model hormone influence on metabolite
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production and consumption. Otherwise, we used Eq 8, as it uses

a smaller number of parameters and minimizes the possibility of

overfitting the model to the data. The threshold for selecting the one

or the other formalism was set at 0.5 for the ratio jR2
adj=gj :If jR2

adj

=gj > 0:5 we use the power law formalism. The right-hand side of

the equations modify the ODEs by multiplying the terms that

involve production/consumption of the metabolite and involving

those enzymes whose genes levels also correlate to hormone levels,

in a way that makes the observed correlations affect the production

and consumption rates of the metabolites.

For a more detailed procedure, see the Supplementary

Appendix S1.

We note that, when hormone levels were below the experimental

detection threshold, we reverted the kinetic expression presented in

Supplementary Table S7 to the original model, using a piece-wise

approximation to solve the differential equations.
2.12 Phenotype models

We used a form of forward stepwise regression (Efroymson,

1960) to investigate how the different phenotypic variables might be

predicted from hormones levels, gene expression and metabolite

concentrations. We analyzed the following plant phenotypic

characteristics: Height, number of Leaves, Leaf Length, Leaf

Width, and Chlorophyl levels. We split experimental data

according to mutant type, so that the analysis and model building

was performed three times, one for each mutant type. We

investigate phenotype as a function of the predictor variables gene

expression, hormone levels, and metabolite concentrations.

The first step of the regression analysis was building

independent linear models with one predictor variable.

The second step of the regression analysis was to select the

predictor variables that had a significant (a = 0:05) effect on the

phenotype and whose model had an adjusted R2 greater than 0.2. If

only one model has a significant effect, we would choose that one. If

more than one predictor variable has a significant effect in

explaining the predicted variable, we chose the model for the

variable with the highest adjusted R2. If the adjusted R2 is similar

between models, we chose the model with the lowest AICc (AIC

corrected for small sample sizes) score. The lower this score, the

lower the chance that a model over fits the observations. If the AICc

is similar for more than one model, we selected the predictor

variable with the highest adjusted R2. At this stage, we have a one

variable model.

The third step of the analysis was to create models with all

possible combinations of predictor variables where one of the

elements of the pair is the predictor variable selected in step one.

We then selected the best two variable models as described in the

previous paragraph, while making sure they are not collinear.

We repeated steps two and three and stopped when adding a

new variable did not improve the explanatory power of the model.

Thus, for a given set of significant predictors fx1, x2,  …, xng, the
model would be:
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ŷ = b0 + b1x1 + b2x2 +… + bnxn (10)

We used forward stepwise regression instead of the more

traditional multilinear modelling approach that starts from Eq. 10

and eliminates all variables that have no effect because the number

of data points is smaller than the number of parameters to fit to the

full multilinear model.
3 Results

3.1 Mathematical description of IPP and
DMAPP biosynthetic pathways

The full mathematical description of IPP/DMAPP biosynthesis

consists of 14, 16, 17 and 18 differential equations for the wild type

(WT), Mutant Type I (MT-I), Mutant Type II (MT-II) and Mutant

Type III (MT-III), respectively. Eq 11 shows the overall ODE

systems for the four model types:

WT: Black

MT-I: Black + 

green
MT-II: Black + 

+ purple

MT-III: Black + 

+ purple + 

yellow

(11)

green

green
3.2 MVA and MEP homeostasis is robust in
the WT line

Table 1 provides the concentrations of each metabolite estimated

from the model in the WT line. The system can achieve homeostasis

(stable steady state in mathematical nomenclature). Stable steady

states have negative real parts for the eigenvalues of the system’s

Jacobean matrix (Table 2). The model also estimates that pathway

substrates (HMG-CoA and DXP) and end-products (DMAPP and

IPP) concentrations are, in general, larger than those of intermediate

metabolites, which is another hallmark of a well-behaved biosynthetic

pathway (Alves and Savageau, 2000).

To understand how perturbations in parameters may affect the

ability of the system to maintain homeostasis, we calculated the

logarithmic sensitivity of the steady state Jacobian eigenvalues to each

parameter of the model (Supplementary Table S8). The model has

over eighty parameters and eigenvalues have sensitivities that are

above one (in absolute values) to thirty of them. The parameters to

which more eigenvalues are sensitive concentrate in reactions r2

(HMG-CoAcyt ! MVAcyt), r3 (MVAcyt ! MVPcyt), r4 (MVPcyt !
MVPPcyt), and r6 (IPPcyt ! DMAPPcyt) of the MVA pathway and
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reactions r10 (Glyceraldehyde-3-P + Pyruvate ! DXP) and r18

(IPPpl ! DMAPPpl) of the MEP pathways. This suggests that

modifying isoprenoid biosynthesis could destabilize the

physiological steady states of the plant.
3.3 Homeostatic concentrations are robust
to enzyme mutations in the WT line

Sensitivity analysis identifies the parameters to which the

various variables of the model are most sensitive, as described in
TABLE 1 Concentrations of the basal model.

Metabolites [mM]

HMGCoAcyt 0.983

MVAcyt 3.5x10-5

MVPcyt 3.98x10-4

MVPPcyt 3.36x10-5

IPPcyt 0.109

IPPpla 0.0801

DMAPPcyt 0.136

DMAPPpla 0.124

DXP 0.0133

MEP 1.15x10-3

CDPME 1.11x10-4

CDPMEP 0.0920

MECPP 0.657

HMBPP 3.52x10-4
fron
TABLE 2 Eigenvalues for the Steady State.

Real Im

Eigenvalue1 -928.693 0

Eigenvalue2 -891.953 0

Eigenvalue3 -872.862 0

Eigenvalue4 -272.249 0

Eigenvalue5 -83.721 0

Eigenvalue6 -78.084 0

Eigenvalue7 -16.974 0

Eigenvalue8 -11.845 0

Eigenvalue9 -6.668 0

Eigenvalue10 -2.011 0

Eigenvalue11 -0.913 0

Eigenvalue12 -0.545 0

Eigenvalue13 -0.110 0

Eigenvalue14 -0.031 0
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(Sorribas et al., 2007; Alves et al., 2008). A high sensitivity of a

variable to a parameter indicates that small changes in that

parameter might lead to big changes in the variable.

Plausible models of biological systems have low sensitivities to

most parameters (Savageau, 1976; Kitano, 2007). The logarithmic

sensitivity analysis of the dependent concentrations of the WT

model with respect to each parameter of the model we performed

shows that our model fits this quality criterion. Only 51 out of 728

sensitivities are larger than one (Supplementary Table S9). DMAPP

and IPP are the metabolites with the highest sensitivities. High

sensitivities are well known to identify the parts of a system that

need to be modeled in more detail when additional information

becomes available (Savageau, 1976; Kitano, 2007). This is consistent

with the fact that we modeled IPP and DMAPP usage only through

simple sink reactions, without considering any metabolic and

regulatory details.
3.4 Existence of homeostatic behavior in
the mutant lines requires
posttranscriptional regulation of
protein activity

We implement the models for the biosynthetic pathways in each

mutant line using the same procedure as that for the WT line

(sections 2.3 to 2.6). These systems do not reach homeostasis,

having unstable steady states with a few intermediate metabolites

accumulating over time. This suggests that the models are not

plausible representations of the biological situation (Savageau, 1971;

Savageau, 1975; Savageau, 1976; Voit, 2013).

Biological systems can stabilize steady states and reach

homeostasis by adjusting the activity of enzymes in a pathway,

for example through post-transcriptional regulation of protein

levels and activity. We investigated whether emulating this type of

adjustment would stabilize the steady states in the models.

First, we identified the metabolites that accumulated in each

line, which were DXP, CDP-MEP, MEcPP, or combinations

thereof. Reactions r11, r14, and r15 of Table S2 either produce or

consume these metabolites. Using a minimal intervention policy, we

scanned the values for the Vmax parameters of reactions Vmax9,

Vmax12 and Vmax13 in order to identify the minimum change in

those parameters that would stabilize the steady state of each

mutant line.

To stabilize homeostasis in the models we scanned one-

dimensional, two-dimensional and three-dimensional parameter

spaces and found the values of Vmax that stabilized the steady

state in each model. The sets of Vmax that made the model for each

mutant line stable were stored in a candidate sets list and we chose

the final parameter set as the one with minimum normalized

Euclidian distance to the original set of parameter values for that

line. We provide the list of stabilized parameter values for each line

in Supplementary Data S1 – Model_stabilization. Supplementary

Figure S1 shows that Type II and Type III mutants require larger

changes in parameter values than Type I mutants.
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3.5 Stabilized homeostatic concentrations
are robust to enzyme mutations in the
mutant lines

We performed a sensitivity analysis of the stable homeostatic

concentrations with respect to each enzyme parameter, in each

mutant line (Figure 2A). We find that those concentrations are very

robust, with 3% of all individual sensitivities being higher than 1 in

absolute value in Type I mutants. This number goes down to 1.8%

in Type II mutants and 1.4% in Type III mutants. The total number

of individual sensitivities calculated for each line is higher than 900.

Globally, we found that, for each parameter pj, the aggregated

sensitivity S 0
j   of all metabolites to that parameter decreases in

mutant lines with respect to the WT. The global sensitivities to each

parameter decrease in the following order: WT>Type I lines> Type

II lines> Type III lines. We also found that the aggregated sensitivity

of each metabolite Mi to all parameters also decreases in the same

order (Figure 2B). Thus, our results suggest that post-

transcriptional regulation of a small number of enzymes is

sufficient to maintain homeostasis of IPP/DMAPP biosynthesis in

each mutant line.
3.6 Investigating average behavior for each
mutant type

While having a line-specific, data-driven, model is a more

accurate way of describing and predicting the behavior of each

mutant line, these are less than helpful in predicting how a new

mutant line of any of the three types will behave dynamically.

To create general, type-specific models that are more useful for

predicting the dynamic behavior and characteristics of generic new

mutant lines, we created a median experimental line for each

mutant type. To do so we use the median gene expression

activities for each gene in all lines of a given mutant type. Then,

we follow the procedure described in methods to generate three new

models, one per mutant type. Their steady state concentrations,

stability, and sensitivity analysis in Supplementary Table S10;

Figure 2; Supplementary Data S1. Figure 2 also shows that these

lines have sensitivity profiles that are similar to those of the

individual mutant lines of the same type. Moreover, the models

for the median lines of each mutant type have homeostatic behavior

that is robust to mutations in enzyme parameters, which is a

hallmark of a plausible model.
3.7 Variations in whole plant hormone
levels partially explain variations in the
biosynthesis of IPP/DMAPP in seeds

We also wanted to investigate whether early plant hormone

levels in the plant might be a proxy for subsequent changes in the

biosynthesis of IPP/DMAPP in seeds. To do so, we calculated how

changing hormone levels could explain changes in gene expression

and metabolite levels, as described in the methods section 2.11 and
frontiersin.org

https://doi.org/10.3389/fpls.2023.1133299
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Basallo et al. 10.3389/fpls.2023.1133299
in Supplementary Appendix S1. We are not assuming that the

endogenous MEP, MVA, and exogenous MVA Pathways have an

influence in hormone production, only measuring if there is a

phenomenological correlation between variations in hormone levels

and metabolites or levels of gene expression.

iP is a proxy for changes in enzyme activity in all three mutant

types. For all mutant types, iP correlates to changes in the activity of

the early MEP pathway steps. In addition, for type I mutants, iP also

correlates to changes in the activity of MVA pathway early steps.

ABA is also a proxy influence in the early steps of the MEP pathway

for all mutant types. Other hormones have a mutant specific effect.

Table S7 summarizes the results for all hormones and presents the

hormone dependency equations for each mutant type.

To validate the resulting multilevel models, we investigated if

they could reproduce the correlation between experimental

hormone levels and model metabolites in the following way.

For each mutant type and metabolite whose concentration is

significantly affected by a given hormone, we took the median

model described in Section 3.6 and calculated the concentration of

the various metabolites as a function of hormone levels. Then, we

calculated the correlation in the simulation plot and compared that

correlation to the one computed when we plot concentration of the

same metabolite vs experimental hormone levels. We summarize

the results of this analysis in Table 3. We find that the models

maintain 48 out of 53 expected correlations between hormone levels

and metabolite concentrations. This is consistent with the extended

models being plausible multilevel descriptions of IPP/DMAPP

biosynthesis in the three mutant types.
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3.8 IPP/DMAPP production increases in
mutants with a complete exogenous MVA
pathway in the plastid

We estimated how the production of IPP/DMAPP changes

across mutant lines and types, with the help of the models. Figure 3

summarizes the results. Overall, our models suggest that median

metabolic flux going into the plastid’s IPP/DMAPP producing

pathways increases in the following way: Type III>Type II>Type

I. We dissected the production rates of IPP by HDR, IDI and MVD

(both endogenous and ectopic, where applicable), and the exchange

from plastid to cytosol. We also find that the mean production flux

for IPP increases from Type I to Type II to Type III.
3.9 Plant phenotype can be correlated to
hormone and gene expression levels

We used linear regression to investigate if hormone, gene

expression, and metabolite levels can predict macroscopic plant

phenotypes, such as plant height, number of leaves, leaf width, leaf

length and chlorophyll levels, as described in methods. Table 4

shows that the subset of phenotype parameters that can be

predicted from molecular data is different for different mutant

types and provides the best fit models for each phenotype

parameter and mutant type. Leaf length and chlorophyll content

can be predicted for types I, II, and III. Height can be predicted for

types I and III. Leaf width can be predicted for types II and III. The
A B

FIGURE 2

Heatmap of pooled sensitivities by parameter (left, threshold = 0.059) and by metabolite (right, threshold = 0.025), compared across mutant lines.
Endogenous pathways are equal in all mutant types and have the same reactions. The models for the exogenous MVA plastid pathway are mutant
type specific. Type III mutants include the reactions catalyzed by the five exogenous genes, HMGS, MVK, HMGR, PMK, and MVD. Type II mutants
include the reactions catalyzed by HMGS, HMGR, and MVK. Type I mutants only include the reaction catalyzed by exogenous HMGR. As such, type
III models have more kinetic parameters than type II. Type I has the lowest number of parameters. (A) Aggregate sensitivity of all metabolites to each
parameter. (B) Aggregate sensitivity of each metabolite to all parameters.
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number of leaves can be predicted for mutant types I and II.

Variations in the levels of the metabolites, genes and hormones

shown in Table 4 are the best predictors for the variations measured

in the macroscopic phenotype. The metabolic levels of DXP,

MEcPP, HMG-CoA are useful in predicting phenotypical

characters of leaves in all mutant types. DMAPP levels are useful

in predicting chlorophyll content in type III mutants. Table 4 also

includes the adjusted R2 for each model, which is a measure of the

percentage of variation in the phenotype that can be explained by

the model. Models explain between 40% and 77% of the

phenotypical variability, depending on the specific phenotype

being measured and the mutant type.
TABLE 3 Qualitative assessment of expected correlations between
metabolites and hormones.

Number of
correlations
assessed

Number of
correlations
matching
expected
effect

Ambiguous
effect or
none

observed

Type I 7 4 3

Type II 19 19 0

Type III 27 24 2
D

A B

E F

G

I

H

C

FIGURE 3

Box plots representing model predictions for exchange and production rates of IPP from different sources. Green – type I mutants. Mauve – type II
mutants. Gold – type III mutants. C – Production in cytosol. P – Production in plastid. (A) Production by HDR. (B) Export to the cytosol. (C)
Production by IDI (D) Production by MVD. (E) Total production in each compartment. (F) Total production. (G) Entry flux to the MVA, MEP, and
exogenous MVA pathways. (H) Entry flux into IPP/DMAPP production per compartment. (I) Overall flux directed for IPP/DMAPP production.
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3.10 Leveraging the models for
phenotype prediction

The results from the previous section allow us to create a

multilevel model, connecting metabolite concentrations, and

hormone and gene expression levels to the macroscopic plant

phenotypes. We summarize the multilevel model building process

in Figure 4. In Figure 5 we use the models from Table 4 and the

experimental data for gene expression and hormone levels to

calculate what is the expected value for the predicted phenotype,
Frontiers in Plant Science 11
according to the relevant model. Then, we include the experimental

determination for the same phenotype. We show that each type-

specific model can semi-quantitatively predict macroscopic

plant phenotype.
3.11 Models are mutant-type specific

We further investigated if the type-specific models were

accurate in predicting the phenotype of the other mutant types.

We used the median model for each mutant type, feeding it with the

experimental determinations for all the lines and measured how

accurate the phenotype predictions were for each type. What we

observed is that the type-specific models do not properly predict

other mutant types. For example, Figure 6 shows that our type I

model can only accurately predict chlorophyll levels for type I lines,

failing to do so for mutant types II and III. Supplementary Table S11

shows that phenotype predictions are only accurate when made

with the model for the correct mutant type. This suggests that

prediction for new mutant types would require developing a data

driven model for that mutant type.
4 Discussion

IPP and DMAPP are the precursor monomers to terpenoids, a

family of molecules that contains many chemicals with importance

in biology, pharmacy, biotechnology, biomedicine and cosmetics,

such as squalene. Plants produce those monomers using two

biosynthetic pathways: the MVA pathway in the cytosol, and the

MEP pathway in the plastid. As such, they are in principle a good

substrate for synthetic biology of valuable terpenoid biosynthesis.

Plants engineered with exogenous MVA pathway genes are a
TABLE 4 Multivariate linear models for the phenotype.

Adjusted
R2

Type I

Height = 56.028 – 22.688 MDS + 1.590 DXP
Leaves = Round (4.738 + 0.318 DXP – 0.245

MEcPP)
Leaf Length = 31.045 – 3.135 HMGS + 1549.320

HMBPP
Chlorophyl = 32.218 + 0.154 IAA – 1.571 HMGS

0.53
0.72
0.69
0.74

Type
II

Leaves = Round (3.325 – 0.00312 ACC + 0.0557
HMGCoAcyt)

Leaf Length = 41.621 + 6.048 HMGS – 116.641
MEP

Leaf Width = 0.596 + 0.124 HMGS + 0.0464 MVD1
Chlorophyl = 39.29 + 1.620 iP – 1.446 HDR

0.70
0.77
0.61
0.75

Type
III

Height = 76.626 + 25.445 GA4 + 0.432 HMGS
Leaf Length = 50.826 + 0.197 WR1 + 9071.25

MVPPcyt
Leaf Width = 0.881 + 0.005 HMGS + 0.007

HMGCoAcyt

Chlorophyl = 33.218 + 10.968 HDR + 75003
DMAPP

0.60
0.43
0.40
0.46
All units in (cm), except number of Leaves. Blue variables indicate gene expression levels. Bold
variables indicate hormone levels. All other variables represent metabolite levels.
FIGURE 4

– Multilevel modeling process. We integrate pathway data with gene expression and hormone levels to create line-specific models for isoprenoid
biosynthesis. We use the models to calculate metabolic steady state levels, which are then used as input variables, together with hormone levels, to
model plant phenotype traits in a type specific manner. We validated the multilevel models and then used them to predict the phenotype of
additional rice mutants of each type.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1133299
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Basallo et al. 10.3389/fpls.2023.1133299
promising platform for downstream terpenoid production

(Andersen et al., 2021; Pérez et al., 2022). For example, when

exogenous HMGRS, is expressed in the cytoplasm of tobacco

leaves, these leaves appear to produce more cytoplasmic IPP/

DMAPP. By also expressing exogenous crtE, crtB, and crtI, the

plant uses the excess IPP/DMAPP to become biofortified in

carotenoid pigments, such as lycopene (Andersen et al., 2021).

Changing the flux going through the MEP plastid pathway has

stronger, pleiotropic effects (Pérez et al., 2022). This is likely due to

the developmental plant hormones produced from plastid IPP/

DMAPP. As such, increasing the production of IPP/DMAPP in the
Frontiers in Plant Science 12
chloroplast while containing the deleterious effects this might have

in plant development is more effectively done through expression of

an orthogonal MVA pathway in the plastid (Pérez et al., 2022). Still,

plants use their IPP and DMAPP to synthesize all their cognate

isoprenoids, including developmental hormones and protective

molecules. Because of this, engineering plants to divert material

from the pathways towards biotechnological purposes has

significant pleiotropic effects that are often deleterious (Ye et al.,

2000; Ro et al., 2006; Naqvi et al., 2009; Ajikumar et al., 2010;

Zorrilla-López et al., 2013; Fuentes et al., 2016; Jiang et al., 2017;

Kang et al., 2017; Georgiev et al., 2018; Kotopka et al., 2018; Cravens
FIGURE 5

Predicted against observed values of phenotype variables. All units in cm, except chlorophyl (mg/g) and number of leaves. We predict phenotype for
each mutant line by combining the molecular line-specific models with the phenotype, type-specific, models. Note: each type is being predicted by
its own model.
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et al., 2019; Luo et al., 2019; Maeda, 2019; Gülck et al., 2020;

Srinivasan and Smolke, 2020; Zhu et al., 2021; Liew et al., 2022;

Pérez et al., 2022; Yang et al., 2022; Zhang et al., 2022; Grzech et al.,

2023). Consequently, if plants are to be used as a platform for

terpenoid biosynthesis, one must engineer IPP/DMAPP

biosynthesis in such a way that they are able to properly develop,

while producing an excess of monomers that can be used for

downstream high value terpenoids production.

This work aims to contribute towards that goal. We generated

over thirty independent mutant rice lines that, in addition to the

native MVA and MEP pathways, had three alternative versions of

an exogenous MVA pathway located to the chloroplast. The

method used to create the lines results in a non-targeted

integration of the ectopic genes in the genome of the endosperms.

This created the potential for different dynamic behavior of

pathway metabolites among lines within the same mutant type.

We then measured the expression of the genes in the pathways, the

hormone levels, and the macroscopic phenotype of the WT and

mutant lines. We combined all this data into multiscale, line-

specific, mathematical models of the plants that connected all the

variables and measurements. We use these models to understand

how the alternative versions of the pathways contribute to change

the flux going through the IPP/DMAPP metabolic pools.
4.1 Modelling limitations

Several modeling efforts focused on analyzing the biosynthetic

and signaling dynamics of complex terpenoids in plants (Latowski

et al., 2000; Bruggeman et al., 2001; Rios-Estepa et al., 2008; Rios-

Estepa et al., 2010; Band et al., 2012; Beguerisse-Diaz et al., 2012;

Pokhilko et al., 2013; Pokhilko et al., 2015; Allen and Ptashnyk,

2017; Nazareno and Hernandez, 2017; Dalwadi et al., 2018; Rizza

et al., 2021). For example, Band et al. and Rizza et al. use

compartmental modeling to study the biosynthesis and diffusion

of gibberellins in root tips (Band et al., 2012; Rizza et al., 2021).

Terpenoid signaling is often also a target for modeling. For example,

Allen & Ptashnyk use models to study signaling interactions

between brassinosteroid and gibberellin signaling pathways (Allen

and Ptashnyk, 2017), and Nazareno & Hernandez do the same to
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study signaling interactions between of abscisic acid, ethylene and

methyl jasmonate on stomatal closure (Nazareno and Hernandez,

2017). Modeling studies of the biosynthesis and regulation of

terpenoid precursors in plants are less common. In fact, we are

only aware of two such modeling effort for the MEP pathway in

plants (Pokhilko et al., 2015) (Neiburga et al., 2023) and another in

Plasmodium falciparum (Singh and Ghosh, 2013). The plant MEP

model was used to study how circadian rhythms regulate the

dynamics of the pathway in plants, while the P. falciparum model

was used to investigate the regulation of the pathway and to predict

the effects of genetic manipulations on the production of

isoprenoids with the addition of in silico inhibitors. Regarding the

MVA pathway, we found no model in plants. Still, this pathway was

modeled in bacteria (Weaver et al., 2015, Dalwadi et al., 2018).

These MVA models study the dynamics of the pathway in the

context of introducing it in bacteria using synthetic biology. Finally,

we know of only one other example where both pathways were

modeled together in yeast, using Petri net-based dynamic modeling

(Baadhe et al., 2012). Taking all this into account, creating models

that can be used to study the dynamics and interactions of the MVA

and MEP pathways in plants is an important goal, towards which

this paper contributes.

Trusting the models normally requires that they are validated

by comparison with experimental data that was not used to build

them. This was one of the technical limitations in building line-

specific models, as we needed most of the available data to estimate

the parameter values for each line. As such, the measurements can

be used for either model building or model validation, but not

both simultaneously. To sidestep this problem, we used

three approaches.

First, we used sensitivity and stability analysis as general model

quality assessment tools (Savageau, 1975; Kitano, 2007; Voit, 2013)

to both evaluate the quality of the line-specific models and identify

the parameters that could be used to improve that quality. The WT

model is of high quality, being robust to changes in parameters

(>92% of parameter sensitivities lower than 0.5) and producing a

stable steady state, with metabolite concentrations that are well

within the accepted biological ranges (Albe et al., 1990). In contrast,

the steady states for the original line specific mutant lines are

unstable, leading to unbound accumulation of MEP pathway
A B C

FIGURE 6

Using Type I (A), Type II (B) and Type III (C) Chlorophyl models to predict Type I, Type II and Type III chlorophyl levels (mg/g).
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intermediates. This indicated that the models needed improvement.

We hypothesized that the simplest reason for model instability

could be consequence of a nonlinear relationship between changes

in the expression of pathway genes and changes in enzyme activity.

To test if the hypothesis is consistent with our data, we scanned the

parameters that represent the enzyme activities that directly

produce or use the accumulating metabolites in the model:

Vmax9, Vmax12 and Vmax 13. By executing this procedure, we

identified the sets of minimal changes to the values for these

parameters that generated stable and robust steady states, with

metabolic concentrations within known physiological ranges. We

remark that other, more complex explanations might also be

consistent with the experimental data. Still, Occam’s razor argues

that the simplest explanation is the most likely one, in the absence of

additional data (Borgqvist and Palmer, 2022; Piasini et al., 2023).

Second, we created “median” models for each of the three types

of pathways. To do so, we pooled together all mutant lines of a given

type and calculated the median of the pool for each variable. Then,

we used that median to create the median model for each mutant

type, in the same way we create line specific models. These median

models also allowed us to estimate the metabolites for each

individual line. Comparing the results with the line specific

models shows that these median models have a similar behavior

to the models of the individual lines of the same mutant type

(Figure 2). In addition, when we use the median models to predict

the phenotype of the individual lines, the predictions have an error

that is similar to that of the individual line models. This suggests

that we can use the median model of a given mutant type to study

newly created lines for that mutant type.

Third, we used the multilevel models to predict plant phenotype

and compare the results with the experimentally determined

phenotype, achieving a prediction accuracy of up to 80%

(Supplementary Table S11). We summarize the process in

Figure 4. We make different assumptions about the relationship

between variables in our modeling. We model the effect of changes

in gene expression on the concentrations of pathway intermediates

assuming a direct cause-effect relationship between changes in the

expression of a gene and changes in the corresponding enzyme

activity. We model the effect of enzyme activity on the flux going

through the reaction catalyzed by that enzyme using traditional

enzyme kinetics. In both cases this assumes a causal relationship

between variables. In contrast, we assume that there might be a

phenomenological relationship between changes in hormone levels

and changes in gene expression and phenotypes and test for that

relationship. When we find statistical evidence for that relationship,

we include it in our models in different ways. The influence of

hormone levels on gene expression is added to the metabolic

pathway models through the use of approximation theory, in a

way that is mathematically well justified (Salvador, 1996; Sorribas

et al., 2007; Alves et al., 2008). The phenomenological influence of

hormones, genes, and metabolites on phenotype was accounted for

by using statistical linear models. As additional experimental

studies become available, the phenomenological parts of the

models will need to be adjusted in order to account for the

knowledge generated by those experiments. Overall, the quality

assessment steps we performed suggest that our models can be used
Frontiers in Plant Science 14
as reasonable semi-quantitative prediction tools to help in better

understanding the biology of isoprenoid biosynthesis modification

in rice.
4.2 Biology of IPP/DMAPP production:
from molecular determinants to
plant phenotype

Posttranscriptional regulation is important for the proper

functioning of the MEP and MVA pathways in plants (Laule

et al., 2003; Guevara-Garcıá et al., 2005; Sauret-Güeto et al., 2006;

Flores-Pérez et al., 2008; Xie et al., 2008; Cordoba et al., 2009; Han

et al., 2013). Our modeling and analysis indicate that IPP/DMAPP

production is robust to fluctuations in enzyme activity in WT rice

(Table 2; Supplementary Tables S8, S9). Further, it suggests that

posttranscriptional modulation of enzyme activity is important in

stabilizing IPP/DMAPP production in mutant lines (Figure 2;

Supplementary Table S2). In all cases, stabilizing the steady state

of a mutant line requires that the activity of a protein is upregulated

with respect to the changes in gene expression for that protein

(Supplementary Data S1). This is fully consistent with the

observation that, when compared to the WT Arabidopsis plants,

changes in the activities of DXS and DXR proteins are bigger than

the changes in expression of the corresponding genes (compare

panels A and C of Figure 3 in Flores-Pérez et al. (2008)).

Interestingly, DXR is one of the proteins flagged in our models as

a potential stabilizing influence for the steady state of the rice

mutants (Supplementary Data S1).

Our results also suggest that variations in plant hormone levels

can predict, to some extent, both plant phenotype (Table S11) and

the biosynthetic fluxes of IPP/DMAPP in the seeds (Table S7).

Further, variations in plant gene expression levels in combination

with variations in plant hormones can improve phenotype

predictions (Tables 4, S11). However, the more complex the

genetic manipulation was, the less accurate the phenotype

predictions become. While the median adjusted R2 for the

predictions is approximately 60% in mutant types I and I, this

number goes down to 35% in type III mutants (Table S11).

Pérez et al. (2022) also reported that plant development is more

similar to that of the WT in mutant type III, followed by mutant

type II, and finally I. Our modeling suggests an explanation for this

observation. The analysis predicts that the global production of IPP/

DMAPP is on average higher in the mutant types that have a more

complete version of the exogenous MVA pathway in the plastid

(Figure 3). The average amount of flux going through the

endogenous MEP and MVA pathways in Type III mutants is the

most similar to that of the WT, followed by the flux going through

the endogenous pathways in Type II mutants. The least similar flux

to WT is that of Type I mutants (Figure 3). Figure 3 also shows that

the total amount of flux going through the IPP/DMAPP pools in

mutant types I and II is similar to that of the WT. The flux going

through IPP/DMAPP is larger in Type III mutants than in the WT

rice. Taken together, these observations suggest that plants can

distinguish between the IPP/DMAPP produced by each of the

pathways. Too little flux going through the endogenous MEP
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pathway compromises the production of developmental hormones

leading to plants with developmental defects. In conclusion, we

believe that an iterative modeling-experimental process as the one

presented here would be an effective way to identify which parts of

each pathway are more sensitive to further manipulation, and which

parts are more likely to be good targets for modification in order to

increase the flux without disrupting the development of the plant.
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Guevara-Garcıá, A., San Román, C., Arroyo, A., Cortés, M. E., de la Gutiérrez-Nava,
M. L., and León, P. (2005). Characterization of the arabidopsis clb6 mutant illustrates
the importance of posttranscriptional regulation of the methyl-d-Erythritol 4-
phosphate pathway. Plant Cell 17, 628–643. doi: 10.1105/TPC.104.028860

Gülck, T., Booth, J. K., Khakimov, B., Crocoll, C., Motawia, M. S., Møller, B. L., et al.
(2020). Synthetic biology of cannabinoids and cannabinoid glucosides in nicotiana
benthamiana and saccharomyces cerevisiae. J. Nat. Prod. 83, 2877–2893. doi: 10.1021/
ACS.JNATPROD.0C00241/ASSET/IMAGES/LARGE/NP0C00241_0009.JPEG

Han, M., Heppel, S. C., Su, T., Bogs, J., Zu, Y., An, Z., et al. (2013). Enzyme inhibitor
studies reveal complex control of methyl-d-erythritol 4-phosphate (MEP) pathway
enzyme expression in catharanthus roseus. PloS One 8 (5), e62467. doi: 10.1371/
JOURNAL.PONE.0062467

Harborne, J. B., Tomas-Barberan, F. A.Phytochemical Society of Europe (1991)
Ecological chemistry and biochemistry of plant terpenoids (Clarendon Press). Available
at: http://agris.fao.org/agris-search/search.do?recordID=US201300687965 (Accessed
June 4, 2019).

Hemmerlin, A. (2013). Post-translational events and modifications regulating plant
enzymes involved in isoprenoid precursor biosynthesis. Plant Sci. 203–204, 41–54.
doi: 10.1016/J.PLANTSCI.2012.12.008

Hemmerlin, A., Harwood, J. L., and Bach, T. J. (2012). A raison d’être for two distinct
pathways in the early steps of plant isoprenoid biosynthesis? Prog. Lipid Res. 51, 95–
148. doi: 10.1016/J.PLIPRES.2011.12.001

Hemmerlin, A., Hoeffler, J. F., Meyer, O., Tritsch, D., Kagan, I. A., Grosdemange-
Billiard, C., et al. (2003). Cross-talk between the cytosolic mevalonate and the plastidial
methylerythritol phosphate pathways in tobacco bright yellow-2 cells. J. Biol. Chem.
278, 26666–26676. doi: 10.1074/jbc.M302526200

Hemmerlin, A., Tritsch, D., Hartmann, M., Pacaud, K., Hoeffler, J. F., Van
Dorsselaer, A., et al. (2006). A cytosolic arabidopsis d-xylulose kinase catalyzes the
phosphorylation of 1-Deoxy-d-Xylulose into a precursor of the plastidial isoprenoid
pathway. Plant Physiol. 142, 441–457. doi: 10.1104/PP.106.086652

Jiang, G. Z., Yao, M. D., Wang, Y., Zhou, L., Song, T. Q., Liu, H., et al. (2017).
Manipulation of GES and ERG20 for geraniol overproduction in saccharomyces
cerevisiae. Metab. Eng. 41, 57–66. doi: 10.1016/J.YMBEN.2017.03.005

Kang, A., Meadows, C. W., Canu, N., Keasling, J. D., and Lee, T. S. (2017). High-
throughput enzyme screening platform for the IPP-bypass mevalonate pathway for
isopentenol production. Metab. Eng. 41, 125–134. doi: 10.1016/J.YMBEN.2017.03.010

Kitano, H. (2007). Towards a theory of biological robustness. Mol. Syst. Biol. 3, 137.
doi: 10.1038/MSB4100179

Kotopka, B. J., Li, Y., and Smolke, C. D. (2018). Synthetic biology strategies toward
heterologous phytochemical production. Nat. Prod. Rep. 35, 902–920. doi: 10.1039/
C8NP00028J
Frontiers in Plant Science 16
Kumar, S., Hahn, F. M., Baidoo, E., Kahlon, T. S., Wood, D. F., McMahan, C. M.,
et al. (2012). Remodeling the isoprenoid pathway in tobacco by expressing the
cytoplasmic mevalonate pathway in chloroplasts. Metab. Eng. 14, 19–28.
doi: 10.1016/J.YMBEN.2011.11.005

Lange, I., Poirier, B. C., Herron, B. K., and Lange, B. M. (2015). Comprehensive
assessment of transcriptional regulation facilitates metabolic engineering of isoprenoid
accumulation in arabidopsis. Plant Physiol. 169, 1595–1606. doi: 10.1104/PP.15.00573

Latowski, D., Burda, K., and Strzałka, K. (2000). A mathematical model describing
kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin
by the xanthophyll cycle enzyme violaxanthin de-epoxidase. J. Theor. Biol. 206, 507–
514. doi: 10.1006/JTBI.2000.2141

Laule, O., Fürholz, A., Chang, H.-S., Zhu, T., Wang, X., Heifetz, P. B., et al. (2003).
Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in
arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 100, 6866–6871. doi: 10.1073/
pnas.1031755100

Liao, P., Hemmerlin, A., Bach, T. J., and Chye, M.-L. (2016). The potential of the
mevalonate pathway for enhanced isoprenoid production. Biotechnol. Adv. 34, 697–
713. doi: 10.1016/J.BIOTECHADV.2016.03.005

Liew, F. E., Nogle, R., Abdalla, T., Rasor, B. J., Canter, C., Jensen, R. O., et al. (2022).
Carbon-negative production of acetone and isopropanol by gas fermentation at
industrial pilot scale. Nat. Biotechnol. 40 (3), 335–344. doi: 10.1038/s41587-021-
01195-w

Luo, X., Reiter, M. A., d’Espaux, L., Wong, J., Denby, C. M., Lechner, A., et al. (2019).
Complete biosynthesis of cannabinoids and their unnatural analogues in yeast. Nat.
567, 123–126. doi: 10.1038/s41586-019-0978-9

Maeda, H. A. (2019). Harnessing evolutionary diversification of primary metabolism
for plant synthetic biology. J. Biol. Chem. 294, 16549–16566. doi: 10.1074/
JBC.REV119.006132

Mcgarvey, D. J., and Croteau, R. (1995) Terpenoid metabolism. American society of
plant physiologists. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC160903/pdf/071015.pdf (Accessed June 5, 2019).

Naqvi, S., Zhu, C., Farre, G., Ramessar, K., Bassie, L., Breitenbach, J., et al. (2009).
Transgenic multivitamin corn through biofortification of endosperm with three
vitamins representing three distinct metabolic pathways. Proc. Natl. Acad. Sci. USA
106, 7762–7767. doi: 10.1073/PNAS.0901412106/SUPPL_FILE/0901412106SI.PDF

Navale, G. R., Dharne, M. S., and Shinde, S. S. (2021). Metabolic engineering and
synthetic biology for isoprenoid production in escherichia coli and saccharomyces
cerevisiae. Appl. Microbiol. Biotechnol. 105 (2), 457–475. doi: 10.1007/S00253-020-
11040-W

Nazareno, A. L., and Hernandez, B. S. (2017). A mathematical model of the
interaction of abscisic acid, ethylene and methyl jasmonate on stomatal closure in
plants. PloS One 12, e0171065. doi: 10.1371/JOURNAL.PONE.0171065

Neiburga, K. D., Muiznieks, R., Zake, D. M., Pentjuss, A., Komasilovs, V., Rohwer, J.,
et al. (2023). Total optimization potential (TOP) approach based constrained design of
isoprene and cis-abienol production in a. thaliana. Biochem. Eng. J. 190, 108723.
doi: 10.1016/J.BEJ.2022.108723

Ni, T. C., and Savageau, M. A. (1996a). Application of biochemical systems theory to
metabolism in human red blood cells. signal propagation and accuracy of
representation. J. Biol. Chem. 271, 7927–7941. doi: 10.1074/JBC.271.14.7927

Ni, T. C., and Savageau, M. A. (1996b). Model assessment and refinement using
strategies from biochemical systems theory: application to metabolism in human red
blood cells. J. Theor. Biol. 179, 329–368. doi: 10.1006/JTBI.1996.0072

Page, J. E., Hause, G., Raschke, M., Gao, W., Schmidt, J., Zenk, M. H., et al. (2004).
Functional analysis of the final steps of the 1-deoxy-d-xylulose 5-phosphate (DXP)
pathway to isoprenoids in plants using virus-induced gene silencing. Plant Physiol. 134,
1401–1413. doi: 10.1104/PP.103.038133
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