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A major focus for genomic prediction has been on improving trait prediction

accuracy using combinations of algorithms and the training data sets available

from plant breeding multi-environment trials (METs). Any improvements in

prediction accuracy are viewed as pathways to improve traits in the reference

population of genotypes and product performance in the target population of

environments (TPE). To realize these breeding outcomes theremust be a positive

MET-TPE relationship that provides consistency between the trait variation

expressed within the MET data sets that are used to train the genome-to-

phenome (G2P) model for applications of genomic prediction and the realized

trait and performance differences in the TPE for the genotypes that are the

prediction targets. The strength of this MET-TPE relationship is usually assumed

to be high, however it is rarely quantified. To date investigations of genomic

prediction methods have focused on improving prediction accuracy within MET

training data sets, with less attention to quantifying the structure of the TPE and

the MET-TPE relationship and their potential impact on training the G2P model

for applications of genomic prediction to accelerate breeding outcomes for the

on-farm TPE. We extend the breeder’s equation and use an example to

demonstrate the importance of the MET-TPE relationship as a key component

for the design of genomic prediction methods to realize improved rates of

genetic gain for the target yield, quality, stress tolerance and yield stability traits in

the on-farm TPE.

KEYWORDS

genotype x environment (G x E) interactions, genotyping, phenotyping, envirotyping,
genomic prediction
1 Introduction

Plant breeding is grounded in prediction (Goldman, 2000; Duvick, 2001; Cooper et al.,

2014a; Voss-Fels et al., 2019; Kholová et al., 2021). Plant breeding programs are the

operational implementation of coordinated sequences of prediction methods, organized to

continuously create, evaluate, and select new genotypes over multiple breeding program
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cycles (Duvick et al., 2004; Moose and Mumm, 2008; Cobb et al.,

2019; Technow et al., 2021). The cycles are designed to iteratively

improve on the outcomes from previous cycles. Breeding objectives

are framed to develop product outcomes (Fehr, 1987a; Fehr, 1987b;

varieties, hybrids, clones, populations). These products are to be

used by farmers within the Genotype-by-Environment-by-

Management (GxExM) context of agricultural systems of the

target population of environments (TPE); which includes the

biophysical environment and the agronomic management

practices adopted by farmers (Ceccarelli, 1989; Ceccarelli, 1994;

Duvick et al., 2004; Chenu et al., 2011; Persley and Anthony, 2017;

van Etten et al., 2019; Ceccarelli and Grando, 2020; Cooper et al.,

2020; Cooper et al., 2021, Cooper et al., 2023; Kholová et al., 2021;

Ronanki et al., 2022; Zhao et al., 2022). Through successful adoption

and use of the improved products by farmers, together with

appropriate agronomic management practices, breeding programs

can improve food productivity and so contribute to enhanced global

food security. However, there are many persistent gaps documented

between the current levels of crop productivity in agricultural

systems and the targets required to achieve food security (van

Ittersum et al., 2013; van Ittersum et al., 2016; Kholová et al., 2021).

Thus, there is continued interest in improving the design of

breeding programs to target the creation of new products to help

close yield gaps (van Etten et al., 2019; Ceccarelli and Grando, 2020;

Cooper et al., 2020; Kholová et al., 2021; Messina et al., 2022a).

Application of genomic prediction technologies has emerged as

a major theme of breeding program design in the 21st Century

(Meuwissen et al., 2001; Bernardo and Yu, 2007; Heffner et al., 2009;

Cooper et al., 2014a; Voss-Fels et al., 2019; Rogers et al., 2021;

Varshney et al., 2021). Here we discuss and extend the “breeder’s

equation” as a framework to help evaluate opportunities to enhance

genomic breeding outcomes through enhanced design of METs to

provide the relevant training data sets with the required MET-TPE

alignment (Cooper et al., 2014a; Cooper et al., 2014b; Gaffney et al.,

2015; González-Barrios et al., 2019; Rogers et al., 2021; Smith et al.,

2021a; Smith et al., 2021b). Attention to improve the MET-TPE

alignment, as a criterion for the design of MET training data sets,

provides the foundation for effective use of environmental

covariates, crop models and high-throughput phenotyping in

combination with genome-to-phenome (G2P) modelling

algorithms to predict GxExM interactions and enhance

application of genomic prediction for the TPE (Cooper et al.,

2014a; Cooper et al., 2014b; please insert after Messina et al.,

2022a; Gaffney et al., 2015; Messina et al., 2018; Diepenbrock

et al., 2021; Messina et al., 2022a).
2 Theoretical development

2.1 Breeder’s equation

The basic form of the “breeder’s equation” provides a

framework to predict the response to selection (DG ) from one

cycle (L) of a breeding program, following application of a selection

strategy (Moose and Mumm, 2008; Cobb et al., 2019). Here we
Frontiers in Plant Science 02
consider selection strategies that incorporate applications of

genomic prediction (Meuwissen et al., 2001; Bernardo and Yu,

2007; Heffner et al., 2009; Cooper et al., 2014a; Voss-Fels et al.,

2019). Selection pressure is implemented by applying truncation

selection to the distributions of observed or predicted values for one

or more traits within the reference population of genotypes (RPG)

of a breeding program; for example, selection to increase crop yield,

improve grain quality and improve abiotic and biotic stress

tolerances to reduce the extent of yield losses due to the

occurrence of the frequent stresses in the TPE (Chenu et al.,

2011; Kholová et al., 2013; Hajjarpoor et al., 2021; Messina et al.,

2022a). The structure of the breeder’s equation has a long history in

animal and plant breeding (Lush, 1937; Hallauer and Miranda,

1988; Nyquist and Baker, 1991; Comstock, 1996; Moose and

Mumm, 2008) and is frequently used as a quantitative framework

for the design and optimization of crop breeding programs (Araus

and Cairns, 2014; Araus et al., 2018; Cobb et al., 2019; Voss-Fels

et al., 2019; Kholová et al., 2021; Cooper and Messina, 2023). For

applications of genomic prediction, a common form of the breeder’s

equation is given as:

DG = irasa (1)

Where i represents the selection differential applied to the

selection units, based on the trait variation within the RPG, ra
represents the prediction accuracy for breeding values for the

selection units within the RPG, and sa represents the additive

genetic variation among the selection units within the RPG for the

traits that are targeted for improvement by selection. For genomic

breeding, the quantification of prediction accuracy ra is based on

G2P models for traits that are constructed using suitable training

data sets. These G2P models are created algorithmically using the

genetic marker fingerprints and trait phenotypes for the genotypes

included in breeding multi-environment trials (METs) used as

training data sets (Meuwissen et al., 2001; Crossa et al., 2017;

Messina et al., 2018; Diepenbrock et al., 2021). The foundation of

the MET training data sets is typically based on data collected from

the relevant stages of the breeding program (Cooper et al., 2014a;

Voss-Fels et al., 2019; Smith et al., 2021a). Environmental covariates

and model-based characterizations of the sample of environments

present in the MET can be used to create environmental predictors

to be included in the G2P model. These environmental predictors

provide a basis to adjust genomic predictions of genotype breeding

value and performance for different environments to account for

effects of GxE interactions (Jarquı́ n et al., 2014; Crossa et al., 2017;

Messina et al., 2018; de los Campos et al., 2020; Diepenbrock et al.,

2021). Importantly, the samples of environments included in the

METs are considered to represent the environmental composition

of the TPE (Comstock and Moll, 1963; Nyquist and Baker, 1991;

Cooper and DeLacy, 1994; Chenu et al., 2011). The environmental

composition of the METs can be augmented in many ways using

specifically designed field-based and controlled-environment

experiments (Cooper et al., 1995; Cooper et al., 1997,

Campos et al., 2004; Cooper et al., 2014a; Cooper et al., 2014b;

Rebetzke et al., 2013; van Eeuwijk et al., 2019; Langstroff et al., 2022;

Cooper and Messina, 2023). Many assumptions are made when
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applying the breeder’s equation, as represented by equation (1). We

consider some of these assumptions in more detail as they relate to

the prediction of response to selection for improved on-farm

performance within the TPE. We focus on the influence of the

MET-TPE relationship in the presence of GxE interactions within

the TPE of the breeding program and use this as the basis for

deriving the extended breeder’s equation introduced below.
2.2 Extending the breeder’s equation to
take aim at the TPE

The breeder’s equation, as represented in equation (1),

quantifies the per cycle rate of change of the trait mean value for

the RPG (Nyquist and Baker, 1991; Moose and Mumm, 2008; Araus

et al., 2018; Cobb et al., 2019; Voss-Fels et al., 2019). However, this

form of the breeder’s equation does not explicitly quantify the

directionality of the changes in trait values, that are based on the

results and predictions from METs, relative to their requirements

for improved performance in the TPE. Instead, it relies on the

assumption that the environmental composition of the MET is a

good representation of the environmental composition of the TPE,

i.e., that there is good MET-TPE alignment (Comstock and Moll,

1963; Nyquist and Baker, 1991). To enable efficient design of a

breeding program, targeted on creation of new products to close on-

farm yield gaps within the TPE, it is desirable to have a form of the

breeder’s equation that includes both the rate and the directionality

components of genetic gain for the TPE. One approach is to

explicitly include a term in the breeder’s equation that quantifies

the influence of the MET-TPE alignment on the predicted rate of

change within the TPE. Applying correlated response selection

theory (Falconer, 1952; Cooper and DeLacy, 1994; Rogers et al.,

2021; Cooper and Messina, 2023), we provide an extended form of

the breeder’s equation that combines both the rate and

directionality components of trait change under the influence of

selection, explicitly accounting for the influence of the MET-TPE

alignment on the directionality of the change relative to the

requirements for the TPE. Considering the environmental

composition of the MET to be a sample of the environmental

composition of the TPE (MET∈TPE ), an equation for trait genetic

gain within the TPE, based on selection decisions made

using predictions from G2P trait information obtained from

METs (DG(MET,TPE) ), can be given as:

DG MET ,TPEð Þ = iMETra METð Þra MET ,TPEð Þsa TPEð Þ (2)

Two of the terms in equation (2) are equivalent to terms in

equation (1): iMET is the selection differential applied to phenotypic

and G2P prediction information obtained from analyses of the MET

training data sets, as for i in equation (1), ra(MET) is the prediction

accuracy for the selection units based on applications of the training

data available from the MET, as for ra in equation (1). In equation

(2) the sa term of equation (1) is replaced by the product of two

terms ra(MET,TPE) and sa(TPE) . The term ra(MET,TPE) is the genetic

correlation between the additive genetic effects estimated by

applying G2P models developed using the MET training data sets,
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and the additive genetic effects for the trait targets required for

realized trait performance in the TPE. The term sa(TPE) represents
the relevant target additive genetic variation for the traits within the

TPE. Thus, the ra(MET,TPE) term of the extended breeder’s equation

provides a quantitative measure of the impact of the MET-TPE

alignment for the prediction of additive genetic variation for traits

in the TPE, and thus for predicting their contributions to genotype

performance in the TPE. The ra(MET,TPE) can range from +1, with

good MET-TPE alignment, to -1, with poor MET-TPE alignment.

Additional forms of equation (2) can be given, for example for

prediction at the level of the total genotypic trait performance level.

Equally equation (2) can be further extended to examine the

contributions of quantitative trait loci (QTL) and combinations of

haplotypes and specific QTL to the additive or total genotypic

variance for multiple traits in the RPG for the TPE.

Applying the extended form of the breeder’s equation given in

equation (2), statements can be made regarding the design of

genomic prediction strategies based on applications of equation (1).
• Firstly, if the environmental composition of the MET is an

accurate sample of the environmental composition of the

TPE then it can be expected that ra(MET,TPE) ! +1 and

equations (1) and (2) will converge to the same form of the

breeder’s equation, as given in equation (1); in this case the

sa of equation (1) converges to the sa(TPE) of equation (2).

However, if there is GxE interaction and divergence in

environmental composition between the MET and the TPE,

ra(MET,TPE) < +1 can occur, diminishing prediction accuracy

for the TPE. Under such circumstances it can be expected

that realized genetic gain in the TPE will be lower than

predicted when based on studies confined to pursuing G2P

modelling algorithms for improved prediction accuracy

within the bounds of the MET training data sets; in this

case the sa of equation (1) can diverge from the sa(TPE) of

equation (2). Whenever there is historical evidence that

realized genetic gains in the on-farm TPE are lower than the

predicted gains, the magnitude of ra(MET,TPE) should be

investigated to quantify its potential impact on the expected

realized prediction accuracy that can be achieved in the TPE

based on prediction accuracy derived from the training data

available through the MET.

• Secondly, whenever there is evidence of GxE interactions

within the TPE, including GxExM interactions, and there is

the potential for divergence between the environmental

composition and trait data obtained from current METs

and those expected for the future TPE, as is often projected

for the influences of climate change (Chapman et al., 2012;

Ceccarelli and Grando, 2020; Cooper et al., 2021), the

extended form of the breeder’s equation (2) provides a

more appropriate framework than equation (1) for

quantifying the impact of such changes on the design and

optimization of prediction-based breeding strategies.

• Thirdly, for long-term breeding programs, consideration

should be given to characterization of the TPE and the

design of MET experiments to obtain empirical estimates of
frontiersin.org
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Fron
the genetic correlation ra(MET,TPE) and determination of the

genetic and environmental factors contributing to ra(MET,

TPE) < +1. The effects of climate change on the

environmental composition of the TPE and associated

changes in trait contributions to yield and GxE

interactions for current and future cropping systems

represents one clear area for urgent consideration in the

design of METs to address the MET-TPE alignment (Braun

et al., 2010; Chapman et al., 2012; Lobell et al., 2015;

Ceccarelli and Grando, 2020; IPCC, 2021; Bustos-Korts

et al., 2021; Cooper et al., 2021; Resende et al., 2021;

Snowdon et al., 2021; Cooper and Messina, 2023).
To demonstrate the implications of GxE interactions on

realized genetic gain in the on-farm TPE we consider two

examples of the application of the extended form of the breeder’s

equation to investigate the MET-TPE alignment and its potential

impact on the ra(MET,TPE) component of equation (2). The first

considers a familiar theoretical example from the study of crossover

GxE interactions (Haldane, 1947; Ceccarelli, 1989; Ceccarelli, 1994;

Cooper and DeLacy, 1994; van Eeuwijk et al., 2001). The second

considers an empirical example based on a previously published

MET-TPE data set for wheat in Australia (Cooper et al., 1995;

Cooper et al., 1997; Cooper et al., 2001). The wheat example was

previously used to investigate the implications of GxE interactions

for grain yield in the TPE, and also the MET-TPE relationship for

the design of METs to accelerate genetic gain for yield from wheat

breeding in a TPE where complex GxE interactions for grain yield

are ubiquitous (Brennan et al., 1981; Cooper and DeLacy, 1994;

Cooper et al., 1995; Cooper et al., 1997; Basford and Cooper, 1998;

Cooper et al., 2001; Chenu et al., 2011; Lobell et al., 2015; Bustos-

Korts et al., 2021).
3 Examples

3.1 Investigating the MET-TPE alignment:
theoretical example

Theoretical and empirical considerations of the influences of

GxE interactions for breeding have consistently emphasized the

importance of crossover GxE interactions (Figure 1A; Haldane,

1947; Ceccarelli, 1989; Ceccarelli, 1994; Cooper and DeLacy, 1994;

Cooper et al., 2021; Rogers et al., 2021; Smith et al., 2021a; Smith

et al., 2021b). Examples of such crossover interactions in breeding

METs have been demonstrated at the genotypic (Cooper et al.,

1995; Cooper et al., 1997; van Eeuwijk et al., 2001; Xiong et al., 2021;

Smith et al., 2021b) and QTL levels (Boer et al., 2007, Millet et al.,

2019). For the theoretical example of crossover GxE interactions

shown in Figure 1A, the yield performance responses for two

genotypes (G2 and G8) in two environments (Env_1 and Env_2)

are considered. The potential impact of the crossover interactions

depicted in Figure 1A on selection decisions can be examined using

equation (2) by considering the influence of changes in the

frequency of occurrence of the two environments within both the

MET and TPE on the genetic correlation ra(MET,TPE) term from
tiers in Plant Science 04
equation (2). Here we consider the genotypic correlation rg(MET,TPE)

between weighted average yield of the two genotypes between the

MET and the TPE, where the weights are based on the frequencies

of occurrence of the two environments in the MET and the TPE

(Podlich et al., 1999). This provides a simulated scan of the range of

possible MET-TPE alignment scenarios based on the potential

range in frequency of occurrence of the two environments within

the MET and the TPE.

In Figure 1B the genotypic covariance sg(MET,TPE) of the average

performance of the two genotypes in the MET and the TPE is

plotted against the frequency of Env_1 in the MET and the TPE.

The genotypic covariance is the numerator of the genetic

correlation rg(MET,TPE) term of equation (2) and is used here in

place of rg(MET,TPE) to smooth out the response surface for

illustration purposes. The shape of the response surface for the

genotypic covariance (Figure 1B) fluctuates between negative and
A B

DC

FIGURE 1

Two examples of the potential influences of Genotype by
Environment (GxE) interactions for grain yield on the expected
genetic correlation between the average genotype performance in a
multi-environment trial (MET) and the target population of
environments (TPE) rg(MET,TPE) as the frequencies of environment
types change between the sample of environments obtained in the
MET and their presence in the TPE: (A) Schematic yield reaction-
norms for two wheat genotypes (G3, G8) in two environments
(Env_1, Env_2) demonstrating crossover GxE interaction; (B)
Response surface of the expected genotypic covariance sg(MET,TPE)

between average genotype yield performance in a MET and in the
TPE as the frequencies of the two environments (Env_1, Env_2)
change within the MET and TPE; (C) Scatter plot of the average
grain yield for 15 wheat genotypes based on two independent sets
of environments representing both the MET and the TPE; (D)
Response surface of the expected genotypic correlation, rg(MET,TPE)

from equation (2), between average genotype yield performance in
a MET and in the TPE as the frequencies of two environment-types
(E1 = Mild water deficit, E2 = Severe water-deficit) change within the
MET and TPE data sets. The filled symbol on the response surface
indicates the position of the empirical estimate of rg(MET,TPE) for
the grain yield data shown in sub-figure 2c (MET f(E1) = 0.41, TPE f
(E1) = 0.31, rg(MET,TPE)=0.70 ). Data for grain yield estimates were
obtained from the study reported by Cooper et al. (1997).
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positive values depending on the frequency of occurrence of both

environments in the MET and the TPE. Two aspects are noted.
Fron
• Firstly, when the frequencies of both environments are close

to 0.5 in the MET or TPE the genetic covariance, and thus

the genetic correlation rg(MET ,TPE) , approaches 0

(Figure 1B). In such situations selection decisions will

require direct investigation of the GxE interactions and

consideration of how to target breeding for both

environments instead of se lect ion for average

performance in the MET to improve average performance

in the TPE, as simulated here (Figure 1A).

• Secondly, as the frequencies of the environments within the

MET and the TPE deviate from 0.5 towards 1.0 for Env_1

and towards 0.0 for Env_2, or towards 0.0 for Env_1 and

towards 1.0 for Env_2, then the influence of the MET-TPE

alignment becomes increasingly important. When there is

good MET-TPE alignment of the environment frequencies

the genotypic covariance is positive and the crossover GxE

interaction is less problematic for selection decisions

(Figure 1B). However, if there is poor MET-TPE

alignment of the environment frequencies, for example a

high frequency of Env_1 in the MET when Env_1 has a low

frequency in the TPE, then the genotypic covariance can

become negative (Figure 1B). In this situation selection

based on the information obtained from the MET will result

in poor selection decisions that are not aligned with the

needs of the TPE, even if a high prediction accuracy, based

on the value of ra from equation (1) and of ra(MET) from

equation (2), is demonstrated for any prediction method

within the confines of the MET training data set.
3.2 Investigating the MET-TPE alignment:
empirical example

Building on the theoretical example (Figures 1A, B), we apply

the extended breeder’s equation to quantify the impact of the MET-

TPE alignment for an empirical example by estimating the

genotypic correlation rg(MET,TPE) term of equation (2) for a range

of wheat MET-TPE alignment scenarios for north-eastern Australia

(Figures 1C, D). We utilize grain yield data available from a

previously published wheat data set (Cooper et al., 1995; Cooper

et al., 1997; Cooper et al., 2001). The example provides grain yield

data for 15 genotypes and 53 environments. Importantly, for

current considerations, the 53 environments were previously

organized to represent a breeding MET (27 environments) and

the TPE (26 environments) for the north-eastern region of the

Australian wheat belt (Brennan et al., 1981; Cooper et al., 1995;

Cooper et al., 1997; Chenu et al., 2011). The MET was specifically

designed to represent the current understanding of GxE

interactions and MET-TPE alignment scenarios for the wheat

breeding program at that time. The set of 15 genotypes was

chosen to represent groupings of key germplasm from the

reference population of genotypes for the wheat breeding
tiers in Plant Science 05
program (Cooper and DeLacy, 1994; Cooper et al., 1995; Cooper

et al., 1997; Cooper et al., 2001). Further, we identify that the data

for the two genotypes (G2 and G8), used to illustrate crossover GxE

interactions in the theoretical example (Figure 1A), were chosen

from the larger set of 15 genotypes included in the empirical

example (Figure 1C). Also, the two environments (Env_1 and

Env_2) used in the theoretical example were taken from the

empirical example. Thus, the numerical values for the example of

crossover GxE interaction for grain yield (Figure 1A) used for the

theoretical investigations of MET-TPE alignment (Figure 1B) were

representative of important crossover GxE interactions under

consideration within the target breeding program, as considered

in the empirical example (Figures 1C, D; Brennan et al., 1981;

Cooper and DeLacy, 1994; Basford and Cooper, 1998; Cooper

et al., 2001).

Improving grain yield stability for the TPE of the north-eastern

region of the Australian wheat-belt was a primary objective of the

wheat breeding program at that time (Brennan et al., 1981). A

weighted selection strategy, combined with field-based managed-

environments, was developed to account for GxE interactions in the

TPE (Cooper et al., 1995; Cooper et al., 1997; Cooper et al., 2001;

Podlich et al., 1999). Spatial and temporal variability for water

availability was identified as primary driver of grain yield variation

within the TPE, and drought was a major source of crossover GxE

interactions for grain yield. Thus, the environments included in the

MET were managed to sample a gradient of water availability

scenarios, ranging from severe drought to water-sufficient

environments, by managing combinations of irrigation and

nitrogen inputs at a restricted number of locations. The TPE set

of environments was designed by sampling a range of water

availability scenarios from a wider range of locations and years

within the north-eastern region of Australia. The objective was to

design a MET for the stages of the wheat breeding program that

could be consistently managed at a few locations to provide a

stratified sample of the range of water availability environments

expected within the TPE (Brennan et al., 1981; Cooper et al., 1995;

Cooper et al., 1997; Cooper et al., 2001).

Grain yield GxE interactions were previously identified for both

the MET and TPE data sets (Cooper et al., 1995; Cooper et al., 1997;

Cooper et al., 2001). Crossover GxE interactions were frequent

(Figure 1A; Cooper and DeLacy, 1994). For the purposes of

demonstrating an application of equation (2) to the empirical

wheat example, the prior envirotyping was used to identify two

groups of environment-types for both the MET and TPE sets;

environment-type 1 (E1) characterized by mild water-deficits, and

environment-type 2 (E2) characterized by severe water-deficits.

There were GxE interactions between the two environment-types

within the MET and TPE sets (Figure 2; Cooper et al., 1995; Cooper

et al., 1997; Cooper et al., 2001). There was a moderate to weak

positive genotypic correlation for grain yield variation among the 15

genotypes between both environment-types E1 and E2 for the MET

(Figure 2A) and TPE (Figure 2B). Importantly, for interpretation of

the genotypic correlation rg(MET,TPE) between the MET and TPE

(Figure 1D), the genotypic correlation for grain yield variation

between the mild stress environment-type E1 was positive and

strong between the MET and the TPE (Figure 2C). However, there
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was no relationship for grain yield variation between the severe

drought stress environment-type E2 between the MET and the TPE

(Figure 2D). The details of the lack of relationship for environment-

type E2 are discussed in detail elsewhere (Cooper et al., 1995;

Cooper et al., 1997). In summary the MET was designed to focus on

the expected water availability gradient in the absence of other

abiotic and biotic stresses that could also occur within the TPE.

Occurrences of these other abiotic and biotic stresses within the

TPE set were interpreted to be contributing factors to the low

relationship observed for severe drought stress environment-type

E2 between the MET and TPE (Figure 2D). In the absence of the

drought stress for environment-type E1 these other abiotic and

biotic stresses were less influential on the genotypic correlation for

grain yield (Figure 2C).

For purposes of demonstrating an application of the extended

breeder’s equation to the wheat MET-TPE data set (Figures 1C, D)

it is sufficient to note that there was GxE interaction for grain yield

between Environment-types E1 and E2 in both the MET

(Figure 2A) and the TPE (Figure 2B) data sets and that there was

positive predictability between the MET and TPE sets for

environment-type E1 (Figure 2C), but no predictability for

environment-type E2 (Figure 2D). Using this level of envirotyping

we can simulate the influence of changes in the MET-TPE

alignment on rg(MET,TPE) and prediction of average grain yield in
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the TPE based on average grain yield estimated from the MET

(Figure 1D). Following the same procedures applied to the

theoretical example (Figures 1A, B), the potential range of MET-

TPE alignment scenarios was simulated by changing the frequencies

of environment-types E1 and E2 within the MET and the TPE in

steps of 0.1 from 0.0 to 1.0, calculating the weighted average grain

yield of the 15 genotypes for both the MET and TPE, taking into

consideration the frequencies of both environment-types, and

calculating the genotypic correlation rg(MET,TPE) between the

estimates of weighted average grain yield for the 15 genotypes

between the MET and TPE for all MET-TPE alignment

combinations. We then plotted the rg(MET,TPE) against the

frequency of environment-type E1 in the MET and TPE to

generate a simulated rg(MET,TPE) genotypic correlation response

surface for all MET-TPE alignment configurations (Figure 1D).

The genotypic correlation rg(MET,TPE) between the simulated MET

and TPE alignments ranged from a high value of 0.90 to a low value

of -0.07 (Figure 1D). The rg(MET,TPE) response surface for the wheat

example has interesting features. Firstly, there is a relatively broad

plateau of high rg(MET,TPE) values for many of the MET-TPE

alignment scenarios. This plateau of high rg(MET,TPE) values

occurred for scenarios where the frequency of the water-sufficient

environment-type E1 was higher than 0.5 in both the MET and TPE

(Figure 1D), taking advantage of the high predictability between

environment-type E1 in the MET and TPE (Figure 2C). Secondly,

when the frequency of environment-type E1 falls below 0.5 in the

MET or TPE, and therefore the frequency of the water-limited

environment-types E2 increases above 0.5, the rg(MET,TPE) is

degraded from the high levels of the plateau (Figure 1D),

reflecting the increased influence of the poor predictability

between the MET and TPE for the water-limited environment-

type E2 (Figure 2D). This impact of the MET-TPE alignment on

predictability for performance in the TPE using MET results will

apply to all levels of prediction, including genomic prediction,

phenotypic prediction, and combined prediction approaches.

For the specific environment-type configuration realized

for the empirical example (Figure 2), the estimate of rg(MET,TPE)

for prediction of average grain yield for the TPE based on

average gain yield obtained for the MET was intermediate

(Figure 1C); rg(MET,TPE) = 0.70 for MET f(E1) = 0.41, f(E2) = 0.59

and for TPE f(E1) = 0.31, f(E2) = 0.69. Thus, the MET-TPE

alignment for the empirical example was located on the rg(MET,

TPE) response surface (Figure 1D) slightly off of the plateau of higher

rg(MET,TPE) levels, but still above the precipice where the rg(MET,TPE)

value is severely degraded. This empirical realization of MET-TPE

alignment is just one of the many possible scenarios that can occur

as the frequencies of environment-types change between the MET

and the TPE (Figure 1D).

The empirical wheat example (Figures 1, 2) was used to

demonstrate the utility of the extended form of the breeder’s

equation for applications in prediction-based breeding. Here we

have emphasized the use of the extended breeder’s equation as a

useful framework to guide the design MET data sets for training

G2P models for applications of genomic prediction and genomic

selection at different stages of a breeding program to take aim at the

TPE (Cooper et al., 2014a; Cooper et al., 2014b; Gaffney et al., 2015;
A B

DC

FIGURE 2

Scatter diagrams comparing average grain yield predicted for 15
wheat genotypes for two environment-types (E1 = Mild water
deficit, E2 = Severe water-deficit) obtained from independent data
sets representing a multi-environment trial (MET) and the target
population of environments (TPE): (A) Comparison between grain
yield predicted for environment-types E1 and E2 in the MET data
set, rg(E1,E2∣MET); (B) Comparison between grain yield predicted for
environment-types E1 and E2 in the TPE data set, rg(E1,E2∣TPE); (C)
Comparison of grain yield predicted for environment-type E1
between the MET and the TPE data sets, rg(MET,TPE∣E1); (D)
Comparison of grain yield predicted for environment-type E2
between the MET and the TPE data sets, rg(MET,TPE∣E2) . Data for grain
yield predictions were obtained from the study reported by Cooper
et al. (1997).
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Messina et al., 2022a). Many other possible prediction scenarios can

also be investigated, and these will be the subject of future research.
4 Discussion

Design of breeding programs, and crop improvement strategies

in general, to take aim at the crop productivity requirements of the

TPE is critical to both accelerate and achieve realized genetic gain

on-farm that contributes to closing yield gaps (Messina et al.,

2022a), improving global food security (Cooper et al., 2021;

Kholová et al., 2021; Rogers et al., 2021), and the many other

requirements for sustainable agricultural systems (Ceccarelli, 1989;

Ceccarelli, 1994; Persley and Anthony, 2017; van Etten et al., 2019;

Messina et al., 2022b). However, in most considerations of breeding

program design and optimization there is no direct connection

between the optimization considerations that use the framework of

the breeder’s equation, as in equation (1), and the understanding of

the TPE. Thus, there is often a disconnect between the attention to

rate of genetic gain, and the directionality of the breeding program

through its MET-TPE alignment with the requirements of the on-

farm TPE. In the presence of GxE interactions and low ra(MET,TPE)

this MET-TPE alignment disconnect can result in low realized

genetic gain under the on-farm conditions of the TPE, even when

high prediction accuracy, based on ra in equation (1) or more

explicitly ra(MET) in equation (2), is demonstrated for genomic

prediction methods evaluated within the confines of the MET.

The extended form of the breeder’s equation, introduced here as

equation (2), provides a framework to remove this disconnect and

to support design of prediction-based breeding strategies that take

aim at the TPE by emphasizing the influence of the MET-TPE

alignment on realized genetic gain for the on-farm TPE (Cooper

et al., 2014a; Cooper et al., 2014b; Gaffney et al., 2015; Messina et al.,

2022a). Here we demonstrated such application of the extended

breeder’s equation framework through investigation of ra(MET,TPE) ,

rather than assuming ra(MET,TPE) = +1, as is the case for the

traditional form of the breeder’s equation.

We have introduced and demonstrated the utility of the

extended form of the breeder’s equation through applications to a

theoretical and empirical example. In summary the following key

points were presented.

Theoretical considerations: We extended the breeder’s

equation, introducing the genetic correlation ra(MET,TPE) to

explicitly incorporate and quantify the relationship between a

MET and the TPE, as a framework for designing METs to take

aim at the TPE. Three further considerations are important: (1) the

traditional form of the breeder’s equation assumes that the genetic

correlation ra(MET,TPE) = +1; (2) in the presence of GxE interactions

the genetic correlation ra(MET,TPE) can be decomposed to take into

account the genetic variance-covariance structure among the

environment-types within the TPE (Cooper and DeLacy, 1994;

van Eeuwijk et al., 2001; Smith et al., 2005; Smith et al., 2021a;

Smith et al., 2021b; Rogers et al., 2021); and (3) the genetic

correlation ra(MET,TPE) can be applied to the continuum of

selection units of interest to breeders, extending from the level of
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sequence information, accounting for QTL and chromosomal

haplotypes, to total multi-trait, multi-QTL predicted genotypic

performance or breeding value obtained for any G2P model that

is derived from relevant training data sets that can be generated

from METs together with augmented data sources from specialized

phenotyping facilities (Cooper et al., 2014a; Cooper et al., 2014b;

Gaffney et al., 2015; Diepenbrock et al., 2021).

Taking aim at specific target environment-types, for example

specific biotic or abiotic stresses, is not uncommon in plant

breeding (Blum, 1988; Millet et al., 2019). However, taking aim at

the TPE as a mixture of environment-types (Podlich et al., 1999;

Duvick et al., 2004; Cooper et al., 2014a; Cooper et al., 2014b;

Gaffney et al., 2015; Rogers et al., 2021; Smith et al., 2021a; Smith

et al., 2021b; Messina et al., 2022a; Messina et al., 2022b) is much

less common than taking aim at specific environment-types. Taking

aim at the TPE requires detailed consideration of the mixture of

target environment-types within the TPE (Chapman et al., 2000,

Chenu et al., 2011; Chapman et al., 2012; Kholová et al., 2013;

Cooper et al., 2014a; Cooper et al., 2014b; Lobell et al., 2015;

Hajjarpoor et al., 2021; Resende et al., 2021), the extent of GxE

interactions between environment-types (Figure 2) and the details

of the genetic variance-covariance structure among the

environment-types, and appropriate attention to weighting the

sources of G2P information for traits, that is available from the

environment-types sampled in the MET training data sets, by their

frequencies of occurrence and relative importance in the TPE

(Podlich et al., 1999; Cooper et al., 2014a; Cooper et al., 2014b;

Gaffney et al., 2015; Messina et al., 2018; Smith et al., 2021b; Cooper

and Messina, 2023).

Empirical considerations: We demonstrated the application of

the extended form of the breeder’s equation by applying it to a grain

yield data set designed for a wheat breeding program, where the

environments had previously been grouped into MET and TPE sets

with a characterization of the different environment-types in both

the MET and TPE sets (Figures 1, 2; Cooper et al., 1995; Cooper

et al., 1997; Cooper et al., 2001). This prior characterization of

environment-types and the MET-TPE alignment was conducted

prior to the more comprehensive characterization of the wheat TPE

for north-eastern Australia (Chenu et al., 2011; Bustos-Korts et al.,

2021) and so we provided some additional interpretation of GxE

interactions for yield related to water availability and the incidence

of drought and their influences on the genetic correlation rg(MET,TPE)

in terms of the more recent TPE characterization (Figures 1, 2).

Future research: The extended form of the breeder’s equation is

particularly relevant as a framework for the design of breeding

strategies to target climate resiliency to address the impacts of

climate change on the environmental composition of the short,

medium, and long-term future diverse geographical TPEs expected

for our global agricultural systems (Chapman et al., 2012; van Etten

et al., 2019; Ceccarelli and Grando, 2020; IPCC, 2021; Langridge

et al., 2021; Cooper and Messina, 2023). Future work will explore

developments and other applications of the extended breeder’s

equation to assist design of prediction-based breeding programs

to tackle the effects of climate change, where it is expected that

frequencies of environment-types within the TPE will change with
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time (Chapman et al., 2012; Lobell et al., 2015; Hammer et al., 2020;

Snowdon et al., 2021; Cooper et al., 2021; IPCC, 2021; Bustos-Korts

et al., 2021; Cooper and Messina, 2023).
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