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Accurate and efficient crop classification using remotely sensed data can provide

fundamental and important information for crop yield estimation. Existing crop

classification approaches are usually designed to be strong in some specific

scenarios but not for multi-scenario crop classification. In this study, we

proposed a new deep learning approach for multi-scenario crop classification,

named Cropformer. Cropformer can extract global features and local features, to

solve the problem that current crop classification methods extract a single

feature. Specifically, Cropformer is a two-step classification approach, where

the first step is self-supervised pre-training to accumulate knowledge of crop

growth, and the second step is a fine-tuned supervised classification based on

the weights from the first step. The unlabeled time series and the labeled time

series are used as input for the first and second steps respectively. Multi-scenario

crop classification experiments including full-season crop classification, in-

season crop classification, few-sample crop classification, and transfer of

classification models were conducted in five study areas with complex crop

types and compared with several existing competitive approaches. Experimental

results showed that Cropformer can not only obtain a very significant accuracy

advantage in crop classification, but also can obtain higher accuracy with fewer

samples. Compared to other approaches, the classification performance of

Cropformer during model transfer and the efficiency of the classification were

outstanding. The results showed that Cropformer could build up a priori

knowledge using unlabeled data and learn generalized features using labeled

data, making it applicable to crop classification in multiple scenarios.
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1 Introduction

With a large amount of remotely sensed data available free,

easily, and quickly, remote sensing plays an increasingly important

role in vegetation and land cover mapping. The timely and accurate

vegetation/land cover information generated by remote sensing

images can provide important data for resource management,

ecological monitoring, agricultural production, and other fields.

For large-scale crop classification, continuous and full-coverage

satellite images provided by remote sensing are particularly

important (Chen et al., 2019; Zhang et al., 2020), and how to

extract useful information for crop classification from satellite

images has been explored. In addition, a large number of

machine learning algorithms have been introduced to obtain

large-scale crop distribution more accurately (Abdullah et al., 2019).

Full-season crop classification is the most common scenario in

which current crop classification approaches are applied, but it is

generally available at the end of the growing season. In-season crop

classification allows the distribution of crops to be obtained as early

as the growing season, which is of interest for agricultural

production guidance, but few publicly available data are available

(Xu et al., 2020). Current research has focused on classification

approaches supported by large numbers of samples (Yi et al., 2020).

Crop classification in a few-sample context is of interest in the crop

classification scenario, where obtaining highly accurate

classification results with very few samples can reduce costs. Crop

classification in regions with no samples is difficult, and it is feasible

to train a well-trained model in a sample-rich region and transfer it

to a region with no samples (Hao et al., 2020). The existing crop

classification methods all focus on one application scenario or two

application scenarios, and there is no discussion of crop

classification for multiple application scenarios, nor is there a

general crop classification model that can be used. On this basis,

developing a classification approach that can be applied to the above

classification scenario is greatly needed.

Traditional crop classifiers include Decision Trees (DT),

Random Forests (RF), and Support Vector Machines (SVM) (Low

et al., 2013; Khatami et al., 2016; Shi and Yang, 2016). The inputs to

these classifiers are usually manually designed features including

spectral values, vegetation indices, etc., and multi-temporal satellite

observations are used instead of mono-temporal imagery (Feng

et al., 2019; Eudes Gbodjo et al., 2020). Although multi-temporal

inputs are effective in improving classification performance, these

classification models often ignore temporal dependence in the time

series. Traditional methods require manual design of inputs, which

need to be designed differently for different application scenarios.

However, the manually designed features have some limitations and

are very dependent on a priori knowledge and expertise, and the

complex changes in realistic conditions affect the manually

designed features more, which makes the classification models

less robust and less generalizable.

In contrast to classical machine learning, deep learning no

longer requires manually designed features, but can learn

complex semantic features from high-dimensional data.

Currently, deep learning has been widely used in agriculture due

to its effectiveness, including crop classification (Kussul et al., 2017;
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Minh et al., 2018), pest and disease detection (Akbar et al., 2022;

Shoaib et al., 2022a; Shoaib et al., 2022b), yield estimation

(Nevavuori et al., 2019; Khaki et al., 2020), etc. The complex

network structure of deep learning requires a large amount of

labeled data for support, which creates difficulties for the

agricultural fields where deep learning is applied. When the

sample size is insufficient, it makes the model very easy to over fit

and thus the application is much less meaningful. For agriculture,

especially crop classification, the acquisition of labeled samples is

not as easy as in computer vision, and each labeled sample

acquisition is resource-intensive (Xu et al., 2020). Therefore, it is

necessary to address the problem of deep learning in crop

classification that requires the use of a large number of samples.

Also, developing a generalized deep learning model that can use

only a small number of samples and can be applied to other crop

classification scenarios is a scientific challenge.

Multi-temporal observations add a more intensive focus on the

phonological cycle of crop growth, but also bring the problem of not

keeping the same interval between observations in the study area,

which makes the acquired time series irregular. Irregular time series

are not directly usable for RF, SVM, and need to be normalized to

obtain regular time series. Standardization methods include the

rejection of invalid spectral values (Abdullah et al., 2019), missing

spectral value supplementation (Ienco et al., 2017; Kussul et al.,

2017), and spectral value resampling (Liu et al., 2020; Wang et al.,

2020), but this standardization process changes the original

sequence information as well as increase the computational effort.

Direct use of irregular time series can avoid the standardization

process, but it also causes a decrease in classification accuracy.

Dynamic Time Warping (DTW) has been used for the analysis of

irregular time series, but its traversal algorithm can significantly

increase the computational effort (Petitjean et al., 2012). The

introduction of a Gaussian process to solve irregular time

sampling and missing data is robust, but does not compare

favorably with other methods in terms of classification

performance (Constantin et al., 2021). The existing approaches

using irregular time series usually involve two aspects. On the one

hand, it starts from the time series itself, but this approach changes

the original growth pattern of the crop, making it difficult for the

model to learn the original growth pattern of the crop. On the other

hand, it starts from the method of processing time series, which can

directly use irregular time series but cannot form a complete system

and will significantly increase the workload. Therefore, current

methods either do not achieve satisfactory accuracy or do not

allow the use of end-to-end classification methods.

The unlabeled data contain rich crop growth information, and

unknown crop growth information can be used as a priori

knowledge. Pre-training as an effective training method has been

applied to land use classification to accelerate the convergence of the

training process (Zhao et al., 2017). The self-supervised pre-training

approach can improve the utilization of labeled samples in land

cover classification (Tarasiou and Zafeiriou, 2022). Unlabeled data

as pre-training data can effectively improve crop classification

accuracy and reduce the use of labeled samples (Yuan and Lin,

2021; Yuan et al., 2022). However, pre-training is still less used in

scenarios such as in-season crop classification and model transfer.
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At present, there is also no general pre-trained classification model

that can be applied to multi-scenario crop classification.

This study aims to build a deep learning classification model

that can be generalized in multi-scenario crop classification. The

potential of a pre-trained classification model based on

Transformer and Convolution structures for application in multi-

scenario crop classification is evaluated. In this paper, we proposed

a new deep learning approach, Cropformer, for multi-scenario crop

classification. Full-season crop classification, in-season crop

classification, few-sample crop classification, and model transfer

experiments were set up in five study areas rich in crop types. A

variety of best existing classifications were compared with different

indicators. Our novel contributions are threefold:
Fron
1. A deep learning structure that fuses Convolution and

Transformer is designed. The Transformer captures

features throughout the reproduction period of the crop,

while the convolution effectively utilizes information from

key growth nodes of the crop. Combining the two features

can improve the generalization ability of the model, which

can be applied to multi-scenario crop classification.

2. The introduction of time-dimensional features on the input

side of the model increases the diversity of the input.

Position encoding has been added to solve the problem of

unusable irregular time series due to missing values in

remote sensing imagery.

3. Using a two-step classification framework and pre-training

with unlabeled data increases the accumulation of crop

growth knowledge in the model and improves the

adaptability of the model in multi-scene crop classification.
The remainder of this article is organized as follows. Section II

summarizes related work on crop classification. Section III provides

a description of the remote sensing images and samples used in this

paper. Section IV explains the motivation of the proposed method

and describes the proposed network architecture. Section V reports

the experimental results. Section VI discusses the article and

presents future work. Finally, Section VII concludes this article.
2 Related work

An effective and general classification method is a prerequisite

for achieving high accuracy crop classification. The more

comprehensive the features extracted by the classification model,

the more significant the advantages of the classification results

obtained. According to the differences in feature selection strategies,

existing crop classification methods can be classified into the

following three categories.

Supervised traditional classification methods include machine

learning classification models, such as SVM, RF, and Multilayer

Perceptual (MLP). These models are sensitive to the spectral

information of crops and use vegetation indices and spectral
tiers in Plant Science 03
values as the main feature inputs. However, the sequence

relationships hidden in the time series are not exploited, so more

temporal features are incorporated in the model inputs including

the statistical value of spectral value and vegetation indices and

statistical features of vegetation indices curve (Pelletier et al., 2016;

Zhang et al., 2018; Zeng et al., 2020; Liu et al., 2021). Comparing

multiple crop vegetation index curves and obtaining key dates and

key observations from the curves to distinguish crops can be

effective in improving classification performance (Simonneaux

et al., 2008; Lebourgeois et al., 2017). Many studies have used

various functions to fit crop growth characteristics, including

wavelet transform and double logistic function, and used the

main parameters and significant stages of the functions as

features for classification (Sakamoto et al., 2006; Soudani et al.,

2008). Supervised traditional classification methods do not require a

complex feature extraction process and the time cost is substantial.

However, supervised traditional classification methods are

influenced by their inputs as well as feature extraction strategies,

and their application scenarios are single and cannot be adapted to

multi- scenario crop classification.

Supervised deep learning classification methods include two

outstanding algorithms Recurrent Neural Networks (RNN) and

Convolutional Neural Networks (CNN) that can efficiently process

sequential data (Ienco et al., 2017; Minh et al., 2018; Zhong et al.,

2019). RNN has the unique advantage of processing sequential data,

which is sensitive to temporal order (Mou and Zhu, 2018; Sharma

et al., 2018; Papadomanolaki et al., 2019). Long Short-Term

Memory (LSTM) model handles longer time series than RNN

and has proven its effectiveness in capturing features in several

classification models (Rußwurm and Korner, 2017; Zhong et al.,

2019; Rajendran et al., 2020). The advantages of LSTM for inter-

annual samples and the spatial transfer capability were also

confirmed (Xu et al., 2020). LSTM has a drawback in parallel

computation and cannot compute multiple layers at the same

time, which can significantly increase the time consumption and

is not practical for large-scale crop mapping. CNN has sparse

swapping and parameter sharing, which may be able to reduce

the time of network training (Tai et al., 2017). Different forms of

input design have an important impact on classification

performance for CNN (Marcos et al., 2018). From one-

dimensional sequences, to two-dimensional images, to three-

dimensional video streams have been used as input to CNN for

hyperspectral or multispectral data classification (Chen et al., 2014;

Kussul et al., 2017; Huang et al., 2018; Ji et al., 2018), but the

conversion of multi-temporal observations to image or video

streams increases the classification cost. In addition, a novel

network structure combining RNN and CNN has been proposed

to extract temporal features by learning temporal correlations (Mou

et al., 2018; Martinez et al., 2021), but the features extracted by RNN

and CNN are local features, which prevents the model from

learning features from a global perspective. Therefore, the current

supervised deep learning classification methods still have the

drawback of extracting a single feature. Feature extraction is
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performed only from one side of crop growth, without combining

key nodes of crop growth stages and the whole reproductive period,

and it is impossible to obtain diverse features that can characterize

crop growth patterns.

Self-Supervised deep learning classification methods have

gained much attention because of its excellent learning ability

on unlabeled data. The Transformer, consisting of multiple self-

attention structures, is currently the most commonly used SSL

structure (Vaswani et al., 2017; Devlin et al., 2018; Dosovitskiy

et al., 2020). Xu et al. (Xu et al., 2020) verified that Transformer

has advantages for processing time series, using parallel

operations to overcome the problem of time-consuming

processing of long time series, but experiments have only been

conducted in in-season and full-season crop mapping. The

Transformer is good at capturing global information but not

sensitive to local information, so fusing the Transformer and

CNN into a new network structure becomes a popular way

(Gulati et al., 2020; Zhang et al., 2022). Li et al. (2020)

developed a hybrid Convolution and Transformer network

structure for multi-source remote sensing image classification

and verified the feasibility of fusing the two, but it only

discussed the effectiveness of the hybrid structure in full-season

crop classification. However, the potential of the new network

structure combining Transformer and CNN in the field of crop

classification in other scenarios has not been fully tested. A general

model with the ability to capture both global and local

information is necessary for multi-scenario crop classification.

In conclusion, current crop classification methods still suffer

from insufficient feature extraction ability, single application

scenario, and lack of a general and effective classification method.
Frontiers in Plant Science 04
3 Materials

3.1 Study area

In this paper, three of the five study areas are located in Northwest

China and two in Northeast China, as shown in Figure 1. The first

study area is the Hexi Corridor, which is an important agricultural

production area with abundant light resources and abundant snow and

ice meltwater. The second study area is the Ili River Valley, which has a

mild climate, a temperate continental climate, abundant sunshine and

precipitation, and significant advantages for agricultural development.

The third study area is the Tianshan Corridor, which is in the mid-

temperate arid climate zone and is an oasis irrigated agricultural area.

The fourth and fifth study areas areWestern and Eastern Heilongjiang,

which have a temperate continental climate and whose black land

advantage makes them an important food supply base for China. These

five regions have favorable agricultural production conditions and

diverse crop types, which are ideal for verifying the validity as well as

the robustness of the classification model.
3.2 Satellite imagery

The remote sensing images we used are acquired by the GaoFen-1

satellite, which contains four bands: red, green, blue, and near-infrared,

with a spatial resolution of 16 m and a temporal resolution of 4 days.

We only used images with cloud coverage of less than 10%, which

causes inconsistencies in the length of the time series. The number of

valid images for each study area is shown in Table 1, where Pre_His

and Pre_Cur represent the imagery covering the pre-training sample
FIGURE 1

The geographical locations of the five study areas in China. The data used for pre-training are from the white boxed area in the Ili River Valley,
Western Heilongjiang and Eastern Heilongjiang. The lower part shows a remote sensing image of GaoFen 1.
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areas acquired in the historical year and current year, respectively.

Table 1 shows that the number of remotely sensed images in each

region and each month is different, and directly using the time series

obtained from the images as input is a challenge for most models,

which require pre-processing of the extracted time series. Cropformer,

on the other hand, does not require any processing and can directly use

the time series extracted from the images, which greatly improves the

efficiency of the classification. The way of dealing with the irregular

time series inputs by Cropformer is described in Section 4.1.
3.3 Sample dataset

Each of the three study areas of Northwest China has about 20 crop

types in each region, and the main crops are maize, cotton, grape, and

wheat. The two study areas in Northeastern China have a stable cropping

structure, with the main crops being maize, rice, and soybean. We used

unlabeled data from two 10 km× 10 km areas as the pre-training dataset,

with a total of 781,250 sample units. In addition, field samples from three

study areas collected in the current year were used for training and

testing, where the ratio of the training dataset, validation dataset, and

testing dataset was 6:2:2. The distribution of sample categories in the

three study areas of Northwest China was very unbalanced, which also

challenged our classificationmodel. The numbers of sample units in each

crop type are shown in Table 2.
4 Methods

4.1 Motivation

In this paper, we propose a new combined Transformer and

Convolutional network structure, the new structure takes the

Transformer as the main structure and is used for crop

classification, thus naming the new structure a Cropformer.
Frontiers in Plant Science 05
Both the single Convolutional structure and the single Transformer

structure have certain drawbacks for crop classification. Convolution

focuses too much on the key issues local to the sequence and ignores the

dependencies between long sequences (Vaswani et al., 2017). Although

Transformer can learn the dependencies between long sequences, those

of local information are insensitive (Liu et al., 2022). Fusing the two to

achieve a complementary effect can improve the adaptability of the

model to cope with crop classification in different scenarios. The new

network structure uses an embedded structure (Devlin et al., 2018), as

shown in Figure 2B, to embed the Convolutional part downstream of

the multi-headed attention of the Transformer, so that the features with

weights acquired by Transformer are input to the convolutional part,

which can also be regarded as adding weight to the input of the

Convolution, and thus the Convolution can paymore attention to those

local features with larger weights. The Convolutional structure uses a

new double-start residual connection, as shown in Figure 2C. This

connection ensures that the original input with weights can be fed

directly to the Feed Forward Layer without losing the information in the

global features due to the addition of Convolutional modules, thus

allowing the global information extracted by Transformer to be fused

with the local information extracted by Convolution. We use a point-

depth convolution structure (Hua et al., 2018) to solve the problem that

adding convolution significantly increases the number of parameters in

Convolution part, and we use a residual structure to allow the model to

converge faster (He et al., 2016). In addition, we use two parameter-

adjustable activation functions, GLU and Swish (Dauphin et al., 2017;

Ramachandran et al., 2017), which ensure that the convolution structure

can automatically select the best activation function for training based

on the prior self-attention output, and both activation functions have

the advantage of fast convergence, so that the whole model can be

trained and converged more easily. Single convolutional structure and

single Transformer structure have been very common in the field of

crop classification, but methods combining these two structures are still

less common in the field of crop classification. Therefore, building a

classification model dominated by convolutional and Transformer

structures is valuable in the field of crop classification.
TABLE 1 Number of valid images in the five study areas.

Study Area Mar. Apr. May. Jun. Jul. Aug. Sep. All

I 12 7 5 3 6 8 4 45

II 3 2 2 0 9 7 4 27

III 7 6 5 7 12 8 8 54

IV 1 5 2 4 3 1 8 24

V 1 2 2 2 1 0 4 12

Irregular Pre_His_IV 1 2 0 3 3 1 6 16

Pre_His_V 1 1 1 1 0 0 2 6

Pre_His_II 3 2 2 0 7 4 1 23

Pre_Cur_II 0 2 2 6 2 0 0 12

Pre_Cur_IV 2 1 0 2 2 6 6 19

Pre_Cur_V 1 3 2 1 0 1 3 11

Regular – 4 3 3 3 3 3 3 22
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TABLE 2 Number of Samples in the Three Study Areas.

Study area Crop type Number of samples

III

Cotton 301178

Spring Maize 78567

Seed Maize 77360

Grape 36779

Tomato 27266

Winter Wheat 15119

Sunflower 14561

Gourd 10917

Bara Land 10691

Woodland 8222

Chili Pepper 5939

Silver Beet 5457

Watermelon 3027

Sweet Potato 2252

Greenhouse 1920

Hops 1698

Nursery 1636

Spring Wheat 1248

Alfalfa 805

Pumpkin 381

Potato 183

605326

Crop Type Number of samples

Soybean 571

Spring Maize 515

Middle Rice 416

Other 197

1699
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P
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t
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n
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0
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Study area Crop type Number of samples Study area Crop type Number of samples

I

Seed Maize 36771

II

Middle Rice 27826

Spring Maize 25136 Winter Wheat 8295

Greenhouse 7659 Spring Wheat 97

Woodland 4610 Spring Maize 221613

Alfalfa 3390 Seed Maize 61720

Chili Pepper 3014 Sweet Potato 4008

Onion 2968 Safflower 1335

Winter Wheat 2493 Sunflower 10084

Bare Land 2260 Soybean 9457

Grape 1925 Cotton 6446

Sorghum 1796 Sugar Beets 10298

Stevia 1653 Stevia 7753

Sunflower 1307 Alfalfa 6353

Spring Wheat 1189 Chili Pepper 2007

Pear 619 Gourd 1319

Sweet Potato 308 Watermelon 950

Sugar Beets 223 Greenhouse 1641

Soybean 186 Grape 2430

Gourd 142 Indian Jujube 2777

– – Woodland 13822

– – Nursery 5258

Total Number of Samples 97649 405489

Study area Crop type Number of samples Study area

IV

Soybean 1207

V

Spring Maize 440

Middle Rice 39

Other 364

Total Number of Samples 2050
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Irregular time series are difficult to apply directly due to their

irregularity and to solve this problem, we introduced positional

encoding in Cropformer. The effectiveness of positional encoding in

the field of natural language processing(NLP) has been

demonstrated (Devlin et al., 2018), but there is no precedent in

the field of crop classification as a method for solving irregular time

series. Specifically, we encode the observation points of the acquired

valid remote sensing images to form temporal features, which are

fused with the spectral features and input into the model together.

The model will learn the spectral features at the corresponding

positions according to the temporal features, and no misalignment

of spectral values will occur due to different sequence lengths.

Labeled sample data is costly to obtain, while unlabeled remote

sensing image data is easily available, and using unlabeled data to

improve the learning ability of the model is competitive compared to

other models (Yuan and Lin, 2021; Yuan et al., 2022). Pre-training

using unlabeled data in this study forces the model to learn the crop

growth patterns from unlabeled data, thus accumulating a large

amount of prior knowledge. Specifically, we randomly add noise to

some of the nodes in the sequence of unlabeled data and pre-train the

model using a self-supervised training approach, thus allowing the

model to learn the spatial-temporal relationships of crops at different

time nodes. This improves the generalization ability of the model as

well as provides prior knowledge for supervised classification.
4.2 Cropformer

The Cropformer architecture consists of three parts: Token

Embedding (TE), Position Embedding (PE), and Cropformer Block

(CB), whose architecture is shown in Figure 3. TE is a Linear Layer
Frontiers in Plant Science 07
that projections the spectral sequence into a sequence feature vector

of dimension d, i.e., equation (1). PE encodes the time series into a

temporal feature vector of dimension d by equation (2). The

sequence feature vector and the temporal feature vector are

concatenated into a new vector as the input of CB.

si = f (seqi) (1)

ti(p) =
sin (doyi=1000

2k=d)         if   p = 2k

cos (doyi=1000
2k=d)     if   p = 2k + 1

(
(2)

xi = Concat(ti, si) (3)

where i∈[0,N],k∈[0,d] , N denotes the sequence (time series)

length and doy represents the difference of valid sampling points.

Encoding doy ensures that each growth node of the crop has a fixed

temporal feature vector corresponding to it, so the input sequence

can be irregular. Although irregular inputs can improve image

utilization, they can lead to a very limited number of effective

images acquired when subjected to practical conditions such as

cloud occlusion, which requires the model to be able to learn key

features from the constrained inputs.

CB in Cropformer can exist N, forming a network structure

with depth N. However, there is a limit to the size of N, and infinite

increase does not significantly improve the results, and its structure

is shown in Figure 2A. The CB consists of three important

components: Multi-Head Attention Layer (MHAL), Convolution

Module (CM), and Feed-Forward Network (FFN). MHAL is good

at capturing global information (Yuan and Lin, 2021), while CM

can effectively use local features, and combining the two can achieve

more comprehensive learning of crop growth and development.
B

C

A

FIGURE 2

Cropformer Block, Convolution Module and Crop Residual detailed architecture. In (A) MHAL extracts global information, CM extracts local information,
FFN will get information further enhanced, and LN is used for layer normalization to prevent model overfitting. (B) shows the two-start residual
connection, and dropout is used to speed up the model training and prevent overfitting. GLU and Swish are the two learnable activation functions in (C),
and BN is used for batch normalization to prevent model overfitting.
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Figure 4A shows that Single MHAL architecture. MHAL takes

the joint vector of sequence + doy as input, by performing three

linear projections on the input vector. The outputs of the first two

Linear Layer are selected for scaled dot product and the fraction of

each feature is calculated using Softmax, i.e., Equation. (4). The

obtained feature scores are dotted multiplied once more with the

output of the third projection, and finally the output of MHAL is

obtained. MHAL is to calculate the feature scores between different

positions of sequences, it learns the dependencies between

sequences and obtains the global sequence information. The

weight of the important sequence information in this part is

scaled up, making more emphasis on this part in the CM part.

x̂ i = softmax
L1 xið ÞL2 xið ÞTffiffiffi

d
p

� �
L3(xi) (4)

where Lj represents j-th Linear Layer in MHAL; d represents the

feature vector of dimension; xidenotes model input, and x̂ i denotes

MHAL output. Softmax is used to calculate the score of each feature.
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Figure 4B shows that FFN architecture. FFN is used to enhance

the expressiveness of the features and consists of two linear layers

and an activation function.

CM is composed of Layer Normalization (LN) (Ba et al., 2016), Crop

Residual (CR), and Dropout (Srivastava et al., 2014), whose structure is

shown in Figure 2B. The mathematical expression of the CB part is

~xi = xi + LN(x̂ i)

x0i = ~xi + CM(~xi)

yi = x0i + LN(FFN(x0i))

(5)

where LN represents Layer Normalization, CM represents

Convolution Module, and FFN represents Feed-Forward Network; ~xi
denotes CM input, x′ denotes FFN input, and yi denotes model input.

CR is a pure Convolutional structure, we use a new double-start

Shortcut connection that can fuse two kinds of features, which can

guarantee lossless fusion of global and local features. The depth-separable

convolution layer is used in CR, which effectively reduces the number of
FIGURE 3

Cropformer architecture. Where Token Embedding denotes encoding of spectral information in time series and Position Embedding denotes
encoding of temporal information in time series. Cropformer Block details can be shown by Figure 2, 4.
BA

FIGURE 4

(A) Single MHAL architecture (B) FFN architecture. The inputs in (A) are the visualization results of the time series. L1-3 denote the three Linear
Layers, but their weights are not the same.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1130659
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wang et al. 10.3389/fpls.2023.1130659
parameters and ensures that the model can be trained faster. Two

activation functions, GLU and Swish, are used in the Pointwise

Convolution Layer and Depth Convolution Layer, respectively, and in

the last Batch Normalization (BN) (Ioffe and Szegedy, 2015), which is

more suitable for convolution operations, is added to one convolution

layer, and its architecture is shown in Figure 2C.
4.3 Crop classification framework

The crop classification framework using Cropformer is divided

into a pre-training part and a fine-tuning part, as shown in Figure 5.

In the pre-training part, we use an SSL training approach for

predicting missing values (Devlin et al., 2018), and it is worth

noting that this part is trained entirely with unlabeled data. In the

input continuous irregular time series, we randomize the time series

of the MASK part of the input sequence sampling points, and

Cropformer predicts the value of the MASK part by learning the

spatial-temporal contextual relationships between the sequences,

which allows the model to fully learn each node of crop growth and

development. The loss function of Cropformer uses the Mean-

Square Error (MSE) between the original and predicted sequences,

i.e.

Loss =
o
N

i=0
seqi − s~eq;

N
(6)

where seq represents the sequence value of MASK, s~eq

represents the predicted sequence value and N denotes the

number of masked sequence values. When the predicted values

are infinitely close to the true values, it shows that Cropformer

already can recognize the growth and development patterns of

crops, thanks to pre-training using a large amount of unlabeled

data. Although accurate crop types cannot be obtained by pre-

training with unlabeled data, the growth patterns of a large number

of crops expressed as time series are learned. These learned crop

growth patterns are passed on to the fine-tuning stage as prior
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knowledge, thus ensuring that the best classification results can be

obtained more efficiently in the fine-tuning stage.

After completing the pre-training, the resulting parameters

from the pre-training part are transferred to the fine-tuning part

for use. Because of the effectiveness of the pre-training part, the fine-

tuning part does not take much time. Also, in the network structure

part, only a simple classification module is added behind the

Cropformer and then a supervised fine-tuning process

is performed.
4.4 Experiment design and settings

We had applied Cropformer in several crop classification

scenarios to demonstrate its generality namely (1) Full-season crop

classification; (2) In-season crop classification; (3) Few-sample crop

classification, (4) Spatial transfer of classification model. The

experimental scheme is shown in Figure 6. Specifically, (1) The

classification ability of Cropformer was tested using current-year

unlabeled data for pre-training and the full current-year field sample

for fine-tuning, and compared to the best existing approaches RF

(Pelletier et al., 2016), Res-18 (Thenmozhi and Reddy, 2019), SIFT-

BERT (Yuan and Lin, 2021), Performer (Choromanski et al., 2020)

and ALBERT (Lan et al., 2019); (2) In the in-season crop classification

experiments, historical data were used as a pre-training data source,

and the field sampling data in the current year were divided bymonth

as fine-tuned data, e.g., March-end of April for the first stage of early

detection and March-end of May for the second stage, with the input

time series gradually becoming longer until all-time series were

included; (3) In the few-sample crop classification experiment, two

few-sample scenarios were simulated as balanced and unbalanced

crop distributions. We designed experiments with 1% of labeled

samples drawn from each class and a fixed number of labeled samples

drawn from each class (the number of samples with the lowest

number of all classes as the number of draws) as the fine-tuning

training dataset; (4) Transfer learning can solve the problem of

insufficient labeled samples in the target domain, and we set up
FIGURE 5

Cropformer crop classification framework. Seq represents the input time series, Mask represents the time series being masked, and Doy represents
the sampling time point. The fine-tuning phase has the same network structure as the pre-training phase, but the fine-tuning phase has a
Classification module.
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two transfer methods in this experiment. One is to transfer the model

from training in a region with sufficient samples to the target region,

and the other was to transfer the model from training in a

geographically similar region to the target region.

To evaluate the experimental results, besides the visually

comparison of the classified crop maps, Overall Accuracy (OA),

Average Accuracy (AA), and F1 scores were used to quantify the

classification performance of different methods. In addition, all the

results were the average of the three experimental results.

The hyperparameter settings of Cropformer are divided into

two parts: network structure and training optimization, both of

which are closely related to the performance of the model. For the

network structure, the number of CB is set to 3 and the number of

CR is set to 2. The number of Head in MHAL is set to 8 and the

dimension of Linear Layers is set to 256; the dimension of Linear

Layers in FFN is set to 1024; the size of convolutional kernels in CR

is set to 7×7, padding is 3, stride is 1. The number of channels in

both Pointwise Conv and The number of channels of both
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Pointwise Conv and Depthwise Conv is 256. For the training

optimization, the pre-training stage was performed with 200

epochs, batch size set to 512, set to initial learning rate set to 1e-

4, decay after 10 epochs, dropout set to 0.1, and the optimizer is

selected as Adam; the fine-tuning stage was performed with 10

epochs, batch size set to 256, learning rate set to 1e-5, and dropout

set to 0.1. The input size of the model can be obtained from

equation (7)

input _ shape = t _ num*band _ num + t _ num (7)

where t_num denotes the number of images acquired which is

the length of the time series, and band_num denotes the number of

bands. The number of bands in this paper is 4, but the inputs to the

model in this paper are diverse because the inputs used are irregular

time series.

The entire experiment was run on a Windows platform

configured with an i7-11700 K @ 3.60 GHz, 32 G RAM, and
FIGURE 6

The experimental process uses historical data and current year data as pre-training data. The acquisition time of image data is from March to
October. The bands used are blue, green, red, and near-red. The red serial number represents the number of crop classification scenario.
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NVIDIA GeForce RTX 3080 GPU (10 GB RAM), and all programs

were written using the python language.
5 Results and analysis

5.1 Full-season crop classification

In our experiments, we compared Cropformer with five

competing methods. RF had advantages in processing sequential

data and hence was used as a baseline for traditional machine

learning algorithms. The advanced deep learning methods Res_18,

SIFT_BERT, Performer, and ALBERT were used as comparisons

and they showed good results in crop classification as well as

sequence data processing. Among them, the input of Res_18 was

a three-dimensional tensor, the input of RF and Performer was a

regular time series, and the input of SIFT_BERT and ALBERT were

irregular time series in line with the input of Cropformer, and the

experimental results were shown in Table 3.

Table 3 showed that Cropformer obtained OA of 81.93%,

86.32%, 85.70%, 84.39%, and 79.15% in the five study areas,

respectively. Compared to the baseline RF of the traditional

method, the increase was more than 5% in study areas IV-V with

fewer samples, while in study areas I-III with abundant samples, the

increase was not significant. This demonstrated the saturation of the

classification accuracy achieved by the classification algorithm when

samples were sufficient. In study area IV, Cropformer obtained AA

of 81.52%, which was very close to the OA (84.39%) obtained in this

region, while in study areas II and III it obtained AA of 64.81% and

61.23%, respectively, which was more than 20% different from the

OA (86.32%, 85.70%) obtained, and this difference was more

pronounced in RF (37%, 25%). This was due to the extremely

unbalanced distribution of samples in study area II and III, where

the sample size of maize was more than half of the total sample size,

causing the AA to be insignificant, which is consistent with the

findings of (Wang et al., 2022). Sample imbalance can bias the

classification results toward the more numerous categories. The
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results showed that Cropformer in full-season crop mapping

enabled to achieve better and more stable classification results

even in situations where the sample conditions were not ideal,

while the performance of the traditional classification method (RF)

was not stable and vulnerable to realistic conditions, which is in line

with the conclusions of (Xu et al., 2020).

SIFT-BERT and ALBERT outperformed Cropformer for

classification in a few cases. ALBERT achieved AA/OA of

62.37%/85.99% respectively, which was better than Cropformer

(61.23%/85.70%); SIFT-BERT achieved AA of 82.91%/72.42% in

study areas IV-V, again better than Cropformer (81.52%/70.23%).

However, in most cases Cropformer had a clear advantage in both

AA and OA. In study areas II, III, V, where the number of valid

images was low (valid images of 27/24/12, respectively),

Cropformer had a 1%-8% improvement in OA compared to RF

and Performer (22 valid images) using regular time series, while the

improvement in AA was very significant (3%-16%). This indicated

that Cropformer is able to learn more useful features from a finite

length sequence. In fact, regular time series required resampling

operation, and in the case of limited number of images, this

operation would destroy the original information of the time

series and thus had an impact on the classification results. Res_18

performed the worst among all methods, obtaining only OA of

84.80% in study area II, and no more than AA/OA of 60%/80% in

other study areas, which was an unacceptable result. Although the

Res_18 used a more informative three-dimensional tensor as input,

its classification accuracy was not outstanding. Therefore, the direct

use of one-dimensional time series as input results as well as

efficiency would be more advantageous.

Figures 7B, C showed that in the case of sufficient samples, all

three methods had a significant improvement in accuracy after pre-

training, among which ALBERT had the most significant

improvement (5%), while Cropformer and SIFT-BERT do not

have a significant increase (2%-3%). The accuracy improvement

of the three methods after pre-training was very obvious, especially

in study areas IV-V, where the sample size was very small, and the

highest improvement was up to 14.89%. The results showed that
TABLE 3 Performance comparison of cropformer and other classifiers in three study areas.

Study
Area

Methods RF Res-18 Performer SIFT_BERT ALBERT Cropformer

Study
Area I

AA(%) 56.43 50.14 54.95 71.11 70.66 73.16

OA(%) 80.72 73.08 74.10 79.65 78.58 81.93

Study
Area II

AA(%) 48.16 34.73 60.33 63.62 63.31 64.81

OA(%) 85.82 84.80 84.65 84.56 85.39 86.32

Study
Area III

AA(%) 60.02 43.85 58.89 57.42 62.37 61.23

OA(%) 85.61 78.29 83.69 83.97 85.99 85.70

Study
Area IV

AA(%) 73.26 59.71 78.10 82.91 79.66 81.52

OA(%) 79.71 71.71 81.46 82.44 83.49 84.39

Study
Area V

AA(%) 53.92 48.45 60.86 72.42 70.92 70.23

OA(%) 71.79 71.49 71.06 77.87 78.91 79.15
Bolded indicates best results.
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pre-training not only improves the crop classification accuracy, but

also effectively reduced the model’s demand for samples, which was

consistent with the findings of (Yuan and Lin, 2021; Yuan et al.,

2022). In addition, the the average improvement in the five study

areas of the Cropformer (6.95%) after pre-training was higher than

that of BERT (3.22%) and ALBERT (5.2%), which indicated that the

Convolution-Transformer structure in the Cropformer had better

learning ability compared to the single-structured Transformer. By

focusing on both global and local crop growth patterns, we could

not only focus on the key growth nodes of crops but also capture the

dynamics of crops throughout the reproductive period, and

combine two important discriminatory approaches to better

distinguish between different types of crops.
5.2 In-season crop classification

Historical unlabeled data were selected as pre-training data in

the in-season crop classification experiment. We believed that crop

growth information could be learned by training on historical data,

even if it was not from the current year. Therefore, we used

historical data as pre-training data in in-season crop classification

and irregular time series of different lengths of the current year as

fine-tuning data. The classification time was a one-month interval,

with the end of April as the start time and the end of September as

the end time, and the experimental results were shown in Figure 8.

Figure 8A showed Cropformer dominance in early crop growth

(end of April - end of May), especially in study area I, III, V where

OA of 72.74%, 77.47% and 68.09% were obtained, while RF only

obtained 70.68%, 74.71% and 65.81%. However, the advantage of

Cropformer was not obvious in the middle of the crop growth

period (end of June - end of August), especially in study area II and

study area V, where the number of valid images for this time period

was extremely low, thus leading to the inability to obtain valid

classification results using the irregular time series method.

Figure 8B showed that the advantage of Cropformer in evaluating

the in-season crop classification with AA Cropformer can improve
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1%-6% in early crop growth (end of May) compared to other

methods, while in mid-growth the performance was comparable to

SIFT-BERT and ALBERT, but significantly better than RF and

Performer, which was most evident in study area I and study area II,

where the improvement was close to 10%. Comparing Figures 8A,

B, it can be found that in in-season crop classification, although RF

can achieve some advantage (when evaluated with OA), it was the

classification of a large number of teste data into a larger number of

categories that achieved better results, so that the classification

results are no longer advantageous when evaluated with AA. The

pre-training of the accumulated prior knowledge improved the

ability of the model to detect different classes of crops, so the model

with pre-training can be applied to areas with uneven sample

distribution and complex crop types. In addition, the pre-trained

data were derived from historical data, which would make the

historical data as pre-trained data had an impact on the

classification accuracy if the historical data were different from

the current year’s data in terms of sowing time and other

agricultural activities, resulting in some differences in crop growth

stages from the current year.

The earlier the crops were classified, the more important the

impact on agricultural production, so we further investigated the

earliest point in time of the year when different crops were classified

using Cropformer in three areas rich in crop types. Since different

crops had different sowing times, the earliest time that could be

classified would be different and similar. We analyzed the end of

April and the end of July as two important points in the in-season

crop classification, and the experimental results were shown

in Figure 9.

Figure 9 shows for half of the crops in all three study areas, more

than 50% of the F1 scores were available at the end of April and

nearly 60% of the crops had more than 70% of the F1 scores at the

end of July, with a higher percentage in the Hexi Corridor(80% of

the crop had an F1 score above 50% at the end of April and 70% of

the crop had an F1 score above 70% at the end of July), due to the

relatively balanced distribution of samples in the Hexi Corridor

compared to the other two study areas. The unbalanced sample
FIGURE 7

Performance comparison of Cropformer and other classifiers in five study area.
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distribution was very unfair for crops with relatively small sample

sizes, such as Chili Pepper and Gourd in the Ili River Valley, which

were very susceptible to confounding with other crops (both had

relatively low F1 scores in the three study areas), and because of the

small number of available training samples, a large amount of

confounding could occur. In all study areas, the F1 scores for each

crop type at the end of July were very close to the F1 scores at the

end of September, and even some crops had higher F1 scores at the

end of July than at the end of September. When the crops were close

to maturity or harvest, the time series information of crops was very

close at this time, and if we continue to add time-series information,

it would generate redundant information or useless information,

which would make the model misclassify, so we could consider the

end of July as a better time point for early classification using

Cropformer. Hao et al. (2018) also proved the conclusion that

accuracy consistent with crop maturity can be obtained in July-

August. Cropformer uses irregular sequences and acquisition of
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very limited spectral information about crops but still allows crop

identification at an earlier time, which shows that Cropformer can

be applied to the classification of in-season crops in regions with

complex crop types.
5.3 Few-sample crop classification

In the few-sample crop classification experiments, we modeled

two schemes to fit the few-sample scenario, i.e., using only 1%

labeled samples per category and using only a fixed number of

labeled samples per category (the fixed number referred to the

number of samples with the least amount of sample size among all

categories). We selected RF, SIFT-BERT, and ALBERT, which

showed excellent results in previous experiments, as a comparison

and conducted experiments in three areas with rich crop types. Each

experiment was randomly selected three times to take the average
B

A

FIGURE 8

Early detection results with time transformation in the five study areas. The first row of which is OA and the second row is AA for the period from the
end of April to the end of September. (A) OA for in-season crop classification (B) AA for in-season crop classification.
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value as the result and the experimental results were shown

in Figure 10.

Figure 10A showed Cropformer achieved OA of 76.27%,

85.18%, and 85.40% in the three study areas when using only 1%

labeled samples, which was only 5.66%, 1.14%, and 0.3% less than

using all labeled samples. When trained using the 1% sample, RF

showed a significant OA decrease of 10.4%, 11.47%, and 8.22% in

the three study areas, respectively, while the OA decrease using pre-

trained SIFT-BERT, ALBERT, and Cropformer was not significant

and only showed a significant OA decrease in study area I. This

further demonstrated the effectiveness of pre-training. Moreover,

Cropformer also performed optimally when only 1% of the samples

were used, but ALBERT achieved comparable performance to

Cropformer, while SIFT-BERT showed a significant drop in

performance compared to the previous performance. When using

the minimum number of samples per class, the accuracy of all

methods decreased, which was due to the uniform trend and
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extremely reduced number of samples in the training set, but the

distribution in the test set was still extremely uneven, which leaded

to a significant decrease in accuracy.

Figure 10B showed that the AA of Cropformer reached

74.03%,68.16% and 66.72% when using the minimum number of

samples per class, which was 0.87%, 3.35% and 5.49% higher than the

AA using the full sample fine-tuning. This further supported the

previous conclusion that when the sample distribution was uneven,

the category with the larger sample size dominates. Whether using

the minimum number of samples per class or 1% samples per class,

classification results of Cropformer still outperformed other methods,

while SIFT-BERT and ALBERT were second. As with the previous

classification results evaluated in terms of AA, the AA of RF was the

lowest among all methods, which showed that RF was not applicable

to samples with unbalanced distribution. Overall, Cropformer

achieved competitive classification results in few-sample context

classification, both in unbalanced and balanced samples.
B

C

A

FIGURE 9

F1 scores for each crop type in the three study areas using Cropformer at the end of April, July and September. Where the green axis headings
indicate vegetables and the red axis headings indicate fruits. (A) Hexi Corridor F1 Score (B) Ili River Valley F1 Score (C) Tianshan Corridor F1 Score.
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5.4 Spatial transfer of classification model

If the target region was not rich in labeled samples for training,

transferring the model trained in the source region to the target

region could reduce the problem of sparse labeled samples. We set

up two types of transfer across regions, one was between regions

with similar geographic and climatic conditions(TL1), and the other

was to use regions with rich labeled samples to transfer to regions

with fewer labeled samples(TL2). Study area II was the area with

abundant labeling samples, and study area IV and study area V had

similar geographical and climatic conditions. Since study area II and

study area V were not in the same geographical area, we selected

pre-training data from the two areas for pre-training. Where Pre_W

and Pre_E represented the pre-training sets for the Northwest and

Northeast regions of China, respectively. The crops were common

to all three areas: soybean, spring maize, middle rice, and others.

The results of the experiment are shown in Table 4.

Table 4 showed that Cropformer achieved OA of 62.13% in TL1

when no pre-training was used, which was a 36.92% and 31.59%

improvement compared to RF and Performer. In TL2 the OA
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reached 62.98%, a 15.3% and 18.6% improvement compared to RF

and Performer. However, the AA of Cropformer was not

outstanding among the two transfer methods. When using

Pre_W as pre-training, the OA of Cropformer reached 61.70%,

which was still more than 20% improvement compared to ALBERT

and SIFT-BERT. When using Pre_E as pre-training, Cropformer

achieved OA of 63.77% in TL1 and OA of 64.26% in TL2.

Compared to the first two pre-training methods, the OA

improvement of Cropformer was much less using the third pre-

training method, which indicated that the region of pre-trained data

need to be consistent with the region of fine-tuned data. However,

Cropformer can overcome the scenario of regional inconsistency,

reflecting Cropformer’s ability to transfer across regions.

Cropformer’s ability to capture key information about the crop

and understand crop growth patterns from the entire reproductive

period of the crop allowed Cropformer to identify crops in different

regions faster and better, which was important reason for

Cropformer’s good spatial transfer capability.

In the no-pre-training scenario, the average OA/AA of the three

methods in TL2 reached 51.68%/37.61%, which was an
B

A

FIGURE 10

Comparison of results for different proportions of labeled samples in the three study areas. (A) OA for few-sample crop classification (B) AA for few-
sample crop classification.
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improvement of 12.48%/5.1%, respectively, compared to that in

TL1 (39.2%/32.51%). When pre-training with Pre_E, the average

OA/AA of the three methods in TL2 reached 63.40%/39.85%, which

was an improvement of 3.7%/8.54% compared to TL1 (59.70%/

31.31%), respectively. The results indicated that TL2 outperformed

TL1, and thus it can be assumed that models trained in areas with

rich label samples outperformed those trained in areas with similar

geographical location and climate.
5.5 Processing efficiency

We compared the processing speed of Cropformer with the

other three methods in the Ili River Valley and ensured that all

experimental settings were consistent, and the experimental results

were shown in Table 5.

Table 5 showed that the total time consumption of Cropformer

(566.51s) was higher than that of BERT (518.09s), ALBERT

(427.21s), and Performer (994.61s), but lower than that of RF

(795.58s) and Res-18 (1165.24s). The main time consumption of

RF and Performer consumption lied in data preprocessing

(523.93s), which accounted for 65.86% and 52.68% of all time

consumed, which severely limited the efficiency of RF and

Performer. Cropformer was more time consuming than SIFT-

BERT and ALBERT because we added a convolutional part to the

network structure. ALBERT had the advantage of having a very

small number of parameters, which was an important reason why

its efficiency is the best among all methods.
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5.6 Comparison of the crop maps

We selected two 10 km ×10 km areas in each of the five study

areas for full-season mapping using Cropformer, and compared the

results with those of RF, and SIFT-BERT, as shown in Figure 11.

Results of crop mapping by other methods can be viewed in the

Supplementary Material.

Figure 11 showed the mapping differences between the three

methods were more pronounced in the first three study areas with

rich crop types, while the three methods were similar in the last two

study areas with similar cropping structures. The most significant

differences in the maps among the five methods were found in the

Tianshan Corridor, for example, in the second 10 km × 10 km area,

Cropformer identified most of the crops as grapes, while RF

identified most of the crops as spring maize and sunflower, and

SIFT-BERT identified them as seeded mazie and cotton. Based on

the field survey in Tianshan Corridor, an important grape

production base in China, the prediction of Cropformer was

more accurate. In the area with complex planting structures,

Cropformer still showed good mapping performances. The parcel

distribution of Cropformer mapping is very close to plot

distribution of the original remote sensing image, and the

mapping results of other methods had a serious pepper effect and

look more fragmented. In the latter two study areas where the plot

size was small and clustered distributed, Cropformer still overcame

the pepper effect and there were few cases of fragmented plots.

Overall Cropformer had good mapping results and provides a

possible solution for large-scale remote sensing mapping.
TABLE 4 Comparing the results of different transfer strategies.

Pre-training Area Methods Study AreaIV! Study AreaV Study AreaII! Study AreaV

AA(%) OA(%) AA(%) OA(%)

No_Pre RF 37.93 25.21 41.52 47.68

Performer 33.65 30.54 43.62 44.38

Cropformer 25.96 62.13 27.68 62.98

Pre_W ALBERT – – 22.65 43.67

BERT – – 23.34 32.77

Cropformer – – 25.65 61.70

Pre_E ALBERT 35.93 52.34 29.32 63.40

BERT 28.36 62.98 44.78 62.55

Cropformer 29.65 63.77 45.46 64.26
Bolded indicates best results.
TABLE 5 Comparison of processing speed between cropformer and other methods(s).

Methods RF Res-18 Performer ALBERT SIFT-BERT Cropformer

Data pre-processing 523.93 – 523.92 – – –

Pre-training epoch – – – 230.36 275.25 315.88

Training epoch 271.65 1165.24 470.69 196.85 242.84 250.63

All time consuming 795.58 1165.24 994.61 427.21 518.09 566.51
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6 Discussion

In this paper, we proposed a new crop classification method that

can be applied to multi-scenario crop classification, and its

generality and validity were demonstrated in five study areas with

complex crop growing structures.

The success of Cropformer lied in the ability to focus on both

global information about crop growth and to capture key features of

crop growth to achieve a more comprehensive feature representation

from the perspective of feature complementarity. For the features

extracted by the model, neither local nor global features can fully

characterize the crop growth pattern (Gulati et al., 2020). Therefore,

better results were obtained using more comprehensive and

integrated features. The role of pre-training was to help the model

better understand the crop growth pattern, and when pre-training

was introduced in the classification method, the classification

accuracy was significantly improved, which was consistent with the

findings in the literature (Yuan and Lin, 2021; Yuan et al., 2022). The

implication behind pre-training was to make the model learn the

contextual relationships of the time series by forcing the model to

learn them through self-supervised training when inputting

unlabeled time series, thus summarizing the time series patterns of

the crop. These laws were used as prior knowledge to the fine-tuning

phase, which both reduced the need for labeled samples and sped up

the convergence of the model (Li et al., 2020). The introduction of
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position encoding reduced the requirement of time series as input.

Using time and spectra as inputs to the model ensured the correct

correspondence between image acquisition time and crop spectra in

the time series, and also enriched the inputs to the model.

The unlabeled remote sensing data were very easy to obtain, and only

some areas were randomly selected for pre-training in this paper, without

considering the influence of the land cover degree of the area where the

unlabeled remote sensing data were located on the results. Therefore, it was

the focus of future work to fully exploit the potential of unlabeled remote

sensing data in crop classification, including the effects of different types of

unlabeled remote sensing data and remote sensing data of different time

series length on the classification results. Data augmentation was an

important tool for enriching sample types and avoiding model

overfitting (Vulli et al., 2022), which would also be applied to crop

classification in future work. In addition, the experimental results across

regions were not satisfactory, and how to solve the effective migration of

the model in large scale crop classification was also worthy of attention.
7 Conclusion

To build deep learning models that can be applied to multi-scene

crop classification, we created a two-step classification system and

proposed a new deep learning architecture, Cropformer. Cropformer

can adapt irregular time series as input and can accumulate crop
B

C

D

E

A

FIGURE 11

Map of crop distribution in selected areas of the five study areas. For each study area, from left to right, remote sensing images, RF mapping, SIFT-
BERT mapping, and Cropformer mapping.
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growth information in the pre-training phase, which enabled it to

achieve the best performance in multiple crop classification scenarios.

In full-season crop classification experiments, the average OA/AA of

Cropformer with Transformer and convolution (83.50%/70.19%)

outperformed traditional classification methods RF (80.73%/

58.36%), the single convolution structure Res-18 (78.88%/43.38%)

and the single Transformer structure of SIFT-BERT (81.70%/

69.50%), indicating that Cropformer had the ability to extract more

comprehensive features by using both the Convolution structure to

extract local features and the Transformer to capture global

information. The results of in-season crop classification

experiments showed that Cropformer can obtain classification

results comparable to those of crop maturity (end of September) at

mid-to-late crop growth (end of July), reflecting Cropformer’s ability

of early identification, taking advantage of the ability to use irregular

time series directly, and thus extracting usable features from limited

images. In the classification of crops with few samples, the average

OA of only 1% of the samples used by Cropformer for each class

reached 82.28%, which was 2.37% lower than that of all the samples

(84.65%). This showed that after pre-training, Cropformer had

accumulated a lot of prior knowledge, which can effectively reduce

the demand for standard label samples, so that it can obtain high-

precision classification results with few labeled samples. The results of

spatial transfer experiments showed that Cropformer can overcome

the problem of inconsistency between the regions of the pre-training

data and the fine-tuning data, indicating that Cropformer had the

ability of spatial generalization. Crop mapping results showed that

Cropformer can obtain mapping results consistent with field samples,

which benefited from Cropformer’s strong learning ability and can

learn generalized features. All experiments showed that Cropformer

adapts to multi-scenario crop classification and had great potential in

large-scale crop classification.
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