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Longan yield estimation is an important practice before longan harvests.

Statistical longan yield data can provide an important reference for market

pricing and improving harvest efficiency and can directly determine the

economic benefits of longan orchards. At present, the statistical work

concerning longan yields requires high labor costs. Aiming at the task of

longan yield estimation, combined with deep learning and regression analysis

technology, this study proposed a method to calculate longan yield in complex

natural environment. First, a UAV was used to collect video images of a longan

canopy at the mature stage. Second, the CF-YD model and SF-YD model were

constructed to identify Cluster_Fruits and Single_Fruits, respectively, realizing

the task of automatically identifying the number of targets directly from images.

Finally, according to the sample data collected from real orchards, a regression

analysis was carried out on the target quantity detected by themodel and the real

target quantity, and estimation models were constructed for determining the

Cluster_Fruits on a single longan tree and the Single_Fruits on a single

Cluster_Fruit. Then, an error analysis was conducted on the data obtained

from the manual counting process and the estimation model, and the average

error rate regarding the number of Cluster_Fruits was 2.66%, while the average

error rate regarding the number of Single_Fruits was 2.99%. The results show that

themethod proposed in this paper is effective at estimating longan yields and can

provide guidance for improving the efficiency of longan fruit harvests.

KEYWORDS

yield estimation, UAV image, convolutional neural network, image analysis,

regression analysis
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1 Introduction

Smart orchard systems can effectively evaluate the growth

conditions of fruit trees and improve the quality of fruits through

digital technology. During the fruit ripening period, accurate

statistics regarding the output of each fruit tree and the total

output of the whole orchard can not only improve the efficiency

of deploying harvesting robots and transportation robots but also

guide market pricing and upgrade the fruit yield grade, which is

conducive to the maximization of the economic benefits of orchards

(He et al., 2022). Longan is widely studied in the field of smart

orchards. At present, the yield estimation methods for longan

orchards mainly adopt manual visual investigation. This statistical

method is labor-intensive, laborious and time-consuming; is easily

influenced by the subjective factors of different investigators; and

has low accuracy and efficiency (Marani et al., 2021). Therefore, to

reduce the cost of longan orchard yield estimation and improve the

accuracy of yield estimation, it is necessary to develop a system that

can automatically estimate longan orchard yields.

Longan fruits are usually clustered and grow on the outside of

the canopy (Pham et al., 2015). The growth characteristics of fruits

and their quantitative statistical scheme are shown in Figure 1. In

the natural environment, the distribution of longan fruits is

complex, and they are easily blocked by leaves and branches,

exhibiting different postures in different growing environments.

Therefore, accurate longan fruit detection is the difficult part of

realizing automatic yield estimation, which directly affects the

accuracy and efficiency of orchard yield estimation. In recent

years, researchers in related fields have used shape matching,

color space transformation, threshold segmentation, multiscale

feature fusion, fuzzy clustering and other methods to identify,

detect and classify apples, oranges and other fruits (Jaisin et al.,

2013; Xiong et al., 2018; Zhuang et al., 2019; He et al., 2020; Lin

et al., 2020). The traditional machine learning methods used in

these studies can only be used for image processing tasks with

simple background conditions, and have poor robustness in the face

of very complex actual orchard scenes.

With the development of sensor and computer technology,

deep learning approaches have been widely developed and applied

by researchers, and deep learning exhibits an excellent learning

ability in cases involving the extraction of features from complex

images. In recent years, with the demand for intelligence in the
Abbreviations: UAV, Unmanned aerial vehicle; CNN, Convolutional neural

network; YOLO, You Only Look Once; SORT, Simple Online and Realtime

Tracking; CF-YD, Cluster_Fruit-YOLOv5s_Deepsort; SF-YD, Single_Fruit-

YOLOv7_Deepsort; RGB, Red Green Blue; ID, Identity document; IoU,

Intersection over Union; R-CNN, Recursive convolutional neural network;

SPP, Spatial Pyramid Pooling; FPN, Feature pyramid network; PAN, Path

aggregation network; NMS, Non Maximum Suppression; E-ELAN, Extended

Efficient Long-Range Attention Network; PAFPN, Path Aggregation Feature

Pyramid Network; P, Precision; R, Recall; AP, Average precision of a category;

FPS, Frames per second; TP, True positive; FP, False positive; TN, True negative;

FN, False negative; P-R, Precision-Recall; IDS, Identity Switch; MOTA, Multiple

Object Tracking Accuracy; MOTP, Multiple Object Tracking Precision.
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agricultural field, an increasing number of researchers have used

deep learning technology to process collected image data for various

tasks (Wang et al., 2019; da Silva et al., 2021; de Medeiros et al.,

2021; Zhou et al., 2022), including fruit recognition (Gao et al.,

2020; Xiong et al., 2020), classification of plants (Flores et al., 2021),

classification of pests and diseases (Anagnostis et al., 2021; Singh

et al., 2021), monitoring of crop growth state based on remote

sensing (Ma et al., 2019; Paoletti et al., 2019), nondestructive testing

and grading of fruit (Koirala et al., 2019), and animal behavior

analysis (Norouzzadeh et al., 2018). To sum up, the deep learning

model has stronger feature extraction ability, and it can effectively

solve complex nonlinear problems. Faced with the problems of

complex image backgrounds, uneven light intensities and diverse

fruit features in complex orchard scenes, some researchers have

applied deep learning technology to target detection tasks in

complex scenes, and these models have strong robustness

(Alpaydin, 2016; Liang et al., 2020; Li et al., 2021; Zhong et al.,

2021; Wu et al., 2022; Tang et al., 2023).

How to quickly obtain high-definition images of orchard scenes

is a key issue for improving the efficiency of orchard yield

estimation. With the rapid development of unmanned aerial

vehicle (UAV) power systems, control systems and sensor

technology, it is possible for UAVs to carry various types of

sensors to observe the earth. In recent years, UAVs have been

equipped with various sensors and used in agriculture, including

plant growth state detection and yield estimation (Vanegas et al.,

2018; Tetila et al., 2020; Zhou et al., 2020; Feng et al., 2020a; Feng

et al., 2020b; Sumesh et al., 2021). Therefore, the researchers on our

team use an RGB camera on a UAV to plan the UAV flight path in

advance and quickly obtain high-definition image data about

the orchard.

In this study, by combining a UAV and deep learning

application technology, a fast and accurate longan yield statistics

approach is proposed. This approach will help to improve the

accuracy and efficiency of the yield statistics of each longan tree in

the modern orchard production scene and provide information for

the task assignments of fruit picking UAVs and fruit transport

aircraft. The main contributions of this research are as follows.
a. A method of collecting canopy images and videos of each

fruit tree with a UAV is proposed to accurately and

completely obtain canopy image data for each fruit tree.

b. Two datasets are set up to train and evaluate the

performance of different target detection models.

c. A scheme for counting the numbers of different targets is

proposed; this scheme includes a model based on

Cluster_Fruit-YOLOv5s_Deepsort (CF-YD) and a model

based on Single_Fruit-YOLOv7_Deepsort (SF-YD).

d. A regression analysis is carried out on the quantities

counted by the two models and their real quantities to

obtain a fitting equation.
The main contents of this paper are as follows: Section 2

introduces the materials and methods, Section 3 introduces the

model construction process and the statistical strategy for
frontiersin.org
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calculating single fruit tree yields, Section 4 introduces the model

experiment and results analysis in detail, and Section 5 summarizes

the full text.
2 Materials and methods

2.1 Overview of the fruit tree yield
estimation methods

Figure 2 shows the method of quickly and accurately calculate

the yield of each fruit tree. First, fruit tree canopy images are

collected, and the obtained images are preprocessed as the

Cluster_Fruit image dataset. Second, a two-step model is

established. The first step is to count the number of

Cluster_Fruits on a single fruit tree based on the CF-YD model,

and the second step is to count the number of Single_Fruits on each

Cluster_Fruit based on the SF-YD model. The results of each step

are combined with the corresponding fitting equation to correct the

final result.

In the two-step model of this scheme, when each Cluster_Fruit

is detected from a canopy image of fruit trees based on the CF-YD

model, each Cluster_Fruit needs to be cut out as the input image of

the statistical Single_Fruit quantity model. After using the SF-YD

model to count the number of Single_Fruits in each image cut out in

the previous step, it is necessary to calculate the yield of a single fruit

tree according to the weight of the Single_Fruit.
2.2 Sensor system and image acquisition

To build the data set, 1100 valid longan images and 16 complete

longan tree canopy videos were acquired at the Longan orchard in

Guangzhou on July 1-25, 2021, and July 1-26, 2022, during two
Frontiers in Plant Science 03
different time periods: morning (7:30–11:30) and afternoon (13:30–

18:30). Furthermore, to perform modelling and verify the accuracy

of the model, the actual numbers of Cluster_Fruits and

Single_Fruits and the quality of 16 Cluster_Fruits from 16 fruit

trees in the orchard were manually counted. A lightweight, small-

size and high-resolution RGB camera mounted on a DJI Mavic 2

Pro UAV was used to collect orchard canopy images. The camera

had 12 million pixels, the viewing angle was 85 degrees, the focal

point ranged from 0.5 m to infinity, and 120 images could be taken

in one second at the fastest speed. Figure 3 is a schematic diagram of

the image acquisition mode.

According to the planting mode of modern orchards, the

images were collected according to the following steps. ① Control

the UAV to fly around the fruit trees, and during this process, have

the RGB camera mounted on the UAV always look straight at the

tree center to collect the canopy images of the fruit trees. ② Set the

RGB image resolution to 1280×720 pixels, and automatically save

each image to the image acquisition card obtaining it. In order to

ensure the diversity of images in the data set, images were taken on

sunny and cloudy days respectively, including images of Shixia

longan and Chuliang longan. Figure 4 shows the examples of the

UAV images.
2.3 Image preprocessing

In this study, data sets are prepared for the two-step model.

First, aiming at the images collected by the camera on the UAV,

image cropping and size normalization are performed, and the

bounding box of each Cluster_Fruit in each sample is manually

marked, forming a Cluster_Fruit data set for the CF-YD model.

Second, the trained CF-YDmodel is used to detect Cluster_Fruits in

the original RGB images, each Cluster_Fruit image is cut out

according to the output coordinate information, and the
FIGURE 1

Growth characteristics of longan fruits and their quantitative statistical scheme.
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Single_Fruit positions in each image are manually marked to form a

Single_Fruit data set for the SF-YD model. Figure 5 shows the

whole process.

2.3.1 Construction of the Cluster_Fruit image
data set

During the process of constructing the Cluster_Fruit image

dataset, firstly, to ensure the diversity of the training samples, a self-

programmed random cropping algorithm is used to amplify the

Cluster_Fruit images. After the initial longan dataset is expanded,

1100 longan images are obtained. Then, the image size is

normalized to 1280×1280 pixels. Finally, the 1100 images are

manually annotated following the guidelines of the Pascal VOC

2010 reference challenge. The labelling information mainly includes

the size of each image, the target category and the specific position

coordinate information of the target area.

2.3.2 Construction of the Single_Fruit
image dataset

As the SF-YD model adopted in this study first normalizes the

input images of any size to 640×640 pixels, the trained CF-YD

model is used to detect each image in the Cluster_Fruit data set, and

the coordinate information of each Cluster_Fruit image is obtained

and directly cut out from the original image. After screening, 1100

Cluster_Fruit images are selected. LableImg software is used to
Frontiers in Plant Science 04
manually mark the positions of Single_Fruits in each image to form

a Single_Fruit data set for training and testing the SF-YD model.

In summary, the Cluster_Fruit data set and Single_Fruit data set

are constructed by the above two methods. The images in both data

sets are divided into a training set, verification set, and test set

according to a ratio of 8:1:1. Table 1 presents the images and the

annotation information.
3 Model construction and statistical
strategy for fruit tree yield estimation

In this section, according to the video image data of the canopy

of a single fruit tree collected by the RGB camera on the UAV, a

yield prediction scheme for a single fruit tree is proposed. First,

according to the growth characteristics of Cluster_Fruit, the

improved YOLOv5s target detection algorithm and Deepsort

target tracking algorithm are incorporated into the CF-YD model,

and the flow chart for quickly and accurately obtaining the

numerical and location information of Cluster_Fruits from the

video image of a single fruit tree is determined. Then, according

to the growth characteristics of Single_Fruits, the YOLOv7 target

detection algorithm and Deepsort target tracking algorithm are

merged into the SF-YD model, and the flow chart for quickly

obtaining the number of Single_Fruits from a video image of
RGB image

Input

CF-YOLOv5s-DeepSort model

w
w

Output

RGB camera

Crop the image

DJI Mavic 2 Pro UAV

5
4

1
32

Fitting equation-1 prediction results

Cluster-Fruit count results

1
2 3

4
5

SF-YOLOv7-DeepSort model

ww

InputOutput
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prediction 

results

Single-Fruit count results Cluster-Fruit images
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informationFruit tree location information
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UAV flight path
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FIGURE 2

Solution for longan fruit tree yield statistics.
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Cluster_Fruit is worked out. Finally, according to the prediction

results regarding the quantities of Cluster_Fruits and Single_Fruits,

a strategy for counting the output of a single fruit tree is proposed.
3.1 Deepsort algorithm

The Deepsort algorithm (Wojke et al., 2017) is an algorithm

with a multitarget tracking function, which is improved on the basis

of the SORT algorithm (Bewley et al., 2016). Compared with the

SORT algorithm, the Deepsort algorithm improves the content
Frontiers in Plant Science 05
matching process to avoid ignoring multitarget ID transformations,

uses appearance information to curb the frequency of target ID

transformations, and adds a simple convolutional neural network

(CNN) model to extract the appearance features of detected targets

(expressed by low-dimensional vectors). The core of the Deepsort

algorithm consists of prediction, observation and updating. The

specific flow of the Deeppart algorithm is as follows. ① The target

information predicted by You Only Look Once (YOLO) is input

into the Deeppart algorithm as the observed value. The Kalman

filter first judges whether a track is present, and if one is, it predicts

the prior probability of the target information, then carries out
85

A (Schematic diagram of the flight path when the UAV acquired the images) B (Camera view of the UAV)

FIGURE 3

Schematic diagram of the image acquisition mode.
A B

C D

FIGURE 4

Examples of the UAV images.
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cascade matching and IoU matching in the matching module, and

finally obtains the matching success list. ② In the Kalman updating

module, a posteriori prediction is performed on the successfully

matched target to obtain the corrected target coordinates, and

parameters such as the Kalman gain are updated. ③ The above

operations are repeated until all the videos are processed.
3.2 CF-YD model for Cluster_Fruit statistics

The clusters of longan fruits are usually distributed in the canopies

of fruit trees in disordered arrangements, and their sizes become very

different as the distance from the camera increases. When quickly and

accurately counting the number and locations of longan Cluster_Fruits

from the canopy images of fruit trees, it is necessary to overcome the

problem that target scale changes greatly affect the resulting detection

accuracy. The most commonly used target detection algorithms are the

R-CNN series (Girshick et al., 2015a; Girshick, 2015b; Ren et al., 2017)

and YOLO series (Redmon et al., 2016; Redmon & Farhadi, 2018;

Bochkovskiy et al., 2020) models. R-CNN series algorithms, also

known as target detection algorithms based on candidate areas, first

generate candidate areas that may contain objects and then further

classify and calibrate the candidate areas to obtain the final detection

results. During the training process, YOLO series algorithms can pay

more attention to the global information and the whole image in target

detection. The core idea of YOLO is to use the whole picture as the

input of the network and directly return to the position and category of

the bounding box at the output.

Compared with the classic YOLOv3 algorithm, the data

enhancement step of the YOLOv5 detection algorithm uses
Frontiers in Plant Science 06
Mosaic to expand the input dataset, and it can also perform

operations such as flipping, brightness adjustment and clipping.

For a sample set with less data, the data can be effectively expanded.

Four versions of YOLOv5 are available, namely, YOLOv5s,

YOLOv5m, YOLOv5l and YOLOv5x, among which YOLOv5s is

the network with the smallest depth and the smallest characteristic

map width in this series of detection networks.

YOLOv5s mainly consists of three parts: a backbone, a neck and

an output. The backbone is the basic feature extraction layer, which

is used to extract feature information from images. It includes four

modules: Focus, CBH, CSP1-x and spatial pyramid pooling (SPP)

modules (He et al., 2015). The neck is a feature fusion layer whose

function is to fuse image information with different scales to obtain

better detection results. It uses the rectified linear unit (ReLU)

activation function and adopts a feature pyramid network (FPN)

(Lin et al., 2017) + PAN (Liu et al., 2018) network structure. The

output is the output layer, whose function is to output the predicted

target information, in which nonmaximum suppression (NMS) is

performed on the last detection frame of the target to obtain the

optimal target frame; three different detection scales (20×20, 40×40,

80×80) are provided, which can predict longan Cluster_Fruits with

different sizes. In the early stage, our team improves the YOLOv5s

model for the Cluster_Fruit detection task and improves the

accuracy of the model in the target detection task.

In this paper, according to the growth characteristics of

Cluster_Fruit, the improved YOLOv5s target detection algorithm

(Li et al., 2022) and Deepsort target tracking algorithm are

incorporated into the CF-YD model. Figure 6A shows the flow

chart for the numerical Cluster_Fruit statistics in a single fruit tree.

First, after the complete video data of a single fruit tree are input
Image cropping

Size normalization

RGB image

Cluster_Fruit annotation

The Cluster_Fruit data set

Pre training CF-YD model

Trained CF-YD model

Training

Single_Fruit annotation

Crop the image

The Cluster_Fruit image

The Single_Fruit data set

Input

LabelImg

LabelImg

Input

FIGURE 5

Diagram of the whole process.
TABLE 1 Details of the Cluster_Fruit and Single_Fruit data sets.

Data set
Cluster_Fruit data set Single_Fruit data set

Images Cluster_Fruit Images Single_Fruit

Full data set 1100 11239 1100 24045

Training data set 880 8898 880 19393

Validation data set 110 1205 110 2285

Test data set 110 1136 110 2367
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into the YOLOv5s algorithm, the YOLOv5s algorithm detects

multiple targets in each frame and inputs the position

information obtained from multiple Cluster_Fruits into the

Deepsort algorithm to assign ID numbers. Then, the correlation

filtering algorithm is used to compare whether anchor frames with

the same size are present in the front and back frames (a target with

the same anchor frame size continues to use the original number

and assigns a new ID number to the new target). Finally, the

maximum ID number is output, and the value of this number is

used as the number of predicted Cluster_Fruits in the fruit

tree canopy.
3.3 SF-YD model for Single_Fruit statistics

The Single_Fruits of longan are usually distributed in

Cluster_Fruits in a disorder manner and occupy very small areas

in the canopy images of fruit trees, so it is difficult to accurately

count the number of Single_Fruits in each Cluster_Fruit directly

from the canopies of fruit trees. In this study, the latest YOLOv7

algorithm (Wang et al., 2022), which has a higher detection

accuracy and a faster detection speed than other algorithms in the

series, is adopted to realize the Single_Fruit detection task. The

YOLOv7 algorithm adopts strategies such as the extended efficient

long-range attention network (E-ELAN), model scaling based on

concatenation-based models (Wang et al., 2021), and convolutional

reparameterization (Ding et al., 2021) and achieves a very good

balance between detection efficiency and accuracy.

The YOLOv7 network mainly includes four parts: an input, a

backbone, a head and a prediction module. The input module

normalizes the input image of any size to the input pixel size set by

the backbone network. The backbone module consists of several

BConv layers, E-ELAN layers and MPConv layers. The BConv layer

consists of a convolution layer, a batch normalization layer and a

LeakyReLU activation function (Jiang & Cheng, 2019), which is
Frontiers in Plant Science 07
used to extract image features with different scales. The E-ELAN

layer keeps the original ELAN design framework and improves the

learning ability of the network without destroying the original

gradient path by guiding the computing blocks of different feature

groups to learn more diverse features. On the basis of the BConv

layer, the MPConv layer adds an Maxpool layer to form two

branches. The upper branch cuts the image length and width by

half through Maxpool and the image channel by half through the

BConv layer. In the lower branch, the image channel is halved by

the first BConv layer, and the image length and width are halved by

the second BConv layer. Finally, the features extracted by the upper

and lower branches are fused by the Cat operation, which improves

the feature extraction ability of the network. The head module is

composed of a path aggregation FPN (PAFPN) (Ge et al., 2021)

structure. By introducing the bottom-up path, the bottom-up

information can be transmitted to the higher level more easily,

thus realizing the efficient integration of features at different levels.

The prediction module adjusts the number of image channels for

three features of the PAFPN output with different scale, such as P3,

P4 and P5, through the REPVGG block structure and finally uses a

1×1 convolution to predict the confidence, category and

anchor frame.

According to the growth characteristics of Single_Fruits, the

YOLOv7 target detection algorithm and Deepsort target tracking

algorithm are incorporated into the SF-YD model. Figure 6B shows

the flow chart of the numerical Single_Fruit statistics in a

Cluster_Fruit. First, each Cluster_Fruit with an ID number

assigned by the CF-YD model is continuously cut out from the

original video image to form Cluster_Fruit video data with ID

numbers. The YOLOv7 algorithm detects multiple targets in each

frame, inputs the obtained position information of multiple

Single_Fruits into the Deepsort algorithm to assign ID numbers,

then compares whether anchor frames of the same size are present

in the previous and subsequent frames by using the correlation

filtering algorithm (targets with the same anchor frame size
An image in UAV video Detection resultsImproved YOLOv5s model Assign ID number and

location information

Input

Cropped images

Output Deepsort 

algorithm
Input Output

Deepsort 

algorithm
InputOutput YOLOv7 

algorithm
InputOutput

A

B

Detection results Cropped an imageAssign ID number

CF-YD model

SF-YD model

FIGURE 6

Flow chart of Cluster_Fruits and Single_Fruits quantity prediction. (A) The flow chart of Single_Fruit quantity statistics in a Cluster_Fruit, (B) The flow
chart of Cluster_Fruit quantity statistics in a single fruit tree.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1132909
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Li et al. 10.3389/fpls.2023.1132909
continue to use the original number, and new ID numbers are

assigned to new targets), and finally outputs the maximum ID

number and takes the value of this number as the number of

Single_Fruits in each Cluster_Fruit.
3.4 Statistical strategy for a single fruit
tree yield

In this section, according to the prediction results regarding the

numbers of Cluster_Fruits and Single_Fruits in the previous

two sections, the specific steps of longan yield estimation

are formulated:
Fron
(1) Step 1: The CF-YD model is used to quickly obtain the

number NCF1 of Cluster_Fruits from the canopy images of

fruit trees, and the total number NCF2 of Cluster_Fruits is

predicted by establishing a regression analysis model with

the number of Cluster_Fruits counted in the real orchard.

(2) Step 2: The location information of theNCF1 Cluster_Fruits

obtained in the previous step is cut from the original image

in turn and input into the SF-YD model to obtain the total

number NSF1 of Single_Fruits. The total number NSF2 of

Single_Fruits is predicted by establishing a regression

analysis model with the number of Single_Fruits in the

NCF1 Cluster_Fruit statistics in the actual orchard.

(3) Step 3: According to the total number NSF2 of Single_Fruits

in NCF1 Cluster_Fruits, the average number AVEnSF of

Single_Fruits in a single cluster can be calculated. Ten

Cluster_Fruits are randomly selected to weigh and count

the number of Single_Fruits and calculate the average

quality AVEmSF of Single_Fruits.

(4) Step 4: The formula for calculating the yield TQ of a single

fruit tree is:
TQ = ðNSF2 + ðNCF2 − NCF1)*AVEnSF)*  AVEmSF (1)
4 Model experiment and
results analysis

4.1 Model training and parameter design

The training and testing processes of the CF-YD and SF-YD

models are implemented on a workstation with the Ubuntu 18.04

LTS operating system. The main hardware devices of the

workstation are as follows: GPU: NVIDIA GTX3060 (configured

with CUDA 10.1 and cuDNN 7.1); processor: 11th Gen Intel (R)

Core (TM) i7-11800H; RAM: NVIDIA 16G; and hard disk:

Samsung 1T. On the PyTorch deep learning framework, a CNN

model is built with the Python programming language.

The image size of the CF-YD model training data is set to

1280×1280 pixels. In terms of parameter settings, the intersection

over union (IoU) is set to 0.5, the initial learning rate is 1e-4, and the
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learning rate at the end of training is set to 1e-5. The dataset is split

at a 90-10 training-verification ratio, and a total of 500 epochs of

iterative training are conducted. During the training process, after

conducting a series of convolution and pooling operations with the

CF-YD model, the input image uses the anchor box in the feature

map layer to extract a series of features. In the feature layer, each cell

is mapped to the original image, the premarked anchor box is

found, and then the loss value between this anchor box and the

ground truth is calculated. After training, the CF-YD model obtains

a series of model parameters to fit the real border with the

anchor box.

During the training process of the SF-YD model, input images

of any size are normalized to 640×640 pixels through the input

module. The training process of the model is divided into the Freeze

phase and UnFreeze phase, the optimizer is set to stochastic

gradient descent (SGD), the initial learning rate is 0.01, the

momentum is 0.9, and the weight decay is set to 5e-4. The cosine

annealing algorithm is used to adjust the learning rate, and the

minimum learning rate is 1e-4. The training and verification steps

alternate. During the Freeze phase, the training duration is 50

epochs, each epoch has 220 iterations in the training phase and 28

iterations in the verification phase, and the batch size is 4. During

the UnFreeze phase, the training duration is 250 epochs, with 440

iterations in the training phase and 55 iterations in the verification

phase of each epoch, and the batch size is 2. After training, the SF-

YD model obtains a series of model parameters to fit the real border

with the anchor box.

During the training and testing processes of the CF-YD and SF-

YD models, it is necessary to generate a series of anchor boxes

(candidate areas) in the given image according to certain rules. In

this study, k-means clustering and a genetic algorithm are used to

obtain anchor boxes. Because the prediction layer of the YOLO

network contains three scales of information (corresponding to

three receptive fields), each scale contains three anchors. Therefore,

the YOLO network needs nine anchor scales; that is, the sizes of all

the target bounding boxes in the dataset are clustered into nine

categories. Through the analysis of the Cluster_Fruit and

Single_Fruit datasets, the k-means clustering results of all the

target bounding boxes in the two datasets are obtained. Each

point in Figure 7A corresponds to a target bounding box in the

Cluster_Fruit dataset. According to the overall size characteristics of

the target bounding boxes, nine types of anchor boxes that are

suitable for training and testing the CF-YDmodel are determined as

[16,16, 21,28, 28,23, 30,39, 41,33, 46,52, 67,77, 116,135, 247,291].

Each point in Figure 7B corresponds to a target bounding box in the

Single_Fruit dataset. According to the overall size characteristics of

the target bounding box, nine types of anchor boxes that are suitable

for training and testing the SF-YD model are determined as [45,43,

61,36, 61,53, 78,44, 70,66, 93,54, 87,78, 131,74, 110,104]. At the

same time, it can be seen from the figure that the more points there

are with the same color, the more targets with this cluster size, and

the points with different colors represent targets with different

cluster sizes. In other words, this figure can reflect the

complicated situation regarding the targets to be detected in an

orchard scene to some extent.
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4.2 Model evaluation indicators

4.2.1 Evaluation indices for the object
detection algorithm

In this study, P, R, F1 score, AP, and FPS were used to evaluate

the performance of two target detection models. The calculation

methods for calculating the P, R, F1 score and AP here are shown in

formulas (2), (3), (4) and (5).

P =
TP

TP + FP
(2)

R =
TP

TP + FN
(3)

F1 score =
2*P*R
P + R

(4)

AP =
Z 1

0
P ðR)dR (5)

In these formulas, TP represents true cases, FP represents false-

positive cases, TN represents true-negative cases, and FN represents

false-negative cases.

4.2.2 Evaluation indices for the
Deepsort algorithm

This study selects identity switches (IDSs), multiple-object

tracking accuracy (MOTA) and multiple-object tracking precision
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(MOTP) to evaluate the effectiveness of the multitarget tracking

algorithm. IDS is the number of times the tracking target ID

changes. The smaller its value is, the better the tracking stability.

MOTA considers false alarms and IDSs simultaneously and

measures the performance of the tracking algorithm in terms of

detecting targets and keeping track of them, which has nothing to

do with target detection accuracy. The larger its value is, the better

the performance of the algorithm. MOTP is used to quantify the

positioning accuracy of the detector. The larger its value is, the

higher the accuracy of the detector.
4.3 Results and discussion of the object
detection and counting tasks

4.3.1 Performance evaluation results of
different models

To fully evaluate the performance of the CF-YD model in

detecting Cluster_Fruits and the SF-YD model in detecting

Single_Fruits, first, the CF-YD and SF-YD models are trained

according to the training parameters set in Section 4.1, and the

weight file with the best training effect in each model is used as the

weight file for testing the model performance. Then, the CF-YDmodel

for the Cluster_Fruit test set and the SF-YDmodel for the Single_Fruit

test set comprehensively evaluated from the aspects of P, R, AP, FPS,

F1 score, etc., and the obtained results are shown in Table 2.

The P-R curve and F1 score changes exhibited by the CF-YD

model on the Cluster_Fruit test dataset are shown in Figures 8A, B,
TABLE 2 Evaluation index results obtained on the test dataset under different models.

Models/Evaluation index P (%) R (%) AP (%) F1 score FPS

CF-YD model (Cluster_Fruit test data set) 83.50 85.70 82.40 0.85 56.21

SF-YD model (Single_Fruit test data set) 93.23 91.97 97.12 0.93 98.35
(K-means clustering result diagram of object

bounding box in Cluster-Fruit data set) 

(K-means clustering result diagram of object

bounding box in Single-Fruit data set) 

BA

FIGURE 7

Clustering results of the target bounding boxes in the two datasets.
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respectively. The area enclosed by the P-R curve and the two

coordinate axes in Figure 8A corresponds to the AP value of

Cluster_Fruit detection. As shown in Table 2, the AP value of the

CF-YD model for Cluster_Fruit detection is 82.4% on the test set,

and the detection accuracy is high. However, some Cluster_Fruits

are still blocked by other Cluster_Fruits or branches and leaves and

cannot be accurately detected. The F1 score in Figure 8B first

changes slightly with increasing confidence value and then suddenly

decreases sharply when the confidence value is greater than 0.7.

Therefore, it is usually sufficient to set this parameter to 0.5 in the

model training stage. The FPS value is the number of images that

the model can detect per second, and the detection time of each

image is only 18 ms. According to the clustering results of the target

sizes in the Cluster_Fruit dataset, the Cluster_Fruit size exhibits the

diversity characteristic. The above results show that the CF-YD

model has good detection performance for multiscale targets.

The changes in the P-R curve and F1 score of the SF-YDmodel on

the Single_Fruit test dataset are shown in Figures 8C, D, respectively.

The area enclosed by the P-R curve and the two coordinate axes in
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Figure 8C basically covers the whole coordinate system. As shown in

Table 2, the AP value of the SF-YD model on the test set for

Single_Fruit is 97.12%, demonstrating high detection accuracy, and

only a few Single_Fruits are undetected. The F1 score changes slightly

with increasing confidence and suddenly decreases sharply when the

confidence is greater than 0.85. Therefore, it is usually sufficient to set

this parameter to 0.5 in the model training stage. The FPS value is the

number of images that the model can detect per second, and the

detection time of each image is only 10 ms. According to the clustering

results of the target sizes in the Single_Fruit dataset, the sizes of

Single_Fruits are generally small. The above results show that the SF-

YD model also has good detection performance for small targets.

4.3.2 Detection effects of different models in
real scenes

Many varieties of longan are available, and new varieties have

appeared in recent years. To further evaluate the performance of the

CF-YD and SF-YD models in detecting longan Cluster_Fruits and

Single_Fruits in real and complicated mountain orchard
A (The P-R curves of CF-YD model) B (The F1 score of CF-YD model)

Cluster-Fruit

All classes 0.85 at 0.366
Cluster-Fruit 0.824

All classes 0.824 mAP@0.5

C  (The P-R curves of SF-YD model) D  (The F1 score of SF-YD model)

FIGURE 8

P-R curves and F1 scores of different detection methods.
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environments, this section selects images of longan orchards with

different varieties (Chuliang longan and Shixia longan), different

illumination conditions (Sunny day and Cloudy day), different

scales and different densities, tests the trained CF-YD and SF-YD

models, and obtains the detection results of each model.

Figures 9A, B are the test results obtained by the CF-YD model

for Chuliang longan in different scenes of real orchards. Figures 9C,

D are the test results obtained by the CF-YD model for Shixia

longan in different scenes of real orchards. From the detection

results, it can be seen that regardless of the longan variety and in

sunny day or cloudy day, Cluster_Fruit is accurately detected for

large-scale or small-scale targets. The above detection results show

that the CF-YDmodel has good feature extraction performance, has

strong generalization to different varieties of longan in real orchard

environments and is not easily disturbed by uneven light. It also has

a good detection effect on small targets, so it is suitable for target

detection in longan orchards.

To evaluate the detection effect of the SF-YD model on different

longan varieties in a real orchard scene, the CF-YD model is first

used to identify Cluster_Fruit in a real orchard scene and cut out the

video data to form Single_Fruits, which are then input into the SF-

YD model for Single_Fruit detection. Figures 10A, B are the test

results obtained by the SF-YD model for Chuliang longan and

Shixia longan, respectively, in different scenes of real orchards. The

fruit colors and shapes of the two longan species are quite different.

They exhibit different glosses at different distances and under

different light. It can be seen from the detection results that

Single_Fruits of different varieties are accurately detected in,

different weather conditions, with different scales and in scenes

with different densities. The above detection results show that the
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SF-YD model has good feature extraction performance, strong

generalization for different varieties of longan Single_Fruits in a

real orchard environment, and a good detection effect for multiscale

targets, so it is suitable for small target detection in longan orchards.

4.3.3 Counting results of different models in
real scenes

To evaluate the tracking performance of the CF-YD model on

Cluster_Fruit and the SF-YD model on Single_Fruit, a video image

of a fruit tree canopy is randomly selected to test the CF-YD model,

and a video image of a Cluster_Fruit is selected to test the SF-YD

model. The models are comprehensively evaluated in terms of the

IDS, MOTA, MOTP and other metrics, and the results obtained are

shown in Table 3.

Regarding the IDS metric, the numbers of target ID changes

observed during the process of tracking the target in the video

images with the two models are very small at 5 and 2, respectively.

The MOTA andMOTP values of the two models are basically above

90%, which shows that both tracking algorithms can track targets

stably and accurately.

To further verify the performance of the CF-YD and SF-YD

models in counting the numbers of longan Cluster_Fruits and

Single_Fruits in the real and complicated mountain orchard

environment, this section selects images of longan orchards with

different varieties (Chuliang longan and Shixia longan) and

different lighting scenes, tests the trained CF-YD and SF-YD

models, and obtains the counting results of each model.

Figures 11A, B are the Cluster_Fruit counting results obtained

in different scenes of real orchards by the CF-YD model for

Chuliang longan. Figures 11C, D show the counting results
A B

C D

FIGURE 9

Cluster_Fruit detection results of the CF-YD model under different scenes.
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obtained by the CF-YD model for Shixia longan in different scenes

of real orchards. It can be seen from the counting results that

regardless of the variety and in sunny or cloudy weather,

Cluster_Fruits yield accurate counting results for large-scale or

small-scale targets. The above results show that the CF-YD model

has good target tracking performance. It has strong generalization

for different varieties of longan in real orchard environments and is

not easily disturbed by uneven lighting. It also has a good tracking

effect for multiple targets, so it is suitable for target counting tasks in

longan orchards.

To verify that the SF-YD model can count different longan

varieties in real orchard scenes, the Single_Fruit video data are input

into the SF-YDmodel to count Single_Fruits. Figures 12A, B are the

counting results of the SF-YD model for Chuliang longan and

Shixia longan, respectively, in different scenes of real orchards. It

can be seen from the counting results diagram that the different

varieties of Single_Fruits are accurately counted in different weather

conditions. The above detection results show that the SF-YD model

has a good target tracking performance, strong generalization for

different varieties of longan Single_Fruit in a real orchard

environment, and a good tracking effect for multiscale targets, so

it is suitable for counting small targets in longan orchards.
4.4 The models for estimating the numbers
of Cluster_Fruits and Single_Fruits

To accurately obtain the yield of a single longan tree, it is

necessary to modify the numbers of Cluster_Fruits and

Single_Fruits identified by the two models. First, 10 longan trees of

different ages are randomly selected from the longan orchard, and the

true number of Cluster_Fruits on each longan tree and the true

numbers of Single_Fruits on the randomly selected 10 Cluster_Fruits

fruits are manually counted. Then, the canopy video images of these
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10 longan trees are captured by UAVs, and the number of

Cluster_Fruits on each longan tree and the numbers of

Single_Fruits on the 10 randomly selected Cluster_Fruits are

identified by the method described in the previous section. Finally,

the number of artificial statistics and the number identified by the

model are fitted by an equation, and a number estimation model for

the Cluster_Fruits on a single longan tree and a number estimation

model for the Single_Fruits on a single Cluster_Fruit are constructed.

Table 4 counts the quantity information of the manual counting

approach and two identification models. The actual value of

Cluster_Fruits on 10 longan trees ranges from 91 to 312, and the

actual value of Single_Fruits on ten Cluster_Fruits ranges from 18

to 32. Because the 10 longan trees and 10 Cluster_Fruits are

randomly selected, the numbers of fruits will be different in

different runs. At the same time, during the process of growth,

the fruit of longan trees is affected by external conditions such as

nutritional components and light conditions, so the yield of each

tree is different. Exponential fitting, linear fitting, logarithmic

fitting, binomial fitting, power fitting, etc., are performed for

determining the numbers identified by the models and the actual

number of manual statistics in Table 4. After performing a

comprehensive analysis and comparing the fitting results, as

shown in Figure 13, the best fitting method for the number of

Cluster_Fruits on a single fruit tree is binomial fitting. The fitting

equation is y = 0.0023x2+0.7155x+19.562 , and the determination

coefficient R2 is 0.9970. The best fitting method for the number of

Single_Fruits on a single cluster is exponential fitting, the fitting

equation is y = 7.822e0.0565x , and the determination coefficient R2 is

0.9953. Strong correlation is observed between the two samples.
4.5 Experimental results of Cluster_Fruits
and Single_Fruits in real orchard scenes

To further verify the quantity estimation model in Section 4.4,

six other longan trees are randomly selected from real orchards, and

the true number of Cluster_Fruits on each longan tree and the true

numbers of Single_Fruits on the 6 randomly selected Cluster_Fruits

are obtained by manual counting. Then, the CF-YD and SF-YD

models are used to obtain the identification numbers of the

Cluster_Fruits and Single_Fruits from the video data, respectively.

By using the fitting equation obtained in Section 4.4, the identified
A (Detection results of Chuliang longan under different scenes) B  (Detection results of Shixia longan under different scenes)

FIGURE 10

Single_Fruit detection results of the SF-YD model under different scenes.
TABLE 3 Evaluation index results obtained by different models.

Models/Evaluation index IDS MOTA (%) MOTP (%)

CF-YD model (Cluster_Fruit) 5 95.30 92.60

SF-YD model (Single_Fruit) 2 97.20 94.70
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numbers are corrected, and the predicted numbers of

Cluster_Fruits and Single_Fruits are obtained. Finally, the error

between the real quantity and the predicted quantity is analyzed.

The error in this study is the absolute value of the predicted value

minus the actual value, and the error rate is equal to the percentage

value obtained by dividing this error by the actual value. The

calculation formula for the error rate is:

Error rate =
Predicted value − Actual value

Actual value

����
����� 100% (6)

The actual numbers, identified numbers and predicted numbers

of Cluster_Fruits on six longan trees and Single_Fruits on 6

Cluster_Fruits are counted in Figures 14A, B, respectively, and

their error rate data are counted in Figures 14C, D. It can be seen
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from the data in Figures 14A, B that the number of Cluster_Fruits

identified by the CF-YD model and the number of Single_Fruits

identified by the SF-YD model are corrected by the fitting equation

obtained in Section 4.4, and the predicted numbers are very close to

the actual numbers. According to the data in Figure 14C, the

average error rate of Cluster_Fruit of 6 longan trees is 2.66%.

According to the data in Figure 14D, the average error rate for

the Single_Fruits of 6 Cluster_Fruits is 2.99%. It can be seen from

the data in Figures 14C, D that the prediction error rates of

Cluster_Fruits and Single_Fruits are below 5%.

According to the statistical results of Section 4.3, Section 4.4 and

this section, there are errors between the real value and the

identified value, which are mainly caused by two reasons. ① The

two models have certain accuracy levels when detecting targets. ②
A B

C D

FIGURE 11

Cluster_Fruit counting results of the CF-YD model under different scenes.
A (Count results of Chuliang longan under different scenes) B  (Count results of Shixi along an under different scenes)

FIGURE 12

Single_Fruit counting results of the SF-YD model under different scenes.
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The real value of Cluster_Fruits and Single_Fruits are obtained by

manual statistics, which is a multiangle and full-range process.

However, the UAV collects video images of the fruit tree canopy

from the front angle and can only obtain Cluster_Fruit and

Single_Fruit images outside the tree canopy.

According to the statistics of horticulture experts, the average

fruit weight of the Chuliang longan variety is 13 g and that of the

Shixia longan variety is 8 g. After using the method proposed in this

paper to obtain the number of Cluster_Fruits on a single fruit tree

and the number of Single_Fruits on each Cluster_Fruit, the yield

data of a single longan tree can be obtained by using the yield

estimation strategy for a single fruit tree in Section 3.4.
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Conclusion

In a complex longan orchard, fruit grow in clusters, and the

shapes of Cluster_Fruits vary widely. It is difficult to estimate the

yield of a single fruit tree simply by counting the number of

Cluster_Fruits. Although the shapes Single_Fruits are relatively

consistent, their shapes are small, so it is difficult to accurately

count the number Single_Fruits directly by image analysis.

Therefore, the yield estimation strategy based on UAV images

proposed in this paper is of great significance and can improve

the accuracy and efficiency of the yield statistics obtained for each

fruit tree.
TABLE 4 Sample number information of the two identification models and manual statistics.

Class Identified value
(Cluster_Fruit)

Actual value
(Cluster_Fruit) Class Identified value

(Single_Fruit)
Actual value
(Single_Fruit)

1 275 299 1 26 34

2 283 312 2 21 26

3 261 279 3 19 23

4 213 241 4 23 29

5 195 212 5 20 24

6 153 179 6 24 30

7 182 198 7 22 27

8 93 116 8 17 20

9 113 129 9 16 20

10 77 91 10 14 17
A       (The fitting results of the actual and identified

                             Cluster-Fruit number)

B       (The fitting results of the actual and identified 

Single-Fruit number)

y = 7.822e0.0565x

R² = 0.9953
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FIGURE 13

The fitting results of the actual and identified numbers of fruits.
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In this study, a method based on UAV images and computer

vision technology is proposed to estimate the yield of a single

longan fruit tree. First, a UAV is used to collect video images of the

fruit tree canopy, and after preprocessing the images, two datasets

are constructed, and the targets of the datasets are manually

marked. Then, the CF-YD and SF-YD models are constructed to

identify Cluster_Fruits and Single_Fruits, respectively, which

realizes the task of automatically identifying the number of

targets directly from each image. Finally, to further predict the

yield of a single longan fruit tree accurately, two models for

estimating the numbers of Cluster_Fruits and Single_Fruits are

proposed, and two fitting equations are established for determining

the actual number and predicted number of Cluster_Fruits on a

single fruit tree and the number of Single_Fruits on a single

Cluster_Fruit, and the models are tested and verified in real

orchards. This study can quickly and accurately estimate the yield

of a single fruit tree, which can not only provide guidance for the

production management and market pricing of longan orchards but

also improve the efficiency of deploying harvesting robots and

transportation robots, which is conducive to maximizing the

economic benefits of orchards. The research in this paper can

apply UAV image migration to the harvests of clustered fruits

such as grapes and Cerasus pseudocerasus and promote the

development of smart agriculture and unmanned farms.

Since most longan orchards are currently unstructured, this work

still has some limitations, and the target detection and tracking

abilities of the proposed method need to be further improved. In

this study, the UAV mainly collects canopy images of longan fruit

trees from the perspective of elevation but cannot obtain all-around

images inside the canopies of fruit trees. Therefore, there is an error

between the collected data and the real values. In future research, we
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will first consider the use of UAV to automatically plan flight routes

in order to obtain orchard canopy images more easily. Secondly, an

image analysis processor will be built on the UAV to calculate the

output of fruit trees in real time. Finally, the result data of artificial

statistics will continue to be added to further improve the accuracy of

the fitting equation prediction quantity. In addition, the research

objects will be expanded to more longan varieties in the future. In

future work, we will continue to optimize the details of the solution to

promote the development of smart agriculture.
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FIGURE 14

Statistical information of Cluster_Fruits and Single_Fruits. (A) The actual numbers, identified numbers and predicted numbers of Cluster_Fruits on six
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