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Editorial on the Research Topic

Adaptation mechanisms of grass and forage plants to
stressful environments
Environments determine plant distribution and productivity in the world (Bailey-Serres

et al., 2019). In nature, plants are constantly challenged by stressful environments, such as

drought, heat, cold, nutrient deficiency, flooding, salinity and toxic heavy metals in the soil,

insufficient or excessive light, and pathogens and pests, etc. (Zhang et al., 2022). These abiotic

stresses limit the world-wide utilization of arable lands and negatively affect crop productivity

(Bailey-Serres et al., 2019). There are growing concerns about continued global warming and

increasing extreme weather events, which subsequently lead to frequent natural disasters and

environmental problems for agricultural practice worldwide (Zandalinas et al., 2021; Verslues

et al., 2023). Global population rose from 5 billion inhabitants in 1990 to more than 7.5

billion presently and will rise to 9.7 billion to 10 billion by 2050 (Gupta et al., 2020). The

current pace of crop yield increase cannot meet the demand for future population (Hickey

et al., 2019). Therefore, understanding the mechanisms on how plants adapt to stressful

environments is critical for global ecological protection and food security.

Grasslands dominate terrestrial ecosystem on the earth, producing food, feed, fiber and

fuel, and serving as weather amelioration, carbon sequestration, biodiversity enhancement,

soil conservation, recreation, and the maintenance of the atmospheric composition (Bai and

Cotrufo, 2022; Strömberg and Staver, 2022). Grass and forage plants serve multiple functions

and benefits to humans and animals, such as beautifying landscapes, protecting the

environments, improving human recreational activities, and providing feed for livestock

and wild animals (Kopecký and Studer, 2014; Simeão et al., 2021) More importantly, grass

and forage plants with rich biodiversity, especially including many wild species, have evolved

multiple mechanisms to adapt to various stressful environments as described above at

physiological, biochemical, molecular, cellular, and subcellular levels, compared to crop

plants (Pardo and VanBuren, 2021; McSteen and Kellogg, 2022). Hence, it is urgently
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necessary to explore these mechanisms and the underlying strategies

that will facilitate grass and forage plant breeding and crop plant

breeding for improved stress tolerance. In this topic, recent research

advances in adaptation mechanisms of grass and forage plants to

stressful environments are presented in 40 research articles and one

review article, contributed by 273 authors. The 40 research articles

covered 23 plant genera and 30 species, 10 of which is about

Medicago, including five in Medicago sativa, three in Medicago

truncatula, one in Medicago falcate and another one in Medicago

ruthenica, indicating that alfalfa as “the king of forage plants” still

arouses the greatest concern of scientists in the field (Figure 1).
FIGURE 1

Genus distribution of 41 articles published in this topic.
Functional characterization of genes
relevant to stress tolerance

The processes of plant adaptation to stressful environments are

controlled and regulated by multiple genes (Pardo and VanBuren,

2021; Zhang et al., 2022). Functional characterization of these genes is

helpful to understand how grass and forage plants adapt to stressful

environments and selected genes can be used for breeding grass, forage

and crop plant cultivars with improved stress tolerance. Jiang et al.

characterized a novel transcriptional regulator HbERF6 that regulates

the HbCIPK2-coordinated pathway conferring salt tolerance in a

halophytic grass Hordeum brevisubulatum. Zhou et al. constructed a

high-density genetic map and localized grazing-tolerant QTLs in

Medicago falcata L. Wang et al. identified LjHDZ7 encoding a 40

HD-Zip transcription factor from Lotus japonicas and the

overexpression of LjHDZ7 increased plant salt tolerance. The

overexpression of abscisic acid-insensitive gene (ABI4) from

Medicago truncatula by Li et al. enhanced the content of endogenous

ABA in plants and improved plant cold tolerance. Guan et al. found

that Zoysia japonica ZjNOL promotes chlorophyll degradation and

senescence and negatively affects the integrity and function of

the photosystem.
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Regulations of stress tolerance
by natural metabolites or
synthetic chemicals

Numerous structurally different metabolites are produced in plants

in response to various stressful environments (Kim et al., 2007; Kim

et al., 2017). Li et al. found that caffeic acid O-methyltransferase gene

CrCOMT from Carex rigescens conferred melatonin-mediated drought

tolerance in plants. Differential responses of four white clover genotypes

to salt stress associated with root growth, endogenous polyamines

metabolism, and sodium/potassium accumulation and transport were

identified by Li et al. Yu et al. identified 90 uridine diphosphate

glycosyltransferase (UGT) members in ten evolutionary groups that

are likely related to secondary metabolites in alfalfa (Medicago sativa

L.). Li et al. found that the flexible response of a large number of genes

and metabolites endows Poa crymophila with robust cold and drought

tolerance. Yang et al. demonstrated that genotypic-specific

reprogramming and crosstalk of various plant hormones are crucial

for root growth and salt tolerance of bermudagrass (Cynodon dactylon).

Lin et al. found that Leymus chinensis adapts to degraded soil

environments by changing its metabolic pathways and root exudate

components. Overexpression of Pennisetum purpureum CCoAOMT

encoding caffeoyl-CoA O-methyltransferase by Song et al. contributes

to lignin deposition and drought tolerance by promoting the

accumulation of flavonoids in transgenic plants.
Roles of host-microbe interactions in
stress responses

Root-associated microbes can improve plant growth, and offer

the potential to increase plant tolerance to stressful environments

(Saijo and Loo, 2020; Vries et al., 2020). Mei et al. found that the

planting of alfalfa can promote the proliferation of specific beneficial

microbiota groups in the soil. Wang et al. demonstrated that Bacillus

amyloliquefaciens GB03 augmented tall fescue growth by regulating

phytohormone and nutrient homeostasis under nitrogen deficiency

condition. Hou et al. found that Bacillus atrophaeus WZYH01

and Planococcus soli WZYH02 improved salt tolerance of maize

(Zea mays L.). Zhang et al. demonstrated that inoculation of

Elymus nutans with arbuscular mycorrhizal fungi Funneliformis

mosseae improved the uptake of nutrients and induced the

resistance to grasshopper attack. Pan et al. found that root exudates

and rhizosphere soil bacterial relationships of Nitraria tangutorum

are linked to k-strategist bacterial community under salt stress. Wei

et al. demonstrated that salt-tolerant endophytic bacterium

Enterobacter ludwigii B30 enhance bermudagrass growth under salt

stress by modulating plant physiology and changing rhizosphere and

root bacterial community.
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Omics-related studies in stress
tolerance of grass and forage plants

Recent significant progress in omics techniques (transcriptomics,

genomics, proteomics, and metabolomics) have helped to deeply

understand the molecular insights into multiple stress tolerance of

plants (Singhal et al., 2021). Salt tolerance in alfalfa is associated with

regulation of ionic homeostasis, antioxidative enzymes and fatty acid

metabolism at both transcriptional and physiological level (Li et al.).

Transcriptomic profiling by Chen et al. showed the role of 24-

epibrassinolide in alleviating salt stress damage in tall fescue (Festuca

arundinacea). A transcriptome analysis by Dong et al. revealed the

molecular regulatory mechanisms of leaf senescence in Medicago

truncatula under alkaline stress. Another transcriptome analysis by

Li et al. revealed the molecular response mechanism of high-resistant

and low-resistant alfalfa varieties to Verticillium alfalfa. A combined

analysis of the transcriptome and proteome by Ming et al. revealed the

mechanisms underlying the enhanced salt tolerance by the protein

disulfide isomerase gene (ZmPDI) in Zoysia matrella [L.] Merr. An

integrated analysis of small RNAs, transcriptome and degradome

sequencing by Fan et al. revealed the drought stress network in

Agropyron mongolicum. A series integrated analyses in Medicago

truncatula in response to salt stress by An et al. revealed multiple

differentially expressed coding and non-coding RNAs, including

mRNAs, lncRNAs, circRNAs, and miRNAs, and they identified

multiple DEmRNA and ceRNA interaction pairs that function in

many pathways of salt stress responses.

Overall, the articles collected on this Research Topic represent a

substantial contribution to fill gaps in knowledge of the roles of

complex signaling transduction pathways in grass and forage plants in

response to various stressful environments. Moreover, the stress

tolerance-related genes, beneficial natural metabolites, and root-

associated microbes identified are valuable resources not only for

grass and forage plants, but also for other crops. Jiuxin and Liebao

reviewed the research progress of turfgrass resistance breeding,

analyzed the bottlenecks of turfgrass resistance breeding, and put

forward the strategies to cope with the bottlenecks, which will be

useful to guide turfgrass breeding for stress tolerance.
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