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Leaf traits are important indicators of plant life history and may vary according to

plant functional type (PFT) and environmental conditions. In this study, we

sampled woody plants from three PFTs (e.g., needle-leaved evergreens, NE;

broad-leaved evergreens, BE; broad-leaved deciduous, BD) on the eastern

Qinghai-Tibetan Plateau, and 110 species were collected across 50 sites. Here,

the divergence and correlations of leaf traits in three PFTs and relationships

between leaf traits and environment were studied. The results showed significant

differences in leaf traits among three PFTs, with NE plants showed higher values

than BE plants and BD plants for leaf thickness (LT), leaf dry matter content

(LDMC), leaf dry mass per area (LMA), carbon: nitrogen ratio (C/N), and nitrogen

content per unit area (Narea), except for nitrogen content per unit mass (Nmass).

Although the correlations between leaf traits were similar across three PFTs, NE

plants differed from BE plants and BD plants in the relationship between C/N and

Narea. Compared with the mean annual precipitation (MAP), the mean annual

temperature (MAT) was themain environmental factor that caused the difference

in leaf traits among three PFTs. NE plants had a more conservative approach to

survival compared to BE plants and BD plants. This study shed light on the

regional-scale variation in leaf traits and the relationships among leaf traits, PFT,

and environment. These findings have important implications for the

development of regional-scale dynamic vegetation models and for

understanding how plants respond and adapt to environmental change.
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Introduction

Plant functional traits are useful tools for exploring how plants

adapt to the environment and studying global climate change (Dıáz

et al., 2016; Fyllas et al., 2020; Cano-Arboleda et al., 2022). Among

these traits, leaf traits have received particular attention due to their

sensitivity to climate change and their ability to reflect plant

resource acquisition and utilization (Wilson et al., 1999; Meng

et al., 2015; Baruch et al., 2017; Ye et al., 2022). In dry conditions,

plants tend to have thicker leaf thickness (LT), higher leaf dry mass

per area (LMA), and larger leaf dry matter content (LDMC), in

order to reduce water loss and enhance their ability to adapt to the

drought environments (Akram et al., 2020; Akram et al., 2022). Leaf

nitrogen content is closely related to photosynthesis (Chen et al.,

2013; Zhan et al., 2018). The leaf carbon capture strategy can be

represented by nitrogen content per unit area (Narea), nitrogen

content per unit mass (Nmass), and carbon: nitrogen ratio (C/N)

(Chen et al., 2013; Zhan et al., 2018). Plants typically had higher

Narea and LMA under hot and dry environmental conditions, as this

increased investment of nitrogen in structure enhanced their

survival in adversity (Wright et al., 2003; Blumenthal et al., 2020;

Himes et al., 2020). As essential members of plant functional traits,

leaf traits can provide insight into the relationship between plants

and the environment at both the regional and global scales (Dong

et al., 2020; Xu et al., 2021; Toledo-Aceves et al., 2022).

The interrelationships among leaf traits can be affected by

historical contingencies and current environmental pressures, and

the relationships between leaf traits can differ among different plant

functional types (PFTs) (Garnier et al., 2001; Liu et al., 2008; Jones

et al., 2013; Dıáz et al., 2016; Fyllas et al., 2020). The research found

that LMA and LDMC were correlated with LT, and the thicker

leaves showed a trade-off between higher leaf toughness (physical

strength) and lower leaf photosynthetic rate (Wilson et al., 1999;

Pérez-Harguindeguy et al., 2013). Although general dimensions of

variation in leaf traits had been observed worldwide to determine

basic plant survival strategies, but recent studies had shown that the

relationship might be unstable on a local scale and there were

difference among different PFTs (Fyllas et al., 2020; Chen et al.,

2023). The comparative study of leaf trait variation among different

PFTs is helpful to determine the plant survival strategy and

parameterization of dynamic vegetation models (Adler et al.,

2014). According to leaf habit and form, woody plants can be

divided into needle-leaved evergreen (NE) woody plants, broad-

leaved evergreen (BE) woody plants and broad-leaved deciduous

(BD) woody plants (Fyllas et al., 2020). NE plants can survive in

colder environments due to their relatively high cavitation

resistance and nutrient use efficiency (Bond, 1989; Brodribb et al.,

2012). BE plants and NE plants generally have the longer leaf life

span, and they can survive and maintain photosynthesis during a

long period of soil water deficit (Box and Fujiwara, 2015). BD plants

are more competitive than NE plants and BE plants under the

conditions of adequate moisture due to higher photosynthetic

capacity and hydraulic conductivity, which placed them toward
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the ‘acquisitive’ part of the leaf economic spectrum (Wright et al.,

2004; Berendse and Scheffer, 2009).

The Qinghai-Tibet Plateau provides natural experimental sites

for the study of leaf traits, as it has a large elevation drop, high

species richness, and complex community structure (Kang et al.,

2021). However, under the context of multi-level changes in the

alpine environment caused by climate change, the study is not very

comprehensive that the response of leaf traits to environmental

change among different PFTs in this region. It is essential to

understand variation in leaf traits among different PFTs and

response and adaption of plant to environmental change. This

study mainly focused on woody plants on the eastern Qinghai-

Tibetan Plateau, and objectives were (1) to understand the variation

in leaf traits among different PFTs, (2) to explore the change

patterns and relationships in leaf traits among different PFTs in

the subalpine environment, and (3) to clarify the relationship

among leaf traits, PFTs, and the environment (elevation

and climate).
Materials and methods

Research sites

The Qinghai-Tibetan Plateau boasts a unique natural

environment and spatial differentiation, which is attributed to the

reduction of atmospheric circulation and the distinct topography of

the plateau (Li et al., 2022). The distinctive geographical

combination of water and thermal conditions created ideal

experimental sites for this research. The research sites were

primarily situated in the eastern Qinghai-Tibetan Plateau, across

the Yunnan, Sichuan, and Gansu provinces of China (25.72 °N -

33.67 °N, 98.49 °E - 104.82 °E). The mean annual precipitation

(MAP) at the research sites ranged from 525 mm to 1240 mm, and

the mean annual temperature (MAT) ranged from -4 °C to 21 °C.

Additionally, the sites contained a large elevation drop (860 m -

4200 m) and an array of vegetation types, including alpine shrub,

subalpine coniferous forest, subalpine coniferous and broad-leaved

mixed forest, dry valley shrub, and dry-hot valley shrub (Du et al.,

2020). These natural experimental conditions provided an excellent

basis for our investigation into the leaf traits of woody plants

(Figure 1; Table S1).
Field sampling

Field surveys and sampling were conducted from 2018 to 2020

during the peak period for plant growth (July to September). The 50

broadly representative woody sample sites on the eastern Qinghai-

Tibetan Plateau were selected and 3 - 5 plots were set up (forest,

20 m × 20 m; shrub, 10 m × 10 m) at each site. To minimize human

interference, the plots were set up within natural reserves, and we

recorded the longitude and latitude of each plot using a global
frontiersin.org
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positioning system (Thales Navigation, Santa Barbara, CA, USA).

Five to seven individuals of each species with 15 - 20 g leaves per

individual within a plot were collected as one sample for measuring

leaf traits. Expanded, mature, and sun-exposed leaves of trees and

shrubs were collected. Totally, the 771 samples were collected from

110 species across the 50 sites, including three plant functional types

(PFTs) (e.g., needle-leaved evergreens, NE; broad-leaved

evergreens, BE; and broad-leaved deciduous, BD).
Leaf traits measurement

The study measured six leaf traits, including leaf thickness (LT,

mm), leaf dry matter content (LDMC, mg/g), leaf dry mass per area

(LMA, mg/cm2), nitrogen content per unit area (Narea, mg/cm2),

nitrogen content per unit mass (Nmass, mg/g), and carbon:nitrogen

ratio (C/N) (Rawat et al., 2021). LT was measured using a vernier

caliper with an accuracy of 0.01 mm, and the leaf fresh weight

(LFW) was weighed using an electronic balance with an accuracy of

0.001 g. The leaf area (LA) was calculated using image analysis

software (image J v.1.8.0) after scanning the leaves using a scanner

(Seiko Epson Co., Nagano, Japan). After recording all the
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measurements, the leaf samples were baked in an oven at 75°C

for 72 hours to a constant weight, and the leaf dry weight (LDW)

was weighed. Nmass, Narea, and C/N were analyzed after the leaf

samples were ground into fine powder using a steel ball mixing mill

MM200 (Retsch GmbH, Haan, Germany) (Cornelissen et al., 2003;

Pérez-Harguindeguy et al., 2013). LMA and LDMC were calculated

using the following equations:

LMA =
LDW
LA

LDMC =
LDW
LFW
Climate data

Meteorological data for the study was obtained from China

Ecosystem Research Network. The dataset was generated using data

from 2400 weather stations of the China Meteorological

Administration spanning from 1980 to 2020 and had a spatial

resolution of 1 × 1 km (https://data.cma.cn). MAT and MAP values

for each plot were extracted using the interpolation software of

ANUSPLIN (v.4.36) (Hutchinson and Xu, 2013) from climate

dataset. This allowed us to obtain accurate and representative

climatic conditions of the study area.
Data analysis

The data analyzed in this study include species-mean trait

values for each species sampled at each plot (Dong et al., 2020;

Wang et al., 2022). Linear mixed models were used to explore

whether the variation of leaf traits was independent of PFTs

identity. In this analysis, species were used as fixed effects and

PFTs were used as random effects (package Ime4, Ismeans). LSD’s

post-hoc test was then performed to compare the differences in leaf

traits among three PFTs. Principal component analysis (PCA) was

utilized to explore differences in major functional dimensions

among three PFTs. Linear models and Pearson’s correlation were

applied to determine relationships between leaf traits. Linear

models were used to explore whether the effect of environmental

variability on leaf traits was independent of PFTs. At the same time,

linear mixed models with PFTs as random effects and

environmental factors as fixed effects were used to compare and

verify the results of the linear model. Because there was no obvious

difference between the results of the two models, the results of the

linear model were finally selected for analysis (Warton et al., 2006).

To quantify the relative contributions of PFTs, MAT, and MAP on

leaf traits, partial general linear models analyses were used with leaf

traits as dependent variables and PFTs, MAT, and MAP as

predictors. The partial regressions was used to divide the
FIGURE 1

Geographic locations of the research sites.
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variation in response variables explained by predictive variables into

independent components (PFTs, MAT, MAP) and joint

components (PFTs - MAT, PFTs - MAP, MAT - MAP, PFTs -

MAT - MAP) (Zhan et al., 2018). Additionally, linear mixed models

and linear models were conducted using R v.3.6.1 (R Core Team,

2019), the other analyses were performed using SPSS v.23.0

(Field, 2013), the graphs were performed using Origin v.2021

(Chen, 2006).
Results

Leaf traits of different PFTs

The result indicated that there were significant differences in

leaf traits among different PFTs (p<0.01) (Table 1). LT, LDMC,

LMA, C/N, and Narea of NE were significantly higher than those of

BE and BD, and showed the pattern of NE>BE>BD. In contrast,

Nmass showed the opposite trend, with NE<BE<BD. Principal

components analysis (PCA) of the data showed that the

multivariate space occupied by three PFTs was distinct (Figure 2).

The first and second PC axes explained 74.8% and 12.8%,

respectively. PC1 was strongly positively related to LT, LDMC,

LMA, C/N, and Narea, and negatively related to Nmass (Figure 2).
Correlation between leaf traits

Significant correlations were observed between leaf traits, which

varied among three PFTs (Figure 3; Table 2). In most cases, the

correlations between leaf traits of three PFTs were similar. For

instance, a positive correlation was observed among C/N-LDMC

(Figure 3A), LMA-LT (Figure 3C), C/N-LMA (Figure 3D), LDMC-

LMA (Figure 3E), Narea-LT (Figure 3I), and C/N-LT (Figure 3J),

while a negative correlation was observed between LMA-Nmass

(Figure 3F), LDMC-Nmass (Figure 3H), and Nmass-LT (Figure 3L).

However, in only a few cases, the slope relations were significantly
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different among three PFTs (Figures 3B, G, K; Table 2). The

common slope test showed that the scaling index varied

significantly among the PFTs, indicated that the scaling

relationship was dependent on the PFTs associated with most of

the bivariate traits examined (Figure 3; Table 2).
Relationship between leaf traits
and environment

The analysis revealed effects of elevation, MAT, and MAP on

leaf traits, and these effects varied across PFTs (Figure 4). While leaf

traits of BE and BD exhibited similar changes with increasing

elevation and MAT, NE showed a different pattern (Figures 4A,

B, D, E, G, H, J, K, M, N). Leaf traits of three PFTs exhibited similar

changes with increasing MAP, but it is not significant in most cases

(Figures 4C, F, I, L, O).
Comprehensive effects of PFTs, MAT, and
MAP on leaf traits

The variations in leaf traits were mainly explained by PFTs, with

a higher proportion than that of MAT and MAP (Figure 5). The

explained fractions of LT, LDMC, LMA, C/N, Nmass, and Narea by

PFTs were as high as 62.2%, 18.2%, 63.3%, 41.4%, 27.3%, and 51.5%.

On the other hand, MAT andMAP had relatively lower explanatory

power for variations of leaf traits, but had a higher proportion for

LDMC and Nmass. Compared with MAP, MAT had relatively high

explanatory power (Figures 5B, E).
Discussion

Leaf traits of three PFTs

The result showed that the mean values of leaf traits differed

among the three PFTs, with NE plants exhibiting greater values of
TABLE 1 Differences of leaf traits among different PFTs.

PFTs LT(mm) LDMC(mg/g) LMA(mg/cm2) C/N Narea(mg/cm2) Nmass(mg/g)

NE 0.52 ± 0.01a 415.73 ± 3.08a 19.40 ± 0.39a 38.76 ± 0.48a 0.26 ± 0.01a 13.55 ± 0.20c

BE 0.28 ± 0.01b 370.64 ± 5.96b 10.22 ± 0.40b 26.99 ± 0.71b 0.18 ± 0.01b 20.42 ± 0.54b

BD 0.19 ± 0.07c 314.73 ± 4.29c 5.53 ± 0.13c 21.48 ± 0.33c 0.12 ± 0.01c 23.47 ± 0.28a

Parameter Result

Slope-NE 0.063 10.206 2.415 2.733 0.027 -1.804

Slope-BE 0.002 1.493 0.086 0.066 0.002 -0.089

Slope-BD -0.001 -2.745 -0.037 -0.057 -0.001 0.020

Sigma2 0.029 5.512 0.001 1.290 0.013 0.838
NE is needle-leaved evergreens. BE is broad-leaved evergreens. BD is broad-leaved deciduous. Different letters indicate significant differences among 3 PFTs (P<0.01). Sigma2 represents the
standard deviation of linear mixed model.
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LT, LDMC, LMA, C/N, and Narea compared to BE plants and BD

plants (Table 1). It can be explained by NE plants’ ability to resist

hostile environments, which is significantly stronger than BE plants

and BD plants (Fyllas et al., 2020). The thickness of leaves can help

plants avoid damage from strong light and low temperature, and it

provided a protective substrate for plants to survive in hostile

environment (Körner et al., 1986; Qi et al., 2014). Meanwhile, the

leaf with higher LDMC had smaller intercellular space and the more

gas diffusion resistance from mesophyll cells, these led to lower

photosynthetic carbon assimilation capacity (Hamdani et al., 2019;

Maccagni and Willi, 2022). Furthermore, according to the leaf

economic theory, higher LMA indicated that NE plants adopted

more conservative survival strategy, while BD plants adopted

acquired survival strategy (Maracahipes et al., 2018; Fyllas et al.,

2020; Rawat et al., 2021; Liu et al., 2022a). This was also confirmed

in a study of woody plants from the temperate forest in the

Himalayan region of India, where plants adopted conservation or

acquisition strategies to adapt to environmental change (Rawat

et al., 2021). The C/N and Narea of NE plants and BE plants were

significantly higher than BD plants, while Nmass was lower

(Table 1). This suggested that the nitrogen invested in the

photosynthetic system of evergreen leaves (NE and BE) was

relatively lower, and the remaining nitrogen was invested in non-

photosynthetic systems such as cell wall proteins, lipids, and amino

acids. More nitrogen was used in the construction of leaf tissue

structure to make leaves tougher which enhanced the ability of

evergreen plants to resist stress (Mediavilla et al., 2012; Ghimire

et al., 2017; Byeon et al., 2021). On the other hand, BD plants were

completely on the contrary, and they increased the nitrogen

investment in the photosynthetic system so that plants with

shorter leaf life could assimilate as much carbon dioxide as

possible at a limited time to ensure growth and development.

This indicated that there were differences in the survival strategies

among three PFTs (Berveiller et al., 2007; Bai et al., 2015; Weng

et al., 2017). These differences in survival strategies among the three
Frontiers in Plant Science 05
PFTs were further confirmed by the principal component analysis

(Figure 2), which showed differences in the multivariate space

occupied by three PFTs. The smaller intersection of NE plants

and BD plants indicated that they adopted different survival

strategies, while BE plants were somewhere in between. The

component of the first PC axis was related to the resource

capture and utilization strategies of plants. It was emphasized that

LMA was a better indicator of this strategy, and the dimension of

resource utilization seemed to explain the more differences among

PFTs (Markesteijn et al., 2011; Lasky et al., 2014). Overall, this study

provided valuable insights into the survival mechanisms of plants

with different functional types, which could aid in the development

of effective conservation and management strategies in the future.
Correlations among leaf traits in
different PFTs

Correlations among leaf traits are essential to understand plant

strategies and functional trade-offs, and these correlations are often

used to infer from one trait to another in dynamic vegetation

models (Lohbeck et al., 2015; Sakschewski et al., 2015). There were

some similarities in the correlations among leaf traits in three PFTs

(Figure 3; Table 2). LMA had significant positive correlations with

LT, LDMC, C/N, and Narea, and a negative correlation with Nmass.

However, recent studies showed that correlations among many

traits might be diverse in different PFTs (Fyllas et al., 2020). For

example, C/N ratio was positively correlated with Narea in the BE

plants and BD plants, but there was a negative correlation in NE

plants. The growth environment and ecological adaptation of

coniferous plants and broad-leaved plants were different, which

may be the reason for the different correlation between their C/N

ratio and Narea (Ackerly and Reich, 1999; Faber et al., 2022).

Coniferous plants typically thrived in nutritionally deficient soils,

and they had evolved to adapt to these conditions by maintaining a

high C/N ratio to more efficient use of limited nitrogen resources

(Faber et al., 2022; Liu et al., 2022b). In contrast, broad-leaved

plants generally grew in areas with more nutrient-rich soil, allowing

them to obtain greater amounts of nitrogen during their growth and

allocated it towards both growth and metabolic processes (Faber

et al., 2022; Liu et al., 2022b). These differences indicated that

general research phenomena might not be applicable to evaluate the

correlation between leaf traits at regional or global scales in

parametric dynamic vegetation models. Therefore, we suggest that

PFTs-specific parameters should be developed to better represent

the relationships among leaf traits that were generally embedded in

such models.
Variation in leaf traits among different PFTs
along environmental gradients

The plasticity of leaf phenotype plays a crucial role in plant

survival across different environments (Maire et al., 2012; Wright
FIGURE 2

Principal components analysis of six leaf traits.
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FIGURE 3

The bivariate relationship between C/N and LDMC (A), between LDMC and LT (B), between LMA and LT (C), between C/N and LMA (D), between
LDMC and LMA (E), between LMA and Nmass (F), between C/N and Narea (G), between LDMC and Nmass (H), between Narea and LT (I), between
C/N and LT (J), between LDMC and Narea (K), and between Nmass and LT (L). Needle-leaved evergreens (NE), broad-leaved evergreens (BE), and
broad-leaved deciduous (BD) are shown in purple, red, and orange respectively. Solid lines represent the fitting curves, R2 represents the fitting
degree of the solid line, P represents the significance level, and slope represents the slope of the solid line.
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et al., 2017). However, it was discrepant that the sensitivity of leaves

to environmental change among different PFTs (Wright et al., 2004;

Kikuzawa et al., 2013). The study found that the leaf traits among

three PFTs exhibited significant variation with elevation and MAT

changes (Figure 4). As the temperature gradually decreased with

increasing elevation, there was a significant collinearity between

elevation and temperature (Fu and Sun, 2022). Compared with

MAP, MAT was the primary environmental factor driving variation

in leaf traits along elevation. With increasing elevation or

decreasing temperature, the LT and Narea of NE plants and BE

plants gradually increased, while BD plants gradually decreased.

To adapt to environmental change, evergreen plants typically

maintained a higher leaf thickness and internal nitrogen content

at high elevations to support longer lifespans and higher

photosynthetic efficiency. However, deciduous plants adopted the

opposite approach to reduce nutrient and energy loss. These two

PFTs took different response measures to adapt to environmental

change (Niinemets, 2001; Scafaro et al., 2017; Togashi et al., 2018;

Liu et al., 2022a). In addition, BD plants paid more attention to the

acquisition of environmental resources in the short growing season,

and weakened the investment of leaf tissue structure in

environmental adaptation (Chen et al., 2013; Fyllas et al., 2020).

The thinner leaves were beneficial to the gas exchange and

transpiration of plants to promote the photosynthetic efficiency

and enhance the carbon fixation capacity when the water was

sufficient (Sun et al., 2006; Bunce, 2022). Meanwhile, with the

increase of elevation, LDMC, LMA, and C/N of BE plants and

BD plants showed downward trend, while Nmass showed upward

trend. However, NE plants exhibited the opposite trend, possibly
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due to its tendency to adopt conservative survival strategies to adapt

to environmental change, and this ensured their survival in hostile

environments by enhancing leaf structure and reducing

photosynthesis investment (Lasky et al., 2014). The plant with

large leaf tended to prefer acquisitive survival strategies, and BD

plants were the most typical representative (Fyllas et al., 2020). With

the increase of MAP, the six leaf traits did not show obvious change

trend, these might be because MAP was not the main

environmental factor causing variation in leaf traits of woody

plants in subalpine environment (Zhang et al., 2022).

PFTs, MAP, and MAT accounted for a significant portion of the

biogeographic variations in leaf traits (Figure 5). Apart from

LDMC, PFTs had a higher explanation for the variation in leaf

traits. PFTs were the major factor leading to the differences in leaf

traits (Akram et al., 2022). It was consistent with the results of a

meta-analysis from global data conducted by Siefert et al. (2015).

Compared with the MAP, MAT could explain more changes in leaf

traits in subalpine environments. This finding indicated that the

temperature was an important environmental factor affecting the

variation in leaf traits. PFTs and climate were important drivers of

variation in leaf traits, but PFTs were more critical in shaping

biogeographic patterns of leaf traits, as demonstrated by previous

studies from regional to global scales (Niinemets, 2001; Ordoñez

et al., 2009; Zhan et al., 2018). Nevertheless, it had been proved that

both soil conditions and plant phylogenetic background also affect

leaf traits. Thus, further research is necessary to distinguish the

relationship between the three dimensions of heredity, soil, and

climate, and to explore the source of leaf traits variation caused by

environmental change.
TABLE 2 The result of Pearson’s correlation among different leaf traits.

PFTs Variables LT LDMC LMA C/N Nmass

NE

LDMC -0.141NS

LMA 0.532*** 0.166NS

C/N 0.066NS 0.321*** 0.300***

Nmass -0.021NS -0.335*** -0.280*** -0.958***

Narea 0.486*** -0.058NS 0.782*** -0.342*** -0.352***

BE

LDMC 0.091NS

LMA 0.837*** 0.420***

C/N 0.811*** 0.418*** 0.886***

Nmass -0.820*** -0.374*** -0.865*** -0.962***

Narea 0.731*** 0.317*** 0.886*** 0.620*** -0.640***

BD

LDMC 0.047NS

LMA 0.441*** 0.739***

C/N 0.364*** 0.632*** 0.713***

Nmass -0.280*** -0.626*** -0.641*** -0.917***

Narea 0.276*** 0.530*** 0.757*** 0.140** -0.079NS
fron
NE is needle-leaved evergreens. BE is broad-leaved evergreens. BD is broad-leaved deciduous. NS is not significant. ‘**’, 0.001<P ≤ 0.01. ‘***’, P ≤ 0.001.
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Conclusion

There were significant differences in leaf traits among three

PFTs on the eastern Qinghai-Tibetan Plateau. The result showed

that NE plants, BE plants, and BD plants occupied different spatial

dimensions when leaf trait was examined within all PFTs, and each
Frontiers in Plant Science 08
PFT responded differently to environmental change (elevation and

climate). Compared to mean annual precipitation (MAP), mean

annual temperature (MAT) was the main environmental factor that

caused the variation in leaf traits. NE plants tended to adopt a more

conservative approach to survival, while BD plants were more

inclined to capture and utilize current environmental resources in
B C

D E F

G H I

J K L

M N O

P Q R

A

FIGURE 4

The relationship between LT and elevation (A), between LT and MAT (B), between LT and MAP (C), between LDMC and elevation (D), between LDMC
and MAT (E), between LDMC and MAP (F), between LMA and elevation (G), between LMA and MAT (H), between LMA and MAP (I), between C/N and
elevation (J), between C/N and MAT (K), between C/N and MAP (L), between Narea and elevation (M), between Narea and MAT (N), between Narea
and MAP (O), between Nmass and elevation (P), between Nmass and MAT (Q), between Nmass and MAP (R). Needle-leaved evergreens (NE), broad-
leaved evergreens (BE), and broad-leaved deciduous (BD) are shown in purple, red, and orange respectively. Solid lines represent the fitting curves,
R2 represents the fitting degree of the solid line, P represents the significance level, and slope represents the slope of the solid line.
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a large amount during a short growing season, BE plants

somewhere in between. This work contributed to understanding

of the regional variation in leaf traits and the relationships among

leaf traits, PFT, and the environment.
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FIGURE 5

Explanation and analysis of the variations in LT (A), LDMC (B), LMA (C), C/N (D), Nmas s (E), and Narea (F). The symbols a, b, and c represented the
independent effects of PFTs, MAP, and MAT, respectively; ab, the interactive effect of PFTs and MAP; ac, the interactive effect of PFTs and MAT; bc,
the interactive effect of MAP and MAT; and abc, the interactive effect of PFTs, MAP, and MAT.
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