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Nitric oxide promotes
adventitious root formation in
cucumber under cadmium stress
through improving antioxidant
system, regulating glycolysis
pathway and polyamine
homeostasis

Lijuan Niu, Yunlai Tang, Bo Zhu, Zhenfu Huang, Dan Wang,
Qiyang Chen and Jian Yu*

School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang,
Sichuan, China
Cadmium (Cd) as a potentially toxic heavy metal that not only pollutes the

environment but also interferes with plant growth. Nitric oxide (NO) regulates

plant growth and development as well as abiotic stress response. However, the

mechanism underpinning NO-induced adventitious root development under Cd

stress remains unclear. In this study, cucumber (Cucumis sativus ‘Xinchun No. 4’)

was used as the experimental material to investigate the effect of NO on the

development of adventitious roots in cucumber under Cd stress. Our results

revealed that, as compared to Cd stress, 10 mM SNP (a NO donor) could

considerably increase the number and length of adventitious roots by 127.9%

and 289.3%, respectively. Simultaneously, exogenous SNP significantly increased

the level of endogenous NO in cucumber explants under Cd stress. Our results

revealed that supplementation of Cd with SNP significantly increased

endogenous NO content by 65.6% compared with Cd treatment at 48 h.

Furthermore, our study indicated that SNP treatment could improve the

antioxidant capacity of cucumber explants under Cd stress by up-regulating

the gene expression level of antioxidant enzymes, as well as reducing the levels

of malondialdehyde (MDA), hydrogen peroxide (H2O2) and superoxide anion

( O  ·−
2 ) to alleviate oxidative damage and membrane lipid peroxidation.

Application of NO resulted in a decrease of the  O  ·−
2 , MDA, and H2O2 level by

39.6%, 31.4% and 60.8% as compared to Cd-alone treatment, respectively.

Besides that, SNP treatment significantly increased the expression level of

related genes involved in glycolysis processes and polyamine homeostasis.

However, application of NO scavenger 2-(4-carboxy -2-phenyl)-4, 4, 5, 5-

tetramethy limidazoline -1-oxyl -3-oxide (cPTIO) and the inhibitor tungstate

significantly reversed the positive role of NO in promoting the adventitious root

formation under Cd stress. These results suggest that exogenous NO can

increase the level of endogenous NO, improve antioxidation ability, promote
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glycolysis pathway and polyamine homeostasis to enhance the occurrence of

adventitious roots in cucumber under Cd stress. In summary, NO can effectively

alleviate the damage of Cd stress and significantly promote the development of

adventitious root of cucumber under Cd stress.
KEYWORDS

nitric oxide, cadmium, rooting response, antioxidants, glycolysis, polyamine pathway
1 Introduction

Cadmium (Cd), a widely spread heavy metal, is easily absorbed

by plant roots, thus enters the food chain, and eventually poses a

substantial threat to human health (Falco et al., 2005; Ahmad et al.,

2016a; Ahmad et al., 2016b). It has been discovered that Cd, as a

non-essential element for plant growth and development, disturbs

nutrient and water uptake/transport (Rivelli et al., 2014; Hafsi et al.,

2022). Moreover, Cd induces a number of stress responses in plants

including ion balance changes (Kucerova et al., 2020; Hafsi et al.,

2022), change in antioxidant enzymes activities (Guo et al., 2019),

photosynthesis inhibition (Rizwan et al., 2018), and changes in the

expression of related genes and proteins (Muhammad et al., 2019;

Manara et al., 2020). Plant response to abiotic stress is usually

accompanied by an increase in the level of reactive oxygen species

(ROS) (Polle and Schützendübel, 2003; Kohli et al., 2019; Mansoor

et al., 2022), and the increase in ROS content caused the destruction

of cell structure and function (Panyuta et al., 2016; Kohli et al., 2019;

Mansoor et al., 2022). Previous research have demonstrated that Cd

stress could trigger the ROS generation, such as hydrogen peroxide

(H2O2) and superoxide radical ( O  ·−
2 ) accumulation in plants (Qi

et al., 2021; Li et al., 2022). Some studies have also shown that

excessive accumulation of ROS under Cd stress can trigger protein

post-translational modification (Gzyl et al., 2015), enzyme

inactivation and denaturation, DNA and RNA damage, resulting

in cell damage and cell death (Singh et al., 2016). These series of

reactions may aggravate the degree of lipid peroxidation (Heyno

et al., 2008), disrupts metabolic activities and eventually affect plant

growth and development (Yu et al., 2015; Anwar et al., 2021; El

Rasafi et al., 2022). It has been demonstrated that plants have a

series of antioxidant defense system to mitigate the oxidative

damage caused by ROS (Gill and Tuteja, 2010). Antioxidant

enzymes such as ascorbate peroxidase (APX), superoxide

dismutase (SOD), catalase (CAT) or glutathione reductase (GR)

have been demonstrated to regulate accumulation of ROS and

protect plants from oxidative damage under Cd stress (Irfan

et al., 2014; Guo et al., 2019). Therefore, the possibility of

oxidative signal or oxidative damage depends on the balance

between antioxidant enzyme activity and ROS level (Møller

et al., 2007).

Nitric oxide (NO) has been implicated as an essential signaling

molecule in plants. Numerous studies have discovered that NO

plays an essential role in the regulation of plant growth and
02
development including seed germination (Ren et al., 2020), root

growth and development (Pagnussat et al., 2002; Sun et al., 2019;

Liu et al., 2022a), pollen tube germination (Prado et al., 2004) and

fruit senescence (Zuccarelli et al., 2021). The increasing evidence

indicates that, NO function in plant stress response. As a multi-

functional regulator, NO signaling is involved in a range of abiotic

stress responses to mitigate oxidative damage caused by abiotic

stress (Parankusam et al., 2017; Gao et al., 2022; Xia et al., 2022). For

example, exogenous NO could stabilize the cell membranes in

hulless barley under drought stress (Gan et al., 2015). Moreover,

application of NO could upregulate the gene expression of

antioxidative enzymes to enhance the antioxidant capacity under

Cd stress (Chen et al., 2010).Thus, the protective roles of NO in

alleviating oxidative injury have focused on regulating antioxidant

systems, reducing the generation of ROS, mediating related gene

expression, and maintaining protein stability, eventually enhancing

plant stress tolerance (Terrón-Camero et al., 2019; Wei et al., 2020).

Cucumber is a member of the Cucurbitaceae family (Hashem

et al., 2018). As one of the most popular vegetables, cucumber is

shallow-rooted crop and is used to be an bioindicator species to

assess toxicity of soils polluted by Cd (An et al., 2004). As

mentioned above, NO plays an essential role in regulating plant

growth and development. Moreover, it has been shown that NO is

involved in the response to Cd stress. However, the mechanism

underpinning NO-induced adventitious root development in

cucumber under Cd stress remains unclear. The aim of this study

was to investigate the role of NO in promoting the development of

adventitious root in cucumber under Cd stress. Therefore, we

conduct this experiment to test the effect of NO on root

development, oxidative defence, glycolysis and polyamine

metabolism in cucumber under Cd stress. The objective of this

study was to provide evidence to elucidate the potential mechanism

of NO signaling in responses to Cd stress in plants.
2 Materials and methods

2.1 Plant materials

Cucumis sativus L. (‘Xinchun No. 4’) was used in this

experiment. The sterilized cucumber seeds were pre-soaked in

distilled water for 5 hours. The seeds were germinated on filter

paper in petri dishes and then incubated in a climate box at 25°C
frontiersin.org
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with a 14 h photoperiod (200 mmols-1m-2). The experiment was

repeated three times, with 10 seedlings per replicate.
2.2 Explant treatments

Experiment 1: Sodium nitroprusside (SNP, purity≥98.5%,

Solarbio, China) as a NO donor. Cucumber explants were placed

in petri dishes containing distilled water or different concentrations

of SNP (0, 1, 10, 100, 500 mM) under Cd stress for 5 days. The

concentrations of NO was selected based on the results of our

previous studies (Niu et al., 2017; Niu et al., 2019). These media

were changed every day in order to keep the solution fresh.

Experiment 2: 200 mM 2-(4-carboxy-2-phenyl)-4, 4, 5, 5-

tetramethylimidazoline -1-oxyl-3-oxide (c-PTIO, purity≥98%,

Sigma, USA) as NO scavenger, 200 mM tungstate (Solarbio, China)

as a NO inhibitor. The concentrations of CdCl2, NO scavenger or

inhibitor were based on the results of a preliminary experiment.
2.3 Endogenous NO content

The NO content was determined using the Greiss reagent

method with minor modifications (Xuan et al., 2012). Cucumber

explants were ground and mixed with 4 mL of 50 mM ice cold acetic

acid buffer (containing 4% zinc diacetate). The mixture was

centrifuged at 10000 g for 15 min at 4°C, and the supernatant

was collected. Then, 0.1 g of charcoal was added. After vortex and

filtration, the filtrate was mixed with 1mL Greiss reagent at room

temperature for 30 min. Finally, the absorbance was assayed at

540 nm.
2.4 Malondialdehyde, superoxide anion (O2)
and hydrogen peroxide (H2O2) content

For measuring MDA, 0.2 g of samples were ground in ice bath

and extracted with 5 mL trichloroacetic acid (TCA). The

homogenate was transferred to a centrifuge tube and centrifuged

at 4°C at 12000 g for 15 min. The supernatant was added to 0.5%

TBA solution. The mixture is heated in a boiling water bath for 30

min and then centrifuged for 10 min. The absorbance of the

supernatant was measured at 450 nm, 532 nm and 600 nm (Liu

et al., 2022b). For estimating  O  ·−
2 generation, the samples were

homogenized with potassium phosphate buffer (pH 7.8) and

centrifuged for 10 min. The supernatant was added to

hydroxylamine hydrochloride and reacted at 25°C for 20 min.

Finally, the absorbance was measured at 530 nm (Gong et al.,

2014). Superoxide accumulation was also examined by nitroblue

tetrazolium (NBT) staining, as described previously (Wang et al.,

2019). H2O2 content in cucumber explants was determined as

described by the method with minor modification (Liao et al.,

2011). 0.5 g of cucumber explants were ground in liquid nitrogen

and then homogenized in 3 mL ice-cold aceton. After centrifugation

at 10000 g for 10 min at 4°C, the reaction mixture composed of 0.5
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mL of the supernatant, 0.5 mL of trichloromethane (CHCl3), 1.5 mL

carbon tetrachloride (CCl4) and 2.5 mL of distilled water. The

mixture was then centrifuged at 1000 g for 1 min and the

supernatant fractions were collected for H2O2 determination. In

addition, H2O2 was detected with the DAB method with some

modifications. Briefly, leaves were placed in the diaminobenzidine

(DAB) staining solution. After then, the treated leaves were placed

in 95% ethanol for 10 min. The reaction of DAB with H2O2 could

produce the deep brown polymerization product (Yang et al., 2013).
2.5 Quantitive real-time PCR assays

In order to investigate the effect of NO on antioxidant system,

glycolysis and polyamine pathway during adventitious rooting

under Cd stress. The relative expression of genes encoding for

antioxidant enzymes, glycolysis pathway and polyamine

biosynthetic enzymes were measured. Cucumber explants were

ground into powder with liquid nitrogen. Total RNA was

extracted using the DP419 kit (TianGen, Beijing, China).

Quantitative real-time PCR reactions were performed using SYBR

Green SuperReal PreMix Plus kit (TianGen, Beijing, China)

according to the cycling parameters: 95°C for 15 min; 95°C for 10

s and 60°C for 32 s, 40 cycles. qRT-PCR amplification primers are

shown in Table 1. The relative expression of the gene was calculated

by the 2 -DDCT method.
2.6 Statistical analysis

Three independent replicates were set for each experiment.

Means were separated by Duncan test at 0.05 probability level.

Analysis of variance (ANOVA) was done. SPSS V. 13.0 was used for

statistical analysis.
3 Results

3.1 Effect of exogenous NO on
adventitious root formation under
Cd stress

To understand the effect of exogenous NO on the development of

adventitious root under Cd stress, we performed a dose-response

experiment with NO. As shown in Figure 1, compared to CK

treatment, CdCl2 treatment significantly reduced root number and

root length by 66.3% and 81.7%, respectively. Moreover, the

development of adventitious roots altered considerably with

increasing concentrations of NO donor, SNP (1, 10, 100, 500 mM).

As shown in Figure 1, the root number and root length of 10 mMNO

treatment was significantly increased by 127.9% and 289.3%,

respectively, as compared to CdCl2 treatments. However, a high

concentration of NO (500 mM) obviously decreased the number and

length of adventitious roots under Cd stress (Figures 1A, B).

Therefore, exogenous NO displayed a concentration-dependent

influence on adventitious rooting under Cd stress, and these results
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indicated that 10 mM NO significantly ameliorated the adverse effect

of Cd stress on the development of adventitious roots.
3.2 Effect of cPTIO or tungstate on
adventitious root formation under
Cd stress

To further investigate the key role of NO in affecting

adventitious root formation in cucumber under Cd stress, NO

scavengers or inhibitor was utilized in this experiment. As shown

in Figure 2, NO treatment obviously induced the adventitious

rooting under Cd stress. However, application of cPTIO or

tungstate significantly inhibited the NO-promoted adventitious

rooting under Cd stress. The number of adventitious roots which

treated with NO scavenger or inhibitor decreased by 73% and

67.6%, respectively, when compared to CdCl2 + NO treatment

(Figure 2A). Meanwhile, the adventitious root length of explants

treated with cPTIO or tungstate reduced by 68.9% and 44.3%,

respectively, as compared to that of NO treatment (Figure 2B).

These results implied that NO might be responsible for promoting

the formation of adventitious root under Cd stress.

3.3 Changes in the endogenous NO level during
NO-induced adventitious root formation under
Cd stress

In order to further validate the influence of NO on adventitious

root production under Cd stress, endogenous NO level was detected

during NO-induced adventitious rooting under Cd stress condition

(Figure 3). The concentration of endogenous NO in CdCl2
treatment gradually decreased during the process of adventitious

root development (Figure 3). However, the level of endogenous NO

which treated with CdCl2+NO was considerably higher than those
Frontiers in Plant Science 04
in Cd group, reaching a maximum at 48 h. As shown in Figure 3, at

48 h, exogenous NO treatment significantly enhanced endogenous

NO level by 65.6% as compared to CdCl2. However, cPTIO and

tungstate treatments obviously decreased endogenous NO level

during adventitious root development, which was 65.3% and

55.5% lower than that of NO treatment, respectively (Figure 3).
3.4 Effect of NO on reactive oxygen
species during adventitious root
development in cucumber under Cd stress

The levels of MDA, H2O2 and  O
  ·−
2 in cucumber explants under

Cd stress were measured in our experiment (Figure 4). As shown in

Figure 4A, CdCl2 treatment significantly increased MDA content in

cucumber explants which compared to that of control. However,

exogenous NO significantly decreased MDA level under Cd stress.

As compared to Cd stress, the MDA content which treated with NO

treatment significantly decreased by 31.4% (Figure 4A). However,

cPTIO or tungstate treatment significantly elevated the content of

MDA compared to CdCl2 + NO treatment. Also, CdCl2 treatment

significantly increased the content of  O  ·−
2 in cucumber explants.

Exogenous NO could reverse the increase in  O  ·−
2 level which

caused by Cd stress (Figures 4B, D). As shown in Figure 4B,

application of NO obviously decreased the  O  ·−
2 level by 39.6%

when compared to CdCl2 treatment. However, the content of  O  ·−
2

in cucumber explants which treated with cPTIO or tungstate was

significantly higher than that of CdCl2 + NO treatment.

Furthermore, the effect of NO treatment on H2O2 level followed

the same pattern as the effect on  O  ·−
2 level (Figures 4C, E). These

results indicated that NO could obviously alleviate membrane lipid

peroxidation and inhibit the accumulation of ROS, thus reducing
TABLE 1 Sequences of primers used for this study.

Gene Forward Primer Reverse Primer

Actin 5’-TTGAATCCCAAGGCGAATAG-3’ 5’-TGCGACCACTGGCATAAAG-3’

CsPOD 5’-TTGTGATGGGTCGGTGCTAC-3’ 5’-TGTCCTGATGCCAAGGTGAC-3’

CsCAT 5’- CATGGACGGTTCAGGTGTCA-3’ 5’- CCACTCAGGGTAGTTGCCAG-3’

CsAPX 5’-CTGCTACTGTTTTTGGAACCGCCG-3’ 5’- GCGGAGGAGAGGAAACGAGTAGTT-3’

CsSOD 5’-CACCCAAGAAGGAGACGGTC-3’ 5’- CAGCAGGGTTGAAATGTGGC-3’

CsGR 5’-GATATGAGAGCCGTGGTTGC-3’ 5’-AGTCGCAAACAACACAGCAT-3’

CsPFK 5’-TTGGTTGATAATTGGCATAAG-3’ 5’-GCATCCACTATCTTCTTCA-3’

CsPK 5’-TGCTGTCATCACCTATTG-3’ 5’-ACAAGAGTCGGTTTACAC-3’

CsFK 5’-CCTGGATGAAGAATACTATGA-3’ 5’-CGGCGTGTAATGATAATG-3’

CsHK 5’-TGTTGTGGTGAAGTTCTT-3’ 5’-CCTCCATTTCCCTCTATTC-3’

CsADC 5’-GGATCCCAGATCCCTTCTAC-3’ 5’-GTCAATACCCAGACCACCTC-3’

CsODC 5’-CGTCGTTGGCGTGTCATTT-3’ 5’- CAAGTCGGACTGCCGTTTC-3’

CsPAO 5’-TCTCCTTCTCGTTCCTCCGT-3’ 5’-CCACCGACTCCAACAATCCA-3’
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oxidative damage and promoting the formation of adventitious root

in cucumber under Cd stress.
3.5 Effect of NO on the expression level of
antioxidant enzymes under Cd stress

We further explored the effect of NO on the antioxidant system

during adventitious root development under Cd stress. As shown in

Figure 5, CdCl2 treatment has a significant effect on the expression

level of antioxidant enzymes during the process of adventitious root

formation. Compared to CK treatment, Cd treatment significantly

decreased the expression level of ascorbate peroxidase (APX),

Cu, Zn-superoxide dismutase (Cu, Zn-SOD), glutathione
Frontiers in Plant Science 05
reductase (GR) and peroxidase (POD) (Figure 5). However, the

expression of these genes in NO treatment was significantly higher

than that of Cd stress alone (Figure 5). As shown in Figure 5A,

exogenous NO significantly increased APX relative expression by

90.8% compared with Cd treatment alone. Meanwhile, Zn/Cu-SOD,

CAT, GR and POD relative expression of CdCl2 + NO treatment

was significantly higher 63.3%, 31.0%, 43.0% and 40.9% than those

of Cd treatment, respectively (Figure 5). Nevertheless, NO

scavengers or inhibitor obviously down-regulated the

transcriptional levels of the antioxidant enzymes compared to

those of NO treatment under Cd stress (Figure 5). Thus, these

results might give an exploration of the positive role of NO in

hindering ROS production by regulating the transcriptional levels

of antioxidant enzymes.
FIGURE 1

Effect of NO on adventitious root formation under Cd stress. The primary roots were removed from 5-day-old seedlings. Explants were then
incubated for 5 days with distilled water (CK) or 1 mM CdCl2, 1 mM CdCl2 +1 mM SNP, 1 mM CdCl2 + 10 mM SNP, 1 mM CdCl2 + 100 mM SNP, 1 mM
CdCl2 + 500 mM SNP. Ten explants were used per replicate. The numbers (A) and root length (B) of adventitious roots were expressed as mean ± SE
(n = 3). Photographs (C) were taken after five days of the treatments indicated. Bars with different letters are significantly different at P < 0.05
according to Duncan’s multiple range test.
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3.6 Effect of NO on the expression level of
glycolysis-related genes under Cd stress

We evaluated the effect of NO on glycolysis pathway during the

development of adventitious root in cucumber under Cd stress. As

shown in Figure 6, compared with CK treatment, CdCl2 treatment

significantly down-regulated the gene expression levels of FK, PK

and HK. However, compared to those of Cd treatment, exogenous

NO significantly enhanced the expression level of glycolysis-related

genes. As shown in Figures 6A, B, exogenous NO resulted in a

83.8% increase in PFK relative expression and a 87.1% increase in

FK relative expression compared with Cd treatment alone,

respectively. Moreover, Cd treatment decreased PK relative

expression by 12.4% and caused a 52.7% decrease in HK relative

expression compared with NO + Cd treatment, respectively

(Figures 6C, D). On the contrary, NO scavengers or inhibitor

obviously reversed the positive effect of NO on regulating the
Frontiers in Plant Science 06
mRNA transcription level of these genes (Figure 6). Therefore,

NO promoted adventitious rooting under Cd stress through

regulating glycolysis-related gene expression.
3.7 Effect of NO on the expression level of
polyamine enzymes under Cd stress

Cd stress significantly decreased the expression level of arginine

decarboxylase (ADC) and ornithine decarboxylase (ODC) in our

experiment (Figures 7A, B). As shown in Figure 7, compared to

CdCl2 treatment, the expression level of ADC and ODC in CdCl2 +

NO treatment were significantly higher than those of CdCl2
treatment alone. Moreover, CdCl2 + NO treatment resulted in a

32.2% decrease in PAO relative expression compared with Cd

treatment. However, NO scavenger or inhibitor treatment could
FIGURE 2

Effect of cPTIO or tungstate on adventitious root formation under Cd stress. The primary roots were removed from 5-day-old seedlings. Explants
were then incubated for 5 days with distilled water (CK) or 1 mM CdCl2, 1 mM CdCl2 +10 mM SNP, 1 mM CdCl2 + 10 mM SNP + 200 mM cPTIO, 1 mM
CdCl2 + 10 mM SNP + 200 mM tungstate. Ten explants were used per replicate. The numbers (A) and root length (B) of adventitious roots were
expressed as mean ± SE (n = 3). Photographs (C) were taken after five days of the treatments indicated. Bars with different letters are significantly
different at P < 0.05 according to Duncan’s multiple range test.
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reverse the effect of NO on the expression level of polyamine

enzymes (Figure 7). These results imply that application of NO

could regulate polyamine homeostasis during adventitious root

development in response to Cd stress.
4 Discussion

Cadmium stress as an environmental factor has a significant

impact on the growth and development of plants. It has been

confirmed that Cd stress is an important limiting factor for plant

growth and development, which inhibits the growth of plants to a

certain extent (Azevedo et al., 2012; El Rasafi et al., 2022). As an

important signal molecule in plants, NO is involved in a variety of

abiotic stress response in plants. In this experiment, we

demonstrated that NO could promote the development of

adventitious roots of cucumber under Cd stress. In our study, the

root number and root length of adventitious roots under Cd stress

condition were significantly lower than those of the control

(Figure 1). These results showed that Cd stress could significantly

inhibit the process of adventitious root in cucumber explants.

Previous studies found that Cd stress inhibited the adventitious

root formation in plants (Li et al., 2019; Gong et al., 2022). However,

suitable concentration of NO treatment significantly promoted

adventitious root formation under Cd stress (Figure 1). Previous

studies have shown that NO can resist abiotic stress through

protecting cell membrane stability, up-regulating antioxidant

enzyme activity and inducing resistance-related gene expression

(Fan et al., 2015; Kaya et al., 2015). For example, it has been

reported that NO could alleviate Cd toxicity through maintaining

the growth regulation and nutritional status in cauliflower (Ma et al.,

2022). Also, Zhao et al (2022) found that NO enhanced Cd

resistance of Pleurotus eryngii through overcoming oxidative

damage and regulating short-chain dehydrogenase/reductase

famliy. Our results implied that suitable concentration of NO
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might alleviate the negative effect of Cd stress on the adventitious

rooting of cucumber. Moreover, several studies indicated that NO

could regulate the growth and development of plant roots, including

root elongation, lateral root growth and adventitious root formation

(Dıáz et al., 2021; Wang et al., 2021; Liu Y.Y. et al., 2022). In our

experiment, low concentration of NO significantly alleviated the

inhibitory effect of Cd stress on the formation of adventitious root,

while high concentration of NO obviously inhibited the occurrence

of adventitious root under Cd stress (Figure 1). These results showed

that NO had a concentration-dependent effect on adventitious root

formation under Cd stress. In addition, NO scavengers or inhibitor

dramatically reduced the root number and root length of cucumber

explants (Figure 2), implying that NO plays a vital role in the

development of adventitious roots under Cd stress.

Several reports suggested that the endogenous NO

accumulation has been implicated as being responsible for the

development of adventitious root in plants (Kang et al., 2018;

Altamura et al., 2023). Compared to CK treatment, Cd stress

significantly decreased endogenous NO levels during adventitious

root development (Figure 3), implying that Cd stress might lead to a

significant reduction of adventitious root formation through

inhibiting endogenous NO production. However, exogenous NO

significantly increased the endogenous NO production during

adventitious root formation under Cd stress (Figure 3). Our

results are in agreement with previous data on the implication of

NO generation during root growth and development under stress

conditions. For example, Zhang et al. (2022) suggested that

endogenous NO was required for melatonin to stimulate the

lateral roots growth of cucumber seedlings under nitrate stress.

Moreover, Li et al., (2019) reported that NO significantly elevated

endogenous NO level during the adventitious root formation in

mung bean hypocotyl under cadmium and osmotic stresses. These

observations support the view that NO could promote the

formation of adventitious root through enhancing the

endogenous NO production under Cd stress.
FIGURE 3

Changes in the endogenous NO level during NO-induced adventitious root formation under Cd stress. The primary roots were removed from 5-
day-old seedlings. Explants were then incubated for 72 h with distilled water (CK) or 1 mM CdCl2, 1 mM CdCl2 +10 mM SNP, 1 mM CdCl2 + 10 mM SNP
+ 200 mM cPTIO, 1 mM CdCl2 + 10 mM SNP + 200 mM tungstate. Bars with different letters are significantly different at P < 0.05 according to
Duncan’s multiple range test.
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Excessive ROS results in membrane lipid peroxidation and cell

oxidation, causing serious damage to plants (Huang et al., 2019).

Meanwhile, MDA level is considered to be an indicator of lipid

peroxidation during response to various environmental stresses

(Gaweł et al., 2004). Previous study has suggested that Cd

treatment caused oxidative stress (He et al., 2014) by increasing

the contents of H2O2 and MDA of rice seedlings. Moreover, under
Frontiers in Plant Science 08
Cd stress, H2O2 and MDA in wheat plants significantly increased

(Kaya et al., 2019). Similarly, in our study, the results showed that

CdCl2 treatment significantly increased the ROS level and MDA

content of cucumber explants during adventitious root formation

(Figure 4), resulting in oxidative damage (Jaleel et al., 2007),

eventually inhibiting adventitious root formation. However,

exogenous NO significantly decreased the levels of MDA, H2O2
A

B

D E

C

FIGURE 4

Effect of NO on MDA content (A),  O  ·−
2 content (B) and H2O2 content (C) during adventitious root development in cucumber under Cd stress.

Explants were incubated for 48 h with distilled water (CK) or 1 mM CdCl2, 1 mM CdCl2 +10 mM SNP, 1 mM CdCl2 + 10 mM SNP + 200 mM cPTIO, 1 mM
CdCl2 + 10 mM SNP + 200 mM tungstate. Photograph showing NBT (D) and DAB (E) staining after 48 h of treatments. Bars with different letters are
significantly different at P < 0.05 according to Duncan’s multiple range test.
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and  O  ·−
2 in cucumber explants to further alleviate the oxidative

damage and membrane lipid peroxidation of cucumber explants

under Cd stress (Laspina et al., 2005; Jaleel et al., 2007). Previous

studies have shown that NO plays a key role in alleviating oxidative
Frontiers in Plant Science 09
stress under Cd stress (Panda et al., 2011; Kaya et al., 2020). For

instance, exogenously applied NO significantly reduced oxidative

stress and proline content of wheat seedlings under Cd stress (Kaya

et al., 2020). Similar to our results, application of NO resulted in an
A

B

D

E

C

FIGURE 5

Effect of NO on the expression level of APX (A), Zn/Cu-SOD (B), CAT (C), GR (D) and POD (E) in cucumber explants under Cd stress at 48 (h) Explants
were incubated for 2 days with distilled water (CK) or 1 mM CdCl2, 1 mM CdCl2 +10 mM SNP, 1 mM CdCl2 + 10 mM SNP + 200 mM cPTIO, 1 mM CdCl2
+ 10 mM SNP + 200 mM Tungstate. The values (means ± SE) are the average of three independent experiments. Bars with different letters are
significantly different at P < 0.05 according to Duncan’s multiple range test.
A B

DC

FIGURE 6

Effect of NO on the expression level of PFK (A), FK (B), PK (C) and HK (D) in cucumber explants under Cd stress at 48 (h) Explants were incubated for
2 days with distilled water (CK) or 1 mM CdCl2, 1 mM CdCl2 +10 mM SNP, 1 mM CdCl2 + 10 mM SNP + 200 mM cPTIO, 1 mM CdCl2 + 10 mM SNP + 200
mM Tungstate. The values (means ± SE) are the average of three independent experiments. Bars with different letters are significantly different at P <
0.05 according to Duncan’s multiple range test.
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obviously decrease of  O  ·−
2 , H2O2 and MDA content to decrease the

Cd stress of cauliflower (Ma et al., 2022). These results suggested

that NO is involved in ameliorating oxidative impairment under Cd

stress. However, the treatment of NO scavengers or inhibitor

significantly reversed the positive effect of NO on alleviating the

oxidative damage during adventitious root formation under Cd

stress (Figure 4). These results indicated that NO could significantly

reduce the degree of membrane lipid peroxidation and alleviate

oxidative stress under Cd stress, thus promoting the occurrence of

adventitious roots under Cd stress.

Overproduction of ROS caused oxidative damage, plants need

to counteract the toxicity of ROS through a highly efficient

antioxidative defense system (Dumanović et al., 2021). At present,

plants have effective antioxidant defense mechanisms to alleviate

the effects of oxidative stress in plants. Xu et al. (Xu et al., 2008)

found that transgenic Arabidopsis plants structurally overexpressed

peroxisome gene HvAPX1, which reduced ROS accumulation and

significantly improved the tolerance of Arabidopsis plants to Cd

stress. In addition, Cd stress mediates the transcriptional expression

of APX, GR, Cu/ZnSOD and other related antioxidant enzyme genes

in ryegrass, which effectively alleviates the oxidative damage (Luo

et al., 2011). Our results showed that Cd stress significantly affected

the expression level of antioxidant enzyme genes (Figure 5).

Moreover, compared to Cd treatment, exogenous NO

significantly up-regulated the gene expression levels of these

antioxidant enzymes, indicating that NO could alleviate oxidative

damage of cucumber explants through enhancing the antioxidant

system as well as eliminating excess ROS and MDA (Mostofa et al.,

2019; Terrón-Camero et al., 2019). It has been investigated that NO

significantly increased the activities of antioxidant enzymes of

wheat under Cd stress (Kaya et al., 2019). Moreover, NO have the

ability to enhance the antioxidant activities in bamboo plants under

Cd stress (Emamverdian et al., 2021). Our present investigation
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suggested that NO could obviously enhance the plant defense

system during adventitious rooting in the response to Cd stress.

The glycolysis process is the basis for controlling carbohydrate

metabolism, which also considered to be one of the key pathways

for plant respiration (Plaxton, 1996; Sun et al., 2021). In addition,

glycolysis has been demonstrated to be involved in the plant

response to abiotic stress (Zhang et al., 2011a; Dong et al., 2020;

Sun et al., 2021). For example, it has been reported that the increase

of PFK and PK activity could enhance the tolerance to salt stress

(Zhong et al., 2016). Moreover, the enhancement of the expression

level of PFK, PK and PEPC of cucumber leaves allows to convert

more carbohydrates and maintain the normal physiological

metabolism of cucumber (Zhong et al., 2016). Previous study

found that Cd stress caused changes in carbohydrate metabolism,

glycolysis and pentose phosphate pathway-related enzymes in pea

(Devi et al., 2007). Moreover, Shahid et al (2019) found that Cd

treatment significantly inhibited the activities of FK, HK, PFK and

PK in potato plants. In our study, we found that Cd stress

significantly down-regulated the gene expression levels of key

glycolysis enzymes during adventitious root formation (Figure 6),

indicating that Cd stress may lead to the inhibition of glycolysis

pathway and further affect respiratory pathway during the

adventitious rooting. However, under Cd stress, NO treatment

could significantly up-regulate the gene expression levels of PFK,

PK, FK andHK (Figure 6). In agreement with the present study, NO

could obviously elevate the activities of FK to improve the chilling

tolerance of banana fruit (Wang et al., 2015). Similarly, Pandey et al

(2019) found that NO treatment may up-regulated the expressional

level ofHK1-like, phosphofructokinase 6-like and PK which involved

in glycolysis pathway during seed germination of chickpea.

Furthermore, previous study suggested exogenous nitric oxide

improved NaCl tolerance by enhancing glycolysis metabolism in

barley seedlings (Ma et al., 2021). These results implied that NO
A

B C

FIGURE 7

Effect of NO on the expression level of ADC (A), ODC (B) and PAO (C) in cucumber explants under Cd stress at 48 (h) Explants were incubated for 2
days with distilled water (CK) or 1 mM CdCl2, 1 mM CdCl2 +10 mM SNP, 1 mM CdCl2 + 10 mM SNP + 200 mM cPTIO, 1 mM CdCl2 + 10 mM SNP + 200
mM Tungstate. The values (means ± SE) are the average of three independent experiments. Bars with different letters are significantly different at P <
0.05 according to Duncan’s multiple range test.
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plays an essential role in regulating glycolysis metabolism in plant.

In the present study, NO may trigger glycolysis metabolic pathway

through increasing the gene expression levels of key glycolysis

enzymes to produce more energy and activate intermediate

metabolism during the process of adventitious root formation

under Cd stress, in order to enhance resistance to Cd stress (Shu

et al., 2011).

Previous studies found that polyamines (PAs) play an essential

role in plant growth and development, as well as response to biotic

and abiotic stress (Wimalasekera et al., 2011; Rakesh et al., 2021). In

plants, it has been reported that PAs could be produced by ornithine

decarboxylase (ODC) or arginine decarboxylase (ADC) pathway,

respectively (Groppa and Benavides, 2008). Meanwhile, polyamine

oxidase (PAO) plays a major role in mediating PAs degradation in

plant (Goyal and Asthir, 2010). In our study, the gene expression of

ADC and ODC was significantly down-regulated in CdCl2
treatment, as compared to CK (Figures 7A, B). However,

exogenous NO obviously enhanced the gene expression of ADC

and ODC which compared with Cd stress, resulting in the

accumulation of endogenous polyamine. In addition, removing

endogenous NO further implied that NO is involved in PAs

accumulation through increasing the expression of ADC and ODC

(Figures 7A, B) under Cd stress. Previous studies indicated that PAs

metabolism plays a vital role in abiotic stress responses (Gupta et al.,

2013). Also, it has been reported that NO could obviously regulate

the transcriptional level of polyaminemetabolism genes ofMedicago

truncatula (Filippou et al., 2013). Moreover, exogenous NO resulted

in cold tolerance by regulating the expression level of ADC andODC

of tea root (Wang et al., 2020). Furthermore, application of NO

could significantly increase the expression of PA biosynthetic

enzyme and lower the activity of PAO activity under salt stress

(Tailor et al., 2019). In our study, Cd stress remarkably enhanced the

expression of PAOwhile a significant decline in PAO expression was

observed in NO treatment (Figure 7C) which may help maintaining

PAs levels. These results suggested that NO might enhance abiotic

stress tolerance through regulating PAs metabolim. Thus, during

adventitious root development under Cd stress, exogenous NO

might positively modulate PAs homeostasis through regulating

polyamines - related genes expression for adapting to Cd

stress condition.
Conclusion

Exogenous application of NO alleviated Cd damage and

promoted the adventitious rooting in cucumber explants under

Cd stress. Through further studies, our results suggested that NO

could reduce oxidative damage and depress lipid peroxidation

through improving the antioxidant capacity of cucumber during

adventitious root formation in response to Cd stress. Additionally,

NO alleviated the damage of Cd stress on the process of

adventitious rooting through regulating glycolysis processes and
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polyamine homeostasis. Therefore, our study may provide new

insights into the positive role of NO in promoting adventitious root

development under Cd stress. Taken together, our study provided

evidence that NO promoted the adventitious root development

under Cd stress in cucumber explants through enhancing

antioxidant capability, promoting glycolysis pathway and

maintaining polyamine homeostasis. However, the regulatory

mechanism underlying NO-induced adventit ious root

development under Cd stress is complex. Further research should

focus on the molecular mechanism of NO-regulated rooting

response under Cd stress.
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