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The warming-wetting climates in Chinese drylands, together with a series of

ecological engineering projects, had caused apparent changes to vegetation

therein. Regarding the vegetation greening trend, different remote sensing data

had yielded distinct findings. It was critical to evaluate vegetation dynamics in

Chinese drylands using a series of remote sensing data. By comparing the three

most commonly used remote sensing datasets [i.e., MODIS, Advanced Very High

Resolution Radiometer (AVHRR), and Landsat], this study comprehensively

investigated vegetation dynamics for Chinse drylands. All three remote sensing

datasets exhibited evident vegetation greening trends from 2000 to 2020 in

Chinese drylands, especially in the Loess Plateau and Northeast China. However,

Landsat identified the largest greening areas (89.8%), while AVHRR identified the

smallest greening area (58%). The vegetation greening areas identified by Landsat

comprise more small patches than those identified by MODIS and AVHRR. The

MODIS data exhibited a higher consistency with Landsat than with AVHRR in

terms of detecting vegetation greening areas. The three datasets exhibited high

consistency in identifying vegetation greening in Northeast China, Loess Plateau,

and Xinjiang. The percentage of inconsistent areas among the three datasets was

39.56%. The vegetation greening areas identified by Landsat comprised more

small patches. Sensors and the atmospheric effect are the two main reasons

responsible for the different outputs from each NDVI product. Ecological

engineering projects had a great promotion effect on vegetation greening,

which can be detected by the three NDVI datasets in Chinese drylands,

thereby combating desertification and reducing dust storms.
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1 Introduction

China is home to 6.6 million km2 of drylands, which support

approximately 580 million people (Li et al., 2021). Distributed from

east to west in northern China, the drylands of China act as an

ecological barrier to China, playing a critical role in protecting

biodiversity and providing ecosystem services (Poulter et al., 2014;

Huang et al., 2017; Mao et al., 2018). Dryland ecosystems are also

vital to the global carbon cycle, dominating the interannual

variability of global terrestrial ecosystem carbon (Poulter et al.,

2014; Ahlstrom et al., 2015; Biederman et al., 2017). Climates in

Chinese drylands have changed in a unique pattern in recent years.

Together with warming, it has gradually become wetter since the

1960s (Song and Zhang, 2003; Shi et al., 2007; Chen and Dai, 2009;

Han et al., 2016; Li et al., 2016; Peng and Zhou, 2017), especially

transiting from warm-dry to warm-wet since the mid-1980s (Shi

et al., 2003). The “warming-wetting” climate has favored greening

in Northwest China (Zhao et al., 2011; Fang et al., 2013; Liu et al.,

2018; Wu et al., 2019; Wang et al., 2020), which is further boosted

by a series of national ecological engineering projects (Chen et al.,

2019), including the Three Norths Shelter Forest System Project

(TSFP), the Natural Forest Conservation Program (NFCP), the

Grain to Green Program (GTGP), the Sand Control Programs

surrounding Beijing and Tianjin (BSCP), and the conservation

and restoration project in the Three-River Source Region (TSRP)

(Liu et al., 2008; Shao et al., 2017). China has the world’s largest

afforested area with ∼62 million hectares in 2008, which is expected

to increase by approximately 40 million hectares from 2005 to 2020

(Peng et al., 2014). These ecological engineering projects promoted

vegetation greening, enhanced ecosystem carbon sequestration, and

reduced land desertification (Tong et al., 2018).

Vegetation greening, the interannual increasing trends of

vegetation greenness, has occurred widely on a regional to global

scale (Chen et al., 2021; de Jong et al., 2012; Zhu et al., 2016; Choler

et al., 2021; Zhao et al., 2022). The greening of the Earth’s land has been

accelerating since the early 1980s, and China is the primary contributor

to global greening and accounts for over 25% of the global net increase

in leaf area (Mao et al., 2016; Chen et al., 2019; Cortes et al., 2021).

Various remote sensing data all reported that China has experienced an

unambiguous greening since 1982 (Piao et al., 2003). Climate change,

rising atmospheric CO2 concentration, nitrogen deposition, and some

positive human interventions all contribute to Chinese land greening

(Donohue et al., 2013; Keenan et al., 2016; Naeem et al., 2021; Berdugo

et al., 2022; Huang et al., 2016; Gao et al., 2022; Peng et al., 2010; Piao et

al., 2013; Piao et al. 2015).

The normalized difference vegetation index (NDVI) is the most

commonly used remote sensing index in monitoring vegetation

dynamics due to its numerous advantages, such as wide space-time

coverage and high sensitivity to vegetation coverage changes (Guo

et al., 2018; Zhang et al., 2021). Among the ensemble, the Advanced

Very High Resolution Radiometer (AVHRR) sensors represent the

longest continuous data series (Tucker et al., 2005), and the MODIS

vegetation index (VI) represents higher spatial resolution and an

intensively validated product (Zhang et al., 2017). Aside from these

two datasets, Landsat with higher spatial resolution can generate
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time series vegetation dynamics, too. However, each dataset has

yielded inconsistent findings (Zhang et al., 2013). In the meantime,

their different spatial resolutions underscore their distinct capability

in detecting vegetation dynamics under disparate background

contexts. The vegetation in arid and semiarid regions is naturally

sporadically distributed and grows with low coverage. These growth

statuses pose a great challenge for remote sensing data in

monitoring vegetation changes. Coarse spatial resolution data

might miss some patchy vegetation greening, while high spatial

resolution data with low temporal resolution are constrained by its

intermittent data availability. Subpixel spatial heterogeneity of

vegetative greening and browning is hardly expressed in coarse

spatial resolution data (Myers-Smith et al., 2020). Datasets with

increased spatial–temporal resolutions can reduce false vegetation

changes caused by their own error of low resolution. One major

explanation for the many inconsistencies in our current

understanding of plant dynamics in Chinese drylands is the use

of various remote sensing data. The sensors themselves and the

atmospheric effect (Fan and Liu, 2016), the red band error of

atmospheric effect (Guo et al., 2017), the data extraction method

(Donohue et al., 2008; Zhang et al., 2013) and different scales, other

factors such as the sun’s elevation angle, the spectral characteristics

of the sensor band center and bandwidth, the inconsistency of

atmospheric quality, and the different surface vegetation coverage

may lead to inconsistent spatial changes of vegetation in different

remote sensing datasets (Zhang et al., 2020; Liu et al., 2022).

To achieve uniformity in research findings from each study and

advance our knowledge on vegetation dynamics in Chinese

drylands, we better compare the performances of each data. In

this study, the three commonly used datasets with various spatial

resolutions are processed on the Google Earth Engine platform

(Gorelick et al., 2017), and their performances are compared in

detecting vegetation greenness in Chinese drylands. Our threefold

objectives are to 1) evaluate where and how Chinese drylands have

become greening, 2) compare the greening or browning trend areas

detected by the three datasets, and 3) identify the regions where the

three datasets have the greatest consistency or discrepancies. The

research findings can deepen our knowledge on vegetation

greenness dynamics in Chinese drylands under the warming-

wetting climate trends.
2 Materials and methods

2.1 Study area

The study area encompasses Chinese drylands, which mainly

include the Inner Mongolia Plateau, the Loess Plateau, and the

Tibetan Plateau (Figure 1). The boundaries of the study area and

aridity zones are based on previously established standards

(Figure 1A) (Huang et al., 2017; Zhu et al., 2022). The ranges of

the Ecological Function Reserves of China (https://www.resdc.cn/

data.aspx?DATAID=137) and the National Barrier Zone of China

(http://www.geodoi.ac.cn/WebCn/doi.aspx?Id=1453) were also

used in this study (Figure 1D).
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2.2 Data

The Google Earth Engine (GEE) provides online access to

archived MODIS/AVHRR/Landsat NDVI data (Table 1). This

study selected MOD13Q1 V6 (Didan, 2015) NDVI products with

a temporal resolution of 16 days and a spatial resolution of 250 m.

MOD13Q1 had applied atmospherically corrected bidirectional

surface reflectance to NDVI products on GEE, thus having low

clouds and view angle effects. The NOAA Climate Data Record

(CDR) of AVHRR NDVI is a daily product derived from the NOAA

AVHRR Surface Reflectance at a spatial resolution of 0.05°

(Vermote and NOAA CDR Program, 2019).

Landsat Collection 2 marks the second major reprocessing

effort on the Landsat archive by the USGS that resulted in several

data product improvements over Collection1 by harnessing recent

advancements in data processing and algorithm development. This

study used the Landsat Collection 2 Tier-1 surface reflectance (SR)

data on the Google Earth Engine website, including Landsat 5 TM,

Landsat 7 ETM, and Landsat 8 OLI for Red and NIR bands. The

Landsat collection was atmospherically corrected and ortho-

rectified, and the annual median NDVI from June to September

was utilized in this study.
2.3 Method

The annual maximum NDVI composited for all MODIS and

AVHRR NDVI available on the GEE from 2000 to 2020 was

extracted for Chinese drylands. Sen’s slope estimator was applied

to detect vegetation change trends. The SEN (Sen, 1968) trend

analysis and the Mann–Kendall (MK) test (Mann, 1945; Kendall,

1957) were widely used in meteorological and hydrological research

studies (Gocic and Trajkovic, 2013). The prior one was more

suitable for studying vegetation change trends than linear

regression methods (Fensholt et al., 2012). The latter one was

used to determine the NDVI’s trend significance (Li et al., 2019).

The trend of NDVI was divided into four classes: significant

greening (r > 0, | Z | > 1.96), significant browning (r < 0, | Z | >
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1.96), non-significant greening (r > 0, | Z | ≤ 1.96), and non-

significant browning (r < 0, | Z | ≤ 1.96). The r was the Sen slope’s

slope. If the MK test statistics (| Z |) was greater than 1.96, it was

considered to have passed the significance test of 95%.
3 Result

3.1 Spatial analysis and regional statistics

Based on AVHRR (Figure 2A), the vegetation non-significant

browning areas were mainly distributed in the Tibetan Plateau and

the northern part of North China. The significant vegetation

browning areas were primarily located in South Central and East

China, the southern part of North China, and some scattered

regions in western China. The vegetation non-significant greening

areas were mainly distributed in North and Northeast China and a

few scattered patches in Northwest China. The areas with

significant vegetation greening were primarily distributed in the

Loess Plateau and Northeast China and a few scattered patches in

Northwest China.

The MODIS data identified obviously larger greening areas than

the AVHRR data (Figure 2). Based on the MODIS data (Figure 2B),

the vegetation non-significant browning areas were mainly

distributed in the southern Tibetan Plateau and the northern and

southern parts of North China. The areas with significant vegetation

browning were primarily distributed in South Central and East

China, the southern part of North China, and the northwestern part

of Chinese drylands. The vegetation non-significant greening areas

based on the MODIS dataset were mainly distributed in the

southern Tibetan Plateau, the northern part of North China, and

the northern part of northwestern China. The significant vegetation

greening areas were primarily located in the Loess Plateau,

Northeast China, and the northern Tibetan Plateau.

The vegetation greening areas identified by MODIS comprised

more small patches than those identified by AVHRR. The greening

areas identified by AVHRR were smaller than those identified by

MODIS, while the browning areas identified by AVHRR were larger
A B

DC

FIGURE 1

The study area in Chinese drylands. (A) Distribution of dryland type; (B) distribution of geographical regions; (C) distribution of typical regions;
(D) distribution of ecological engineering projects.
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than those identified by MODIS. The sharp distinction between

AVHRR and MODIS in identifying vegetation non-significant

greening occurred mostly in western China (Figure S1). Meanwhile,

apparent differences existed in the northern part of Northwest China

and the northern Tibetan Plateau, where vegetation turned

significantly brown based on AVHRR but turned significantly green

based on MODIS. The non-significant greening areas exhibited the

highest consistency between AVHRR and MODIS, followed by

significant vegetation greening, vegetation non-significant browning,

and significant vegetation browning. The consistent non-significant

browning areas between AVHRR and MODIS were 290,645.1 km2,

which were mostly distributed in the southern Tibetan Plateau, South

Central China and East China, and some parts of North China. The

consistent areas with significant browning areas were 21,573.17 km2,

mainly concentrated in South Central China and East China, the

southern parts of North China, and a few scattered patches in

northwestern China. The consistent areas with vegetation non-

significant greening were 1,523,174.27 km2, mainly distributed in the
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northern part of North China and the Tibetan Plateau. The consistent

areas with significant greening areas were 480,836.24 km2, mainly

distributed in the Loess Plateau and Northeast China.

For the entire study area, the vegetation greening area was larger

than that of vegetation browning (Figure S2). For both the AVHRR

and MODIS data, the significant vegetation greening areas were the

largest in the semiarid regions, followed by dry subhumid, arid, and

hyperarid regions. AVHRR revealed non-significant greening with

52.84% and 59.29% in the hyperarid and arid regions of the study

area, respectively, while MODIS identified 72.65% and 49.51% of

the two regions as significant greening, respectively. In the semiarid

and dry subhumid regions, the dominant change was non-

significant greening based on the AVHRR data, while it changed

to significant greening based on MODIS. The area proportion was

the lowest for significant browning based on the AVHRR data in

semiarid regions, whereas the same index for the MODIS data was

the lowest in hyperarid regions. Vegetation had turned significantly

green as a whole in the Chinese drylands. The area with identical
B

A

FIGURE 2

The spatial distribution of vegetation greening and browning from the AVHRR and MODIS NDVI datasets. (A) Vegetation coverage trends based on
the AVHRR; (B) vegetation coverage trends based on MODIS. SB, significant browning; NSB, non-significant browning; SG, significant greening; NSG,
non-significant greening.
TABLE 1 The NDVI datasets and climate data archive on the GEE.

Data Dataset provider Resolution

NOAA CDR AVHRR NDVI: Version 5 NOAA 0.05°

MOD13Q1.006 USGS EROS Center 250 m

Landsat5/7/8 Collection 2 Surface Reflectance USGS 30 m
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changes between AVHRR and MODIS was the largest for non-

significant greening, followed by significant greening, non-significant

browning, and significant browning areas in Chinese drylands.

With regard to geographical regions (Figure S3), vegetation

showed greening trends in 50.03%, 51.74%, and 40.25% of the areas

in Northeast, Northwest, and North China based on AVHRR,

respectively, while MODIS changed to significant greening with

70.59%, 48.00%, and 48.00%, respectively. The significant vegetation

greening areas withMODIS were larger than those with AVHRR, and

the vegetation non-significant greening areas were also larger than the

vegetation non-significant browning areas for both AVHRR and

MODIS datasets in Chinese drylands. Among the six geographical

regions, the proportion of non-significant browning areas was the

lowest in Northeast China for the AVHRR as well as MODIS data. In

Southwest China, vegetation non-significant greening area accounted

for 48.91% and 54.42%based onAVHRRandMODIS, respectively. In

East China and South Central China, vegetation non-significant

browning identified by the AVHRR data accounted for 50.34% and

53.42% of the region, respectively, while the region turning

significantly green covered small areas. With the MODIS data,

vegetation non-significant greening occurred in 39.22% and 34.71%

of the same region, respectively, which was similar to the significant

greening areas. In Northwest, Northeast, and North China, the

identical trends from the AVHRR and MODIS data had the largest

non-significant greening trends, followedby significant greening, non-

significant browning, and significant browning. The pattern in

Southwest China was similar to that in Central South China, with

the largest area of vegetation non-significant greening, followed by

non-significant browning, significant greening, and significant

browning, but Central South China displayed an overall non-

significant browning trend. Different from other regions, East China

displayed that the areawith identical patterns between the two datasets

was the largest for vegetation non-significant greening, followed by

non-significant browning, significant browning, and significant

greening. Overall, the consistency between the two datasets was

higher in Northwest China than in North China, while these two

regions had a higher consistency than other geographical regions in

Chinese drylands.
3.2 Comparison of MODIS and AVHRR
products with Landsat data

Landsat identified larger greening areas (89.8%) than MODIS as

well as AVHRR (58%) (Figures 3, S4). Regarding identifying

vegetation change, Landsat showed higher consistency with

MODIS data than with AVHRR (Figure 4). The consistency

region with the Landsat and AVHRR data was broadly similar to

the Landsat and MODIS data, but the areas that turned green were

smaller with the Landsat and AVHRR data (Figures 4A, B). Landsat

andMODIS had high consistency in identifying vegetation greening

in Northeast China, the Loess Plateau, and Xinjiang and in

identifying vegetation browning in the southeastern part of the

Tibetan Plateau, parts of Xinjiang, and some parts of North China

(Figure 4B). The regions with high inconsistency between the AVHRR

and Landsat data were located in the Tibetan Plateau and parts of
Frontiers in Plant Science 05
Central China andHebei Province, whichwere identified as browning

by AVHRR but greening by Landsat data. The areas with large

differences between MODIS and Landsat were mainly located in the

southeast of the Tibetan Plateau, parts of Central China and Hebei

Province, andnear the regions of consistent vegetationbrowning in the

northern part of North China.

The three datasets exhibited high consistency in identifying

vegetation greening in Northeast China, the Loess Plateau, and

Xinjiang, while their consistency was the lowest on the Tibetan

Plateau, especially the southern part of the Tibetan Plateau (Figures

S4, 4). The percentage of consistent vegetation browning areas with

the three datasets was 1.36%, mainly distributed in the southeastern

part of the Tibetan Plateau and parts of Xinjiang. The percentage of

areas that were identified as browning by AVHRR and MODIS but

greening by Landsat was 4.89%, which was primarily located in the

central part of Southwest China and parts of Xinjiang. The

consistent vegetation greening areas by AVHRR and MODIS but

browning by Landsat were mainly located in the southeastern part

of the Tibetan Plateau, with a percentage of 0.87%.

The percentage of inconsistent areas among the three datasets

was 39.56%, which was mainly distributed in the southern part of

the Tibetan Plateau, the northern part of North China, and Central

China and Hebei Province. Meanwhile, the area of vegetation

greening identified by MODIS and Landsat, but browning by

AVHRR, accounts for 50.50% of the inconsistent areas, while the

vegetation greening identified by AVHRR and Landsat, but

browning by MODIS, accounts for 9.85% of the inconsistent areas.

To further compare the performance between AVHRR and

MODIS data, we generated Sen’s slope for the three datasets and

then resampled Landsat data to spatial resolutions of 5,000 and

250 m to match AVHRR and MODIS data, respectively (Figure S5).

The R2 for the correlation analysis between AVHRR and MODIS

with Landsat was 0.1257 and 0.3983, respectively.
4 Discussion

Generally speaking, the areas of vegetation browning and

significant browning with AVHRR data were larger than those

with MODIS data, while the significant vegetation greening areas

with AVHRR data were smaller than those with MODIS (Figures

S2, S3). A similar pattern was also identified in several typical
FIGURE 3

The spatial distribution of vegetation greening and browning with
Landsat data from 2000 to 2020.
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regions with large-scale ecological engineering projects, such as the

Loess Plateau and Northeast China (Figure S4). From this, we can

conclude that MODIS has identified a larger area of significant

vegetation greening. Landsat has generally the most vegetation

greening areas, followed by MODIS and AVHRR. Coarse

resolution data might miss some land use and land cover changes.

4.1 Reasons for the differences among the
AVHRR, MODIS, and Landsat NDVI datasets

Sensors and the atmospheric effect are the two main reasons

responsible for the different outputs from each NDVI product
Frontiers in Plant Science 06
(Nemani et al., 2003; Fan and Liu, 2016). The red band error due

to atmospheric effects is one of the main sources (Guo et al., 2017).

AVHRR NDVI has been reported to be biased in generating time

series due to sensor degradation (Tarnavsky et al., 2008; Tian et al.,

2015). The AHHRR sensors are updated more frequently than those

of MODIS, and the bandwidths of each sensor are adjusted

accordingly (Zhang et al., 2015). In monitoring vegetation

dynamics, MODIS NDVI loaded with an advanced navigation

system and improved radiometric sensitivity is considered to be

superior to AVHRR-based NDVI (Huete et al., 2002; Fensholt and

Proud, 2012). The spectral ranges of the MODIS red band with

620–670 nm and near-infrared bands with 841–876 nm are
B

C

A

FIGURE 4

The spatial distribution of consistent and inconsistent regions of Landsat with AVHRR and MODIS NDVI datasets from 2000 to 2020. (A) Comparison
between Landsat and AVHRR; (B) comparison between Landsat and MODIS; (C) comparison among Landsat, MODIS, and AVHRR.
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narrower than those of AVHRR (Gallo et al., 2005), and the prior

one can eliminate water absorption effects to some extent (Liu et al.,

2022). MODIS C5 sensor degradation can also affect its time series

comparability and cause a fake vegetation browning trend (Wang

et al., 2012). Compared with AVHRR and MODIS, Landsat

Collection 2 data provide well-calibrated, precisely geolocated,

and improved spectral coverage images and apply geometric and

radiometric processing to acquire a seamless effect among

multisensors, which improves the interoperability of images

through time (Wulder et al., 2022); therefore, the observed

satellite changes can be attributed to surface changes rather than

to instrument changes (Markham and Helder, 2012; Cohen et al.,

2016). Meanwhile, cloud effects can further introduce some

uncertainties, which can affect the retrieval accuracy of coarse

resolution images (Alcaraz-Segura et al., 2010).

Although the new versions of MODIS and AVHRR have

improved their product quality (Zhang et al., 2017; Liu et al.,

2022), the data synthesis process can cause information loss

(Alcaraz-Segura et al., 2010). This study uses the maximum value

composition method for the two coarse spatial resolution data. We

further compare its performance with the median value composite

method. According to the median value composite method, the

vegetation change pattern difference between the two datasets is even

greater, especially inwestern China (Figure 5). The spatial distribution

of AVHRR using NDVImedian from June to September is quite

different from that of annual NDVImax (Figures 2A, 5A). The

significant greening areas with NDVImedian from June to

September with AVHRR data were far less than those of the annual

NDVImax, while the significant browning areas were larger. The

spatial distribution of NDVImedian from June to September and

annual NDVImax for MODIS data was roughly the same

(Figures 2B, 5B). The significant greening areas of the NDVImedian

were slightly larger than those of the annual NDVImax, while the

significant browning areas were smaller with the MODIS data.

GIMMS, MODIS, and Landsat datasets are generally more or

less the same in detecting global vegetation change trends (Fensholt

et al., 2012; Scheftic et al. 2014), but with different greening rates

(Tian et al., 2021). The reason for the high consistency of various

data in detecting vegetation greening in the Loess Plateau and

Northeast China is related to the fact that these two regions have

become significantly greening under a series of ecological

engineering projects (Xiao, 2014; Chen et al., 2015; Guo et al.,

2017; Cao et al., 2018). The region where the three datasets reveal

the analogous browning pattern is mostly overlapping with fast

urbanization, such as Central China and Hebei Province. In the

central part of Southwest China and parts of Xinjiang, only Landsat

data can identify vegetation greening. In these regions, vegetation

greening has occurred in a patchy pattern, which is beyond the

detection capacity of coarse spatial resolution remote sensing data.

On the other hand, vegetation has become greening with AVHRR

and MODIS but browning with Landsat in the eastern part of

Southwest China. The reason can be related to the small number of

available Landsat images due to cloudiness.

However, these three datasets turn out distinct results in some

specific regions, such as the northern Tibetan Plateau, which has

also been reported in previous related studies (Jiang et al., 2017;
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Burrell et al., 2018; Liu et al., 2022). Land use change (LUC) is one of

the most influential factors in vegetation greenness (Hua et al.,

2017). LUC caused by different factors can manifest in distinct

patterns. In Northern China, the vegetation significant greening is

due to increased fractional cover in crops, grasslands, and forests

(Hua et al., 2017). In the Tibetan Plateau, vegetation greening is

mostly caused by climate change (Zhu et al., 2016), while LCC

mostly makes the greatest contribution to regional greening in

southeast China (Zhu et al., 2016).
4.2 The impact of ecological engineering
projects on vegetation greening

Vegetation change trends exhibit large differences among each

ecological function reserve, with an overall greening pattern in the

Ecological Function Reserves and the National Barrier Zone

(Figure 6). Large-scale ecological engineering projects bring about

fundamental changes to vegetation in Chinese drylands, especially

in the Loess Plateau and Northeast China (Zhang et al., 2016; Yu

et al., 2021). For example, the implementation of the “Grain for

Green Program” (GFGP) (Song et al., 2022) ecological engineering

on the Loess Plateau has significantly led to an increase in

vegetation coverage (Xiao, 2014; Chen et al., 2015; Cao et al.,

2018), especially in the regions where precipitation is higher than

400 mm (Li et al., 2015; Cao et al., 2018). After the implementation

of the ecological project, vegetated land has increased significantly

by 65.78% on the Loess Plateau (Xiu et al., 2021). Ecological

engineering projects of the GFGP had a great promotion effect on

vegetation greening, which can be detected by the three NDVI

datasets. Meanwhile, large-scale afforestation should be

implemented especially considering local conditions to strengthen

ecological resilience in Chinese drylands, thereby combating

desertification and reducing dust storms.

For the AVHRR, MODIS, and Landsat datasets, the vegetation

turned significantly green in the regions where the transformation

from grassland and cultivated land to forest land and from

cultivated land to grassland was implemented, such as the Loess

Plateau and Northeast China. The percentage of vegetation

browning with the AVHRR, MODIS, and Landsat NDVI datasets

for the National Barrier Zone of China was 33.41%, 15.01%, and

10.77%, respectively. The percentage of vegetation browning with

the AVHRR, MODIS, and Landsat NDVI datasets for the Ecological

Function Reserves of China was 31.52%, 16.12%, and 11.14%,

respectively. It can be seen that Landsat data detected the highest

vegetation greening in the ecological engineering project zone,

followed by MODIS and AVHRR. For example, in the central

part of Southwest China, high spatial resolution remote sensing data

could identify vegetation greening, while coarse spatial resolution

remote sensing datasets with AVHRR and MODIS detected

vegetation browning, and the areas of browning in AVHRR data

was much larger than in MODIS (Figure 4). The vegetation

greening in these areas was more dispersed, and more greening

areas were identified as the resolution increased.

By typical regions (Figure S6), for the Loess Plateau, AVHRR

and MODIS identify significant greening in 49.80% and 78.21% of
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the region, respectively. In Northeast China, the AVHRR data

identify non-significant greening in 49.41% of the region, while

the MODIS data detect significant vegetation greening in 70.59% of

the region. In some regions located in Central China and Hebei

Province, the AVHRR data are mainly focused on vegetation non-

significant browning (38.79%). Unlike the AVHRR data, the

MODIS data are mainly composed of vegetation significant

greening areas (43.65%). In Xinjiang, the AVHRR data are

predominantly vegetation non-significant browning (46.37%),

while the MODIS data are mostly vegetation non-significant

greening with 43.70%. In the Tibetan Plateau, the vegetation

trend with the MODIS data is dominated by total vegetation

greening, which is much larger than that of the AVHRR data,

accounting for 81.76% and 47.31%, respectively. Except for the Loess

Plateau which is dominated by vegetation significant greening and the

Northeast region which is mainly vegetation non-significant greening,

theother typical regionsareall dominatedbyvegetationbrowningwith

AVHRR data and vegetation greening with MODIS data. In the Loess

Plateau and Northeast China, the consistent non-significant greening

areas are the highest, followed by significant greening, non-significant

browning, and significant browning. In Central China and Hebei,

Xinjiang, and the Tibetan Plateau, the consistent non-significant

greening areas are the highest, followed by non-significant browning,

significant greening, and significant browning.
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The scatter density map between greening and browning areas

detected by AVHRR or MODIS with Landsat was illustrated,

showing that the consistent area percentage was 65.71% for

Landsat and AVHRR but changed to 84.37% for Landsat and

MODIS (Figure S7). The inconsistent areas between AVHRR and

Landsat accounted for 34.29% of the study area. For the inconsistent

regions, areas detected as browning by AVHRR but as greening by

Landsat accounted for 29.11%. The inconsistent areas between

MODIS and Landsat accounted for 15.62% of the study area. For

the inconsistent regions, areas with browning for MODIS but

greening for Landsat accounted for 10.28%. The performance of

the MODIS NDVI dataset was better than that of any AVHRR–

NDVI dataset, which was consistent with the opinion of a previous

study (Beck et al., 2011).
5 Conclusions

This study used the three common datasets with various spatial

resolutions on the Google Earth Engine platform to analyze the

vegetation dynamics, and their performances were compared in

detecting vegetation greenness of Chinese drylands from 2000

to 2020:
B

A

FIGURE 5

The spatial distribution of vegetation greening and browning with the NDVImedian from June to September for the two datasets. (A) AVHRR
greening; (B) MODIS greening.
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Fron
1) Vegetation greening trends were detected from 2000 to 2020

using all NDVI datasets of AVHRR, MODIS, and Landsat

in Chinese drylands, especially in the Loess Plateau and

Northeast China with significant greening.

2) The vegetation greening areas identified by Landsat

comprised more small patches than those by MODIS and

AVHRR. The greening areas identified by AVHRR were

smaller than those by MODIS and Landsat, while the

browning areas identified by AVHRR were larger than

those by MODIS and Landsat.

3) Regarding identifying vegetation change, the consistency

between Landsat and MODIS data was higher than that of

AVHRR. The three datasets exhibited high consistency in

identifying vegetation greening in the Northeast, Loess

Plateau, and Xinjiang. The areas of inconsistent trends

among the three datasets were mainly distributed in the

southern part of the Tibetan Plateau, the northern part of

North China, South Central China, and Hebei Province.
The research findings can deepen our knowledge on vegetation

greenness dynamics in Chinese drylands under the warming-

wetting climate trends. Accurately exploring vegetation greening

has great significance for achieving sustainable development and

measuring the regional carbon budget. Future studies can explore

the spatial patterns of vegetation greening with greater precision at

finer spatiotemporal scales.
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