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Huanglongbing (HLB), the most prevalent citrus disease worldwide, is

responsible for substantial yield and economic losses. Phytobiomes, which

have critical effects on plant health, are associated with HLB outcomes. The

development of a refined model for predicting HLB outbreaks based on

phytobiome markers may facilitate early disease detection, thus enabling

growers to minimize damages. Although some investigations have focused on

differences in the phytobiomes of HLB-infected citrus plants and healthy ones,

individual studies are inappropriate for generating common biomarkers useful

for detecting HLB on a global scale. In this study, we therefore obtained bacterial

information from several independent datasets representing hundreds of citrus

samples from six continents and used these data to construct HLB prediction

models based on 10 machine learning algorithms. We detected clear differences

in the phyllosphere and rhizosphere microbiomes of HLB-infected and healthy

citrus samples. Moreover, phytobiome alpha diversity indices were consistently

higher for healthy samples. Furthermore, the contribution of stochastic

processes to citrus rhizosphere and phyllosphere microbiome assemblies

decreased in response to HLB. Comparison of all constructed models

indicated that a random forest model based on 28 bacterial genera in the

rhizosphere and a bagging model based on 17 bacterial species in the

phyllosphere predicted the health status of citrus plants with almost 100%

accuracy. Our results thus demonstrate that machine learning models and

phytobiome biomarkers may be applied to evaluate the health status of

citrus plants.
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Introduction

The plant phytobiome, consisting of the rhizosphere,

phyllosphere, and endosphere, harbors diverse microbes that

affect plant growth and health (Berendsen et al., 2012; Liu et al.,

2019; Liu et al., 2020). Considerable research has been carried out

on the diversity, composition, and function of the phytobiome of

various plant species, including rice (Edwards et al., 2015), maize

(Peiffer et al., 2013), corn (Jat et al., 2021), soybean (Zhang et al.,

2018), cucumber (Zhou et al., 2022a), citrus (Xu et al., 2018), and

tomato (Oyserman et al., 2022). Microbes inhabiting plant surfaces

or internal tissues produce metabolites that support plant growth by

regulating physiological processes (e.g., nutrient absorption and

pathogen suppression) (Trivedi et al., 2020). The identification of

microbes associated with specific phenotypes is currently a

fundamental objective of phytobiome researchers. Moreover,

changes to the plant microbiome are influenced by diverse biotic

and abiotic factors of the host and surrounding environment

(Dastogeer et al., 2020). Niche and neutral theory-based

approaches have been used to explore the mechanisms

modulating the microbiome assembly, with all factors classified

into deterministic or stochastic processes (Chen et al., 2019). These

studies have expanded our understanding of phytobiomes, with

implications for managing plant-associated microbiomes to

enhance crop production (French et al., 2021).

Citrus is an economically important fruit crop comprising

several widely cultivated species initially domesticated more than

1,000 years ago (Gmitter and Hu, 1990). Because their fruits contain

an abundance of diverse nutrients, vitamins, and dietary fiber, citrus

species are extensively cultivated worldwide, with annual yields

exceeding 120 million tons (Mahato et al., 2021). Nevertheless,

citrus production has been restricted by global climate change and

the prevalence of diseases (Wang, 2019; Wang, 2020).

Huanglongbing (HLB), a fatal disease, is the biggest threat to

citrus production. The high prevalence of HLB and associated,

considerable yield losses have recently renewed interest in this

disease (Das et al., 2019). HLB leads to a loss of citrus root

carbonaceous compounds, malfunctioning phloem tissues, and

decreased release of photosynthates, all of which impair the

transport of photoassimilates (Trivedi et al., 2020). In addition,

HLB upsets the nutrient balance by altering the ability of roots to

absorb and transport nutrients and water (Wang, 2020). HLB is

mainly caused by the bacterium Candidatus Liberibacter asiaticus

(CLas) (Li et al., 2017). Because CLas cannot be monocultured

(Killiny-Mansour, 2019), clarifying citrus-associated microbiome

dynamics due to HLB pressure is of serious interest.

A comprehensive understanding of citrus-associated

microbiomes may lead to the development of sustainable,

environmentally friendly methods for increasing citrus plant

health and productivity. Global patterns in citrus phytobiomes are

already being revealed (Xu et al., 2018; Zhang et al., 2021; Penyalver

et al., 2022). For instance, the International Citrus Microbiome

Consortium, established in 2015, has performed sequencing

analyses of citrus rhizosphere and soil microbiome samples from

major citrus-producing regions on six continents (Wang et al.,

2015). In addition, recent Illumina-based sequencing of 16S rRNA
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genes has revealed that HLB alters the microbiome of citrus

rhizospheres and phyllospheres (Srivastava et al., 2022). Most

related research has only focused on healthy citrus microbiomes

or HLB-infected ones, however, with relatively few comparative

studies performed on both types of microbiomes (Li et al., 2017;

Ginnan et al., 2018; Blacutt et al., 2020). Whether some citrus taxa

in worldwide cultivation are robust and universally responsive to

HLB remains unclear.

In this study, we systematically reviewed available data on the

citrus phytobiome and compared the bacterial communities of

healthy and HLB-infected citrus plants. In addition, machine

learning approaches were applied to identify potential biomarkers

for HLB occurrence after technical biases, geographic distribution,

and tissue specificity were taken into account. These analyses

allowed us to reveal the diversity, composition, and mechanisms

underlying the bacterial community assembly of HLB-infected

citrus plants. Finally, we developed a phytobiome-based model to

predict HLB outbreaks under field conditions.
Materials and methods

Data collection and description

Screening of the National Center for Biotechnology

Information Sequence Read Archive database using “citrus” and

“huanglongbing” as keywords yielded six HLB-related citrus

microbiome bio-projects that included 1,385 bacterial samples (53

healthy citrus samples and 1,332 HLB-infected ones). Another

seven bio-projects with 802 bacterial samples from healthy citrus

plants were also considered. The metadata for these bio-projects

(Table S1) were classified according to source tissue/material into

five groups (Table S2). Because samples from budwood, bulk soil,

and attached insects were limited, only leaf and rhizosphere datasets

were analyzed further (Table S2). Moreover, samples with fewer

than 3,000 reads were removed to eliminate abnormal sequencing

results. Finally, 806 citrus microbiome samples were retained

(Figure 1A): 29 and 207 from healthy citrus leaves and

rhizospheres, respectively, and 267 and 303 from HLB-infected

citrus leaves and rhizospheres, respectively (Table S3). Four

amplified regions, mainly bacterial ITS (46.28%) and 16S V4

(45.78%), were identified in the metadata (Figure 1B). The

sequencing data were mostly produced on the Illumina MiSeq

platform, with only 20 samples sequenced using the Illumina

HiSeq X Ten system (Figure 1C).
Data processing

The collected datasets, in FASTQ format, were analyzed using a

standard Quantitative Insights Into Microbial Ecology 2 (QIIME2)

pipeline (Bolyen et al., 2019). After removal of primer sequences

and quality control, the resulting clean reads were clustered to

obtain amplicon sequence variants (ASVs) using the DADA2 plug-

in unit (Bokulich et al., 2018). Each ASV was assigned to a taxon

according to a closed-reference strategy using the SILVA database
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(release 138) (Yilmaz et al., 2014). In this approach, a reference

database comprising the full-length sequences of amplified targets

was predefined and used to generate representative sequences and

taxonomically classify sequences produced by different primers (Yu

et al., 2018). Non-bacterial ASVs (i.e., chloroplasts and archaea) and

singletons (ASVs with only one read) were discarded. Finally, the

ASV abundance tables were rarefied to 3,000 reads per sample

because of the unequal sequencing depth.
Statistical analyses

All statistical analyses were conducted in R (v4.0.2), and the

results were visualized using the R “ggplot2” package (R Core Team,

2020). The following three alpha diversity indices for bacterial

communities were calculated using the “vegan” package (Oksanen

et al., 2020): Chao1 (richness), Shannon’s (diversity), and Pielou’s J

(evenness). Differences in the alpha diversity and relative

abundance of bacterial phyla and genera between healthy and

HLB-infected citrus leaf and rhizosphere samples were analyzed

using the t-test function. Bray–Curtis distances between bacterial

communities were calculated using the vegdist function in the

“vegan” package. These distances were then used in a principal

coordinate analysis (PCoA) with the pcoa function in the “ape”

package and a permutational multivariate analysis of variance

(PERMANOVA) with the adonis function in the “vegan” package
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to evaluate differences in the bacterial communities of healthy and

HLB-infected citrus leaf and rhizosphere samples. A Venn diagram-

based analysis was performed using the “VennDiagram” package

(Chen, 2022) to identify shared bacterial ASVs among samples.

Differences in the total relative abundance of shared ASVs were

assessed by ANOVA followed by Tukey’s HSD test (“multcomp”

package). Finally, a neutral community model was used to

determine the potential importance of deterministic and

stochastic processes on the assembly of bacterial communities. In

this model, two variables were defined: m, an estimate of the

dispersal between communities, and R2, which represented the

ratio of the contributions of stochastic processes (Sloan et al., 2006).
Machine-learning modeling

To more precisely distinguish between bacterial communities of

HLB-infected and healthy citrus plants, we applied the following 10

established machine learning algorithms (Gupta et al., 2021) to

construct models according to relative abundances of bacteria

(phylum to species levels): logistic regression, decision tree, k-

nearest neighbor, bagging, gradient boosting, Bayes classification,

artificial neural network, conditional inference tree, random forests,

and support vector machines. Models were constructed for leaf and

rhizosphere microbiomes separately. More specifically, 70% of

healthy and HLB-infected citrus samples were randomly selected
A B

C

FIGURE 1

Study characteristics. (A) Thirteen bio-projects were considered, from which 806 bacterial samples were ultimately selected. (B) Details regarding
the amplified regions for all selected samples. (C) Ratio of the sequencing platforms for all selected samples.
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as training data to construct models, and the remaining 30% were

used as testing data for model validation. The predicted results were

compared with actual health status using two metrics: receiver

operating characteristic curve (ROC) and area under the curve

(AUC) scores (Sing et al., 2005). Finally, the best-performing

models (i.e., those with the highest AUC scores and accuracies)

were identified, and the importance of various features in the

classification was determined.
Results

Differences in the microbiome diversity of
HLB-infected and healthy citrus samples

Meta-analysis of sequencing data for 806 bacterial samples from

six continents generated a merged bacterial ASV table comprising

more than 3,700 taxa. All of these bacterial ASVs were annotated at

the phylum level, but only 67.45% and 25.5% were annotated at

genus and species levels, respectively (Figure S1). We rarefied the

sequencing data to 3,000 reads per sample before calculating alpha

diversity indices. which were lowest and highest for HLB-infected
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citrus leaf and healthy citrus rhizosphere microbiomes, respectively

(Figure S2). More importantly, Chao1, Shannon’s, and Pielou’s J

indices of leaf and rhizosphere bacterial communities were

significantly lower for HLB-infected citrus samples than healthy

ones (Student’s t-test, p < 0.05; Figures 2A, B). In addition, inter-

individual differences in the alpha diversity indices of leaf and

rhizosphere bacterial communities were more obvious for HLB-

infected samples than for healthy samples (Figures 2A, B).

According to PCoA and PERMANOVA, the bacterial community

structures of HLB-infected and healthy citrus leaf and rhizosphere

samples were significantly different (p < 0.05; Figures 2C, D).

Moreover, inter-individual differences in leaf and rhizosphere

bacterial communities were greater for HLB-infected samples

than for healthy ones (Figures 2C, D), consistent with the

differences observed in alpha diversity indices.
Taxonomic classification of bacteria in
citrus leaf and rhizosphere microbiomes

The most dominant bacterial phylum in citrus leaf and

rhizosphere samples was Proteobacteria, which was followed by
A

B D

C

FIGURE 2

Differences in the alpha diversity indices for the bacterial communities of the HLB-infected and healthy citrus leaf (A) and rhizosphere (B) samples.
Different lowercase letters above each box in the same subfigure represent significant differences between groups (Student’s t-test, p < 0.05).
Results of the PCoA and PERMANOVA conducted on the basis of the Bray-Curtis distance for the bacterial communities of the HLB–infected and
healthy citrus leaves (C) and rhizospheres (D).
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Cyanobacteria and Actinobacteriota in leaf and rhizosphere

microbiomes, respectively (Figure 3A). Actinobacteriota and

Firmicutes were more abundant in HLB-infected citrus

rhizospheres than in healthy citrus rhizospheres, whereas the

opposite pattern was observed for Proteobacteria and

Bacteroidota (Figure 3B). HLB-infected leaves had a higher

relative abundance of Proteobacteria, whereas healthy leaves had

higher relative abundances of Cyanobacteria, Actinobacteriota, and

Bacteroidota (Figure 3C). We also detected 186 shared taxa among

bacterial communities (Figure 3D). The total relative abundances of

shared bacteria in citrus leaf and rhizosphere microbiomes were

significantly higher for HLB-infected samples than for healthy ones

(Tukey’s HSD test, p < 0.05; Figure 3E). Most shared bacteria with

increased abundances in HLB-infected samples belonged to

Proteobacteria, Firmicutes, and Nitrospinota (leaf microbiome) or

Actinobacteriota (rhizosphere microbiome) (Figure 3F).
Analysis of microbiome assembly
mechanisms of HLB-infected and healthy
citrus samples

To explore the mechanisms underlying the differences in leaf and

rhizosphere microbiome assemblies between HLB-infected and

healthy citrus samples, we examined the relative effects of niche
Frontiers in Plant Science 05
and neutral processes on the assembly of bacterial communities. The

neutral community model explained a large proportion of the

variance in the bacterial community of healthy citrus rhizospheres

(R2 = 0.727), whereas only 37.9% of the corresponding variance in

HLB-infected citrus rhizospheres was explained by this model

(Figure 4). In contrast, the neutral community model explained

only 19.4% and 37.6% of the variance in bacterial communities of

HLB-infected and healthy citrus leaves, respectively (Figure 4). These

results indicate that the bacterial community assembly in healthy

citrus rhizospheres and leaves was respectively governed by stochastic

and deterministic processes. More importantly, HLB obviously

decreased the contribution of stochastic processes to the assembly

of bacterial communities in citrus leaves and rhizospheres.
Bacterial communities useful for
distinguishing between HLB-infected and
healthy citrus samples

To determine whether the properties of leaf and rhizosphere

bacterial communities may be useful biomarkers for distinguishing

between HLB-infected and healthy citrus plants, we constructed 10

machine learning models. The accuracy of model predictions based

on the testing data as well as AUC and ROC data derived from the

models were used to evaluate model performance (Figures S3, S4).
FIGURE 3

(A) Relative abundance (%) of the major phyla present in the bacterial communities in the HLB-infected and healthy citrus leaves and rhizospheres.
Bacterial phyla with significantly different relative abundances in the HLB-infected and healthy citrus rhizosphere (B) and leaf (C) samples. (D) Venn
diagram of the number of shared ASVs in the HLB-infected and healthy citrus leaves and rhizospheres. (E) Differences in the total relative
abundances of shared bacterial taxa in the HLB-infected and healthy citrus leaves and rhizospheres. Different lowercase letters above each box in
the same subfigure represent significant differences between groups (Tukey’s HSD test, p < 0.05). (F) Relative abundance (%) of the shared bacterial
phyla in the HLB–infected and healthy citrus leaves and rhizospheres.
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We also used the accuracy of predictions for healthy and HLB-

infected samples to select the best models (Figure S5). The bagging

model trained at the species level and the random forest model

trained at the genus level were found to be the best models for

classifying leaf and rhizosphere samples, respectively (Figure 5).

The bagging model for detecting HLB based on bacterial species

in citrus leaves was constructed using 17 species—the most

important of which was Solanum melongena (eggplant)

(Figure 6A). Two of these species, (CLas and Paraburkholderia

rhizoxinica HKI 454), had higher relative abundances in HLB-

infected leaves, whereas 15 species had higher relative abundances

in healthy leaves (Table S4). In terms of the citrus rhizosphere, 28

bacterial genera were defined as biomarker taxa for HLB, of which

Nitrospira was the most important (Figure 6B). Four of these genera

had higher relative abundances in HLB-infected citrus rhizospheres,

and the other 24 genera had higher relative abundances in healthy

citrus rhizospheres (Table S5). Streptomyces, Burkholderia-
Frontiers in Plant Science 06
Caballeronia-Paraburkholderia, and Bacillus were all enriched in

HLB-infected citrus rhizospheres to the same degree relative to

healthy rhizospheres.
Discussion

The exploration of biomarkers common to the phytobiome of

citrus plants infected with HLB is critical for developing improved

methods for diagnosing plant diseases caused by bacteria and for

determining optimal treatments. Nevertheless, knowledge of

whether certain microbial lineages consistently respond to HLB

across global biogeographic regions is unclear. In this study, we

performed a meta-analysis of HLB-infected and healthy citrus

rhizosphere and phyllosphere microbiomes on a global scale to

screen for biomarkers useful for detecting HLB. By combining

globa l datase ts , we determined that Proteobacter ia ,
FIGURE 4

Fit of the neutral community model for the bacterial communities in the HLB-infected and healthy citrus leaves and rhizospheres. The solid and
dashed lines indicate the best fit to the neutral community model and the 95% confidence intervals for the model predictions, respectively. m,
meta–community size times immigration; R2, how well the data fit the model.
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Actinobacteria, Acidobacteria, and Bacteroidetes were the

predominant bacterial phyla in healthy citrus rhizospheres

(Figure 3A). This result is consistent with the findings of an

earlier study on citrus rhizosphere samples from six continents

(Xu et al., 2018). Furthermore, the dominant bacterial phyla

detected in healthy citrus phyllospheres as well as the distribution

of their relative abundances in this study are in accordance with

published results (Blaustein et al., 2017; Bai et al., 2019; Wu et al.,

2020). These observations revealing similarities in citrus

phytobiomes from various geographical regions imply that host

phylogeny may influence phytobiome assembly more than

geographical factors. Recent reports have described adaptive

matching between rhizosphere and phyllosphere microbiomes

and plant hosts (Lajoie et al., 2020; Escudero-Martinez et al., 2022).

Symbiotic microbiome homeostasis is closely associated with

host physiological features and health (Paasch and He, 2021). As a

fundamental indicator of the stability and performance of microbial

communities, diversity is a crucial index for phytobiomes (Sare

et al., 2020). A decrease in phytobiome richness and diversity is

often responsible for the increased susceptibility of plant hosts to

potentially harmful factors (Agler et al., 2016). In addition,

decreased phytobiome diversity may be due to insufficient

competition between resident commensals and invading

pathogens (Thoms et al., 2021). In the current study, alpha

diversity decreased in the rhizosphere and phyllosphere

microbiomes of citrus plants infected with HLB (Figures 2A, B).

Alpha diversity indices varied considerably among HLB-infected

samples, however, which may be related to the features of the

sequenced regions and the methods used. Moreover, the

PERMANOVA results revealed that data source and sequenced

target region had larger effects on citrus phytobiome composition

than did citrus health status, geographic location, and tissue source

(Table S6). Alpha diversity and citrus phytobiome composition

were thus strongly affected by the methods used in different bio-

projects and may therefore not be robust indicators of citrus

health status.
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Most research conducted on a global scale has suggested that

relatively few bacterial taxa represent a large proportion of highly

diverse bacterial communities. For example, a study examining

global soil samples found that 2% of bacterial taxa accounted for

nearly half of bacterial communities at various sites (Delgado-

Baquerizo et al., 2018). Notably, Xu et al. (2018) reported that a

small number of bacterial taxa (< 10%) were the core taxa in

rhizospheres of citrus samples collected on various continents. In

the present study, we detected 138 bacterial taxa common to all

samples; these taxa represented approximately half of the bacterial

communities in healthy citrus samples (Figure 3E). In contrast, the

median total abundances of shared bacterial taxa in HLB-infected

citrus leaves and rhizospheres corresponded to approximately 95%

of the entire communities (Figure 3F). Hence, a limited number of

core taxa were associated with the occurrence of HLB in citrus

plants. This result may help to explain the decrease in alpha

diversity index values among HLB samples.

The mechanisms mediating the assembly of phytobiome

communities must be considered when designing plant

microbiome management strategies (Trivedi et al., 2020). From a

meta-community perspective, bacterial community assembly is

governed by both deterministic and stochastic processes (Tian

et al., 2022). If communities are controlled by deterministic

processes, species will occupy specific ecological niches in a

predictable fashion (Vanwonterghem et al., 2014). In contrast,

multiple species can exist in similar or overlapping habitats in

communities affected by stochastic fluctuations (Sloan et al., 2006).

Our findings suggest that stochastic and deterministic processes are

critical for shaping healthy citrus rhizosphere and phyllosphere

microbiomes (Figure 4). Inconsistencies between citrus rhizosphere

and phyllosphere community assemblies may be attributed to their

different lifestyles and functions. Plant leaves and roots are located

above- and belowground, respectively, which allows phyllosphere

and rhizosphere microbiomes to perform different functions

(Trivedi et al., 2012). In addition, low nutrient levels and long-

term illumination may lead to changes in the abundances of specific
FIGURE 5

Steps involved in generating and validating the health status prediction models. Ten different classification algorithms were used for predicting HLB
infections. Model prediction performances were evaluated on the basis of bacterial abundances from the phylum to species levels.
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bacteria in the phyllosphere microbiome (Carvalho and Castillo,

2018), thereby increasing the importance of deterministic processes.

Moreover, we observed that deterministic processes mediated

phytobiome assembly more substantially in HLB-infected citrus

samples than in healthy ones (Figure 4). Similar observations have

been reported for phytobiomes of other diseased plants and the gut

microbiota of diseased animals (Yao et al., 2018; Liu et al., 2022;

Zhang et al., 2022). HLB is a disease caused by pathogenic bacteria,

and the enriched pathogens will decrease the abundance of species

with an overlapping niche and select for species without niche

conflicts through competition (Chase, 2011). This phenomenon

may explain why deterministic processes shaped the HLB-infected

citrus microbiome.

Among the many statistical methods for elucidating the

complex relationships between microbial communities and

specific phenotypes, machine learning-based methods are

considered the most promising (Torija and Ruiz, 2015). Machine
Frontiers in Plant Science 08
learning approaches take various forms according to their

algorithms (e.g., unsupervised, semi-supervised, or supervised

learning) (Ghannam and Techtmann, 2021). In the present study,

we assessed the relationship between the health status of citrus

samples collected worldwide and the relative abundance of bacteria

at different taxonomic levels in the rhizosphere and phyllosphere.

We used 10 machine learning approaches and found that the most

appropriate models for predicting HLB infections were supervised

learning methods (random forest and bagging) that were based on

rhizosphere and phyllosphere bacterial genera and species

(Figure 5). A previous meta-analysis demonstrated that

supervised learning models for soil microbiomes may be used to

predict the potential occurrence of Fusarium wilt disease in plants

(Yuan et al., 2020). In addition, supervised learning methods have

identified robust and reproducible features relevant for diagnosing

shrimp diseases according to meta-analyses of gut microbiota (Sha

et al., 2022). The origin and quality of sea cucumber cultured in
A

B

FIGURE 6

Biomarker taxa ranked in descending order of importance for the accuracy of predictions and their relative abundances in the leaf (A) and
rhizosphere (B) models.
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diverse geographic regions has also been accurately predicted using

random forest models for gut microbiota (Zhao et al., 2022).

Furthermore, supervised machine learning approaches have

accurately predicted environmental health variables following

analyses of microbiome data (Zhou et al., 2022b). Random forest

models for microbial communities have predicted the soil health

parameters of agroecosystems, with accuracies exceeding 80%

(Wilhelm et al., 2022). These results provide convincing evidence

of the utility of supervised learning methods for establishing models

that accurately predict the health status of plants.

The vector of HLB, a bacterial infection of citrus trees, is

believed to be the Asian citrus psyllid Diaphorina citri (Galdeano

et al., 2020). At present, the dominant control strategies for HLB are

removal of HLB-symptomatic citrus trees and the spraying of

insecticides to restrict the psyllid (Coletta-Filho et al., 2014).

Because HLB-infected trees may remain asymptomatic for several

months, however, the efficacy of current disease control measures is

limited (Lee et al., 2015). Using the bagging model, we identified

crucial bacterial taxa related to citrus HLB disease incidence,

including CLas and Paraburkholderia rhizoxinica in the

phyllosphere and Streptomyces, Burkholderia-Caballeronia-

Paraburkholderia, and Bacillus in the rhizosphere. A recent study

indicated that CLas is the main pathogen responsible for HLB

outbreaks (Ginnan et al., 2020). Paraburkholderia rhizoxinica is an

endofungal bacterium that has a symbiotic relationship with

phytopathogenic fungi (Braga et al., 2019). In contrast, bacteria

enriched in HLB-infected citrus rhizospheres in our study were not

directly related to the disease phenotype. These bacteria included

antibiotic producers and species with detrimental effects on

community stability (Nicholson, 2002; de Lima et al., 2012). Our

findings imply that the risk of HLB can be assessed by screening for

a few specific known pathogens in citrus leaves. Data for only 29

healthy citrus phyllospheres were included in our analyses,

however, and a limited sample size and bias between two

classifications can cause machine learning models to overestimate

the risks of HLB outbreaks (Gupta et al., 2021). We thus

recommend the use of a random forest model based on bacterial

genera in the rhizosphere to predict the likelihood of HLB in

citrus plants.
Conclusions

In this study, we analyzed the utility of phytobiome

examinations for detecting HLB-infected citrus plants on a global

scale. Meta-analyses involving the phytobiome data of hundreds of

citrus samples revealed significant decreases in rhizosphere and

phyllosphere microbiome diversities of HLB-infected samples

relative to healthy ones. Furthermore, the onset of HLB increased

the contribution of deterministic processes to citrus rhizosphere

and phyllosphere microbiome assemblies. We also identified 17 and

28 HLB-related taxa in the phyllosphere and rhizosphere,

respectively. These taxa may be exploited to accurately predict

citrus HLB outbreaks on the basis of selected machine learning

models. The findings of this study are relevant for evaluating the

risks of HLB in citrus plants according to phytobiome compositions
Frontiers in Plant Science 09
derived from 16S rRNA gene sequencing data. Advances in high-

throughput sequencing technology and decreases in associated costs

should enable researchers to further improve models for predicting

the health status of agriculturally important plant species.
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