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Biotic stresses threaten to destabilize global food security and causemajor losses

to crop yield worldwide. In response to pest and pathogen attacks, plants trigger

many adaptive cellular, morphological, physiological, and metabolic changes.

One of the crucial stress-induced adaptive responses is the synthesis and

accumulation of plant secondary metabolites (PSMs). PSMs mitigate the

adverse effects of stress by maintaining the normal physiological and

metabolic functioning of the plants, thereby providing stress tolerance. This

differential production of PSMs is tightly orchestrated by master regulatory

elements, Transcription factors (TFs) express differentially or undergo

transcriptional and translational modifications during stress conditions and

influence the production of PSMs. Amongst others, microRNAs, a class of

small, non-coding RNA molecules that regulate gene expression post-

transcriptionally, also play a vital role in controlling the expression of many

such TFs. The present review summarizes the role of stress-inducible TFs in

synthesizing and accumulating secondary metabolites and also highlights how

miRNAs fine-tune the differential expression of various stress-responsive

transcription factors during biotic stress.
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1 Introduction
Being sedentary, plants are continually defied by various

environmental stresses, orchestrated into declination of their

growth and yield. Biotic stresses include infection by various

organisms such as bacteria, fungi, nematodes, viruses, and

herbivory by insect pests. Plants continue to live with these

stresses, decreasing productivity and yield loss (approximately

35% loss due to biotic stress) (Foyer et al., 2016). During 2020,

due to decreased plant productivity, the United Nations (UN) has

decided to acknowledge the year as an International year of plant

health to motivate research in the area of plant science (Roux and

Ham, 2020). It has also been estimated that food production will

have to be increased by approximately 60% to feed the growing

population of estimated 10 billion people. The primary reason for

this loss in yield is increased pathogens and pests encountering crop

plants due to abrupt climate change Jha et al., 2022. Plants have

progressed numerous responses to shield themselves and counter-

attacks of far-ranging pests and pathogens (Brading et al., 2000).

Thus, plants tend to foray into a balance in their response and

existential methods against biotic stress, which show deleterious

effects (Iqbal et al., 2021; Kumar et al., 2020). The plant defensive

response affecting the mechanisms at the molecular level has been

explained profoundly (Cheng et al., 2012; Wang and Wang, 2019).

However, the reasons for this diversity in metabolite production

during biotic stress are not abundant.

An array of diverse metabolites is produced by plants,

which can be either vital (primary metabolites) or non-vital

(secondary or specialized metabolites), affecting the fundamental

processes of growth and development (Obata, 2019). Plant

Secondary metabolites (PSMs) are multifunctional metabolites,

characteristically intricate in plant defenses, and environmental

communication, especially during stress response. Plants’ diversified

machinery for plant defense not only allow them to survive against

stressors but also influence PSM accumulation (Pagare et al., 2015).

The Biosynthesis of PSMs in response to stressful environments is

controlled at the transcriptome level by numerous genes and

transcription factors (TFs). TFs are sequence-specific DNA binding

proteins that identify and bind specifically to the cis-regulatory

sequences of the promoter regions of the targeted genes which may

activate or repress their expression levels in response to developmental

and other environmental cues (Patra et al., 2013). TFs in plants encode

up to 10% of the total genes at diverse stages, thereby regulating signal-

mediated gene expression. TF families, namely WRKY, MYB, NAC,

and AP2/ERF, are crucial regulators of various genes, which

contribute to the model choice for genetic engineering to boost the

immunity of plants against diverse stress stipulations (Baillo

et al., 2019).

During pest and pathogenic attacks, the concentration of PSMs

alters due to the differential activity of TFs. miRNAs are one of the

prime regulators which control the activity of TFs at the post-

transcriptional level. Small, non-coding riboregulators known as

miRNAs (20–24 nucleotides) also regulate eukaryotic gene

expression through base pairing the complementary mRNA. The

miRNA genes are transcribed by RNA polymerase II to produce an
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imperfect hairpin structure called pri-miRNAs. These pri-miRNAs

are further processed by DICER-LIKE 1 (DCL1) to generate 70-100

nucleotides long hairpin structures called pre-miRNAs. The same

DCL1 converts pre-miRNAs to mature miRNAs following their

loading into the RISC complex, these mature miRNAs bind to

mRNAs to cleave and silence the genes (Jones-Rhoades et al., 2006).

miRNAs are recognized not only to regulate various plant processes

related to their growth and development but also to control

biosynthesis and accumulation of secondary metabolites during

biotic stress (Bulgakov and Avramenko, 2015).

The investigation on the role of miRNA’s in regulation of

transcription factors during biotic and abiotic stress has been

extensively studied (Javed et al., 2020; Šečić et al., 2021). There

are reported studies of various transcription factors involved in the

regulation of synthesis and accumulation of PSMs (Pagano et al.,

2021; Jan et al., 2021b). However, in this article, we have updated

knowledge of the present understanding of TFs responsible for

regulating plant secondary metabolites on biotic stress. We have

also emphasized how these TFs are regulated by regulators such as

miRNAs, which are directing gene expression at the post-

transcriptional and translational levels. The production of

secondary metabolites by maneuvering the role of miRNA in

various economically important crops may improve the

profitability of agriculture and food industries.
2 Plant secondary metabolites

Plants produce thousands of specialized organic compounds,

divided conventionally into two broad forms, i.e., primary and

secondary metabolites (Obata, 2019). Primary metabolites portray a

significant role in growth and development. In contrast, secondary

metabolites are structurally diverse compounds that have been

reported to be involved in plant defense (Pagare et al., 2015).

They are known to contribute to the survival and health of plants

and play a pivotal role in protecting them against abiotic (UV light,

temperature, heavy metals, drought, salinity, etc.) as well as biotic

stresses (herbivores, phytopathogens, fungi, bacteria, etc.) (Tiwari

and Rana, 2015). It has been well-established that they show

pharmaceutical properties (Verpoorte, 1998). Besides, it has also

been reported that PSMs have been used commercially as

agrochemicals in flavoring, fragrance, biopesticides, dyes, and

food additives.

According to the studies on biochemical structure composition,

PSMs have been broadly classified into two sets: nitrogen-

containing (majorly alkaloids) and non-nitrogen-containing

molecules (terpenes and phenols) (Patra et al., 2013). Plant-

specialized metabolites (PSM) are chemically diverse in nature.

The precursors for their biosynthesis are generated by either

glycolysis or shikimic acid pathways, eventually leading to

diversification based on cell types and environmental factors

(Costa et al., 2012). PSMs have a much-limited presence in the

plant kingdom. It has been noticed that they are recurrently found

either in only one plant species or a taxonomically related genus

(Jamwal et al., 2018). More than 100,000 SMs are produced in

plants through different pathways, and their quality and quantity
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are mostly influenced by temperature and other biotic and abiotic

factors (Meena et al., 2017).

Terpenes are the most diverse known PSMs synthesized from

acetyl-CoA and glycolytic intermediates. They are formed by the

fusion of 5 carbon units named isoprene and have a branched

backbone. Terpenes consist of monoterpenes, diterpenes,

sesquiterpene, triterpenes, tetraterpenes, and polyterpenes, which

have significant importance in defense against pathogens and

herbivory. Its biosynthesis includes two major pathways: the

mevalonic acid pathway & methylerythritol phosphate pathway

(MEP Pathway), which occur in plastids and are known to produce

both isopentenyl diphosphate (IPP) and dimethylallyl diphosphate

(DMAPP), respectively, which are the basic unit of terpene

synthesis (Figure 1) (Khare et al., 2020). Some terpenes are

identified as hormones (e.g. , gibberellins, a diterpene;

brassinosteroids, triterpenes) and have crucial roles in growth and

development. Terpenes, such as limonene and menthol, defend

against herbivores (Ahmed et al., 2017; Lin et al., 2017). Another

example is abietic acid, a class of diterpenes obtained from

leguminous plants and pine trees that exhibit an antipathogenic

effect (Lewis et al., 1997).

Phenolics are ubiquitous compounds with a hydroxyl group

attached to an aromatic ring. It can be simple or complex; simple

phenolics such as, (gallic acid, caffeic acid, etc.) and polyphenols

(stilbenes, flavonoids, etc.) have several curative properties (Jan

et al., 2021b). They have significantly evolved the modern medicine

system, be it cancer or major diseases by showing properties like

anti-inflammation, anti-cancerous, and many more. Besides, it also

shows antioxidative properties against oxidative damage in plants

due to harmful UV rays. In addition, the plant’s pigmentation of

flowers and leaves is due to a complex phenol molecule named

anthocyanin. Flavonoids, however, play an essential role in

pollination to attract pollinators in exchange for rewards such as

nectar and seed dispersal (Winkel, 2004; Crozier et al., 2006; Butelli

et al., 2008). There are two major biosynthetic pathways: shikimic
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acid and malonic acid pathway, where phenylalanine ammonia-

lyase (PAL) and chalcone synthase (CHS) are the key enzymes

involved in the phenolic compound synthesis, which is produced

under various stress conditions (Khare et al., 2020) (Figure 2).

Flavonoids are the most common class of secondary metabolites

that can be found in edible plant parts like grains, fruits, and

vegetables. The phenylpropanoid pathway is the synthesis pathway

and are derivatives of 2-phenylbenzyl-pyrone (Roy et al., 2022;

Tajammal et al., 2022). Among flavonoids, luteolin, apigenin,

quercetin, kaempferol, and many more have been isolated and

reported to exhibit defense against pathogens, fungi, and other

biotic stress (Kumar and Pandey, 2013; Li et al., 2019; Hassani

et al., 2020).

Nitrogen-containing PSMs contain nitrogen molecules in the

structure, and precursors include amino acids such as lysine,

tyrosine, tryptophan, etc. It mainly includes alkaloids, cyanogenic

glucosides & non-protein amino acids. Alkaloids such as morphine,

berberine, vinblastine, and scopolamine have pharmaceutical

properties, whereas cocaine, caffeine, and nicotine have sedative

and stimulant properties. Most alkaloids are toxic, such as

pyrrolizidine alkaloids (PAs) help in defense against microbial

infection and herbivory. For example, monocrotaline obtained

from Crotalaria, pyrrolizidine from Panax quinquefolius, and

senecionine from Senecio jacobaea is used as antiherbivore (Irmer

et al., 2015; Graser and Hartmann 2000; Stella et al., 2018). Non-

protein amino acids, however, do not incorporate into proteins;

besides, they move freely, and acts as a protective defense in plants

such as mimosine, citrulline, pipecolic acid, and canavanine

obtained from Mimosa, Cucumis, Calliandra, and legumes

respectively against various kind of stresses such as herbivory and

pathogen (Yokota et al., 2002; Moulin et al., 2006; Mazis et al., 2011;

Emendack et al., 2018). Cyanogenic glucosides are part of glycosides

that break down to produce volatile poisonous substances like HCN

that deter feeding by insects and other herbivores. Various plant

families possess cyanogenic glucosides viz., Gramineae, Rosaceae,
FIGURE 1

Schematic diagram of secondary metabolic biosynthesis pathway. Phosphenol pyruvate (PEP), Erythrose-4-phosphate (E-4-P), and Tricarboxylic acid
(TCA) cycle.
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and Leguminosae. For example, amygdalin, dhurrin, linamarin, and

lotaustralin extracted from Prunus sp, Sorghum, and Lotus

japonicum has been premeditated for their role against drought

and as antiherbivore (Mazid et al., 2011; Lai et al., 2015; Emendack

et al., 2018; Yadav et al., 2022).

Sulfur-containing secondary metabolites are trivial groups of

PSMs that include around 200 compounds. Sulfur-containing PSMs

include glucosinolates (GSL), glutathione, glycosphingolipid,

phytoalexins, allinin, thionins, and defensins (Venditti and

Bianco, 2020). They are directly linked with the defense against

microbial pathogens. They are known for their diverse biochemical

structures and means of action, which have been reported to give

plants a versatile array of chemical defenses to counter various

potential enemies (Khare et al., 2020). Glucosinolates are N and S-

containing glucosides that are active against unfavorable predators,

competitors, and parasites (Bloem et al., 2007). Glucoraphanin, a

glucosinolate from Brassica oleracea, is used majorly against UV

stress (Coleto et al., 2017). Phytoalexins have antimicrobial

activities that activate the defense system against these pathogens

(Ziegler and Facchini, 2008). For example, brassinin, wasalexins,

and camalexin obtained from higher plants show defense against

pests and pathogens (Thomma et al., 2002; Abdalla and Mühling,

2019; Rodriguez-Salazar et al., 2017).

PSMs production is, however, not only limited to biotic stress

rather an extensive production of PSMs have also been observed

during abiotic stress. Drought, flood, and extreme temperature

along with heavy metals, and chemicals have a much serious

impact on plants (Jha et al., 2019). Solanum lycopersicum has

been reported to show high activity of phytol (a diterpenoid)

upon heat stress (Spicher et al., 2017). Further, other unfavorable

condition like cold, is known to slow down the major chemical

reactions in plants and under severe circumstances often lead to the

death of plants. Pinoresinol, a lignin helps in alleviation during cold

stress in almost all land plants (Griffith and Yaish, 2004). Similarly,

drought or extreme salinity has reported drastic effects on both

physiological and chemical processes (Aftab, 2019, Jan et al.,

2021b). Thus, a huge literature supports the effect of abiotic stress

on secondary metabolite production.

Since ancient times, the collection of secondary metabolites

synthesized from diverse plants has been employed as medicinal
Frontiers in Plant Science 04
ingredients to treat human illnesses. Certain plant species have been

discovered to contain a range of active metabolites that participate in

the treatment of multiple chronic human diseases, notably cancer,

cardiovascular issues, and others. Because they possess antibacterial,

antifeedant, and parasiticidal capabilities, as well as being less harmful

and inexpensive. Hypericum perforatum is employed for its anti-

depressant, anti-cancer, anti-inflammatory, anti-viral, and anti-

bacterial qualities. This plant exhibits antidepressant drugs

including fluoxetine and sertraline as well as other metabolites such

as flavonoids, hyperforin, hypericin, and xanthones that increase its

medical potential (Shakya, 2016). The Ipomoea batata L. is a popular

food all over the world. Because it contains so many vitamins and

phytochemicals, it has several positive impacts on human health.

These phytochemicals have anti-cancer, anti-diabetic, anti-

inflammatory, and antioxidant properties. Additionally, beta-

carotene, a precursor of vitamin A that aids in the treatment of

night blindness and vitamin A insufficiency, is present in sweet

potatoes (Ghasemzadeh et al., 2016). There are several secondary

metabolites in Caparis spinosa that contribute to enhancing

biomarkers for diabetes and cardiovascular disease (Zhang and Ma,

2018). The use of secondary metabolites in contemporary medicine

may open up new avenues for research into the identification and

isolation of the desired pharmacologically active lead chemical in the

drug discovery process.
3 Transcription factors regulating the
biosynthesis of PSMs

Transcription factors (TFs) are class of proteins majorly

responsible for regulating gene expression by binding to specific

cis-acting elements in the promoter region of target genes.

Generally, it has two domains, a DNA binding domain (DBD)

and transcriptional activation or repression domain, known to

regulate varied cellular processes. mRNA, which comprises 6% of

the total genome, is considered the central point of control. In

Arabidopsis thaliana, over 1600 TFs have been isolated and studied

in detail (Gong et al., 2004). Based on the DBD, transcription

factors have been named WRKY, bHLH, MYC, MYB, NAC, AP2/

ERF, bZIP, and others.
FIGURE 2

Schematic representation of the general pathways leading to various pathways of secondary metabolites biosynthesis such as phenols, terpenoids
and N- containing secondary meabolites. PEP: Phosphoenol pyruvate, DMAPP : Dimethylallyl pyrophosphate, GPP: Geranyl pyrophosphate, FPP:
Farnesyl pyrophosphate, GGPP: Geranylgeranyl diphosphate PAL : Phenylalanine ammonia-lyase, C4H:cinnamate-4-hydroxylase.
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TFs have been categorized into various families and

superfamilies, which seem to have a distinct role in regulating the

stress response, i.e., both abiotic and biotic, a few of which are

unique in plants. According to the information on specialized

databases such as the Transcription factor database (TFDB), the

plants contain more than 2000 genes encoding TFs in the genome.

It has been reported in the literature that there are more than 63

families of TFs and about 22 regulators present (Pérez-Rodrıǵuez

et al., 2010). Out of these, there are majorly nine Transcription

factor families reported recently which have a significant regulatory

role in stress tolerance in plants (Chacón-Cerdas et al., 2020) which

are identified as ARF, AP2/ERF-ERF, AP2/ERF-DREB, bZIP, BELL,

TCP, NAC, WRYK, and ZFP (Table 1; Figure 3).

This review focuses on the role of six TFs, namely, WRKY,

NAC, AP2/ERF, MYB, bZIP, and bHLH, that are majorly intricated

in regulating and synthesizing secondary metabolites under biotic
Frontiers in Plant Science 05
stress in economically important crops. A few reviews have

suggested the diverse role of TFs in regulating plant defense, but

there has been a meager understanding of the role of TFs in

biosynthesis and regulation of PSMs under biotic stress and how

miRNAs regulate them. Therefore, this review has been planned to

focus on transcription factors involved in PSMs biosynthesis during

plant defense and their regulation by miRNAs in both model plants

and economically important crops.
3.1 WRKY TF

WRKY is the foremost characterized class of plant TF,

which regulates various plant processes related to development,

physiology, metabolism and plant defense (Chen et al., 2017). From

the discovery of WRKY in Ipomea batata in the 1990s to the
TABLE 1 Number of Genes encoding for Transcription factors involved in plant defense (Summarized from Transcription Factor Database, 2022).

S.No. Plant Species Transcription Factors

WRKY MYB AP2 ERF NAC bZIP BHLH ZF-HD

1 Amaranthus hypochondriacus 54 69 15 95 42 56 120 10

2 Arabidopsis thaliana 90 168 30 139 138 127 225 18

3 Artemisia annua 36 39 4 48 28 35 45 4

4 Brassica napus 285 489 57 449 411 264 553 62

5 Brassica oleracea 191 306 43 261 271 217 393 47

6 Brassica rapa 180 293 42 267 256 200 371 35

7 Cajanus cajan 97 179 25 148 96 69 174 20

8 Catharanthus roseus 103 110 32 111 121 125 218 15

9 Cicer arietinum 94 166 35 144 96 123 197 18

10 Glycine max 296 430 99 338 269 352 548 58

11 Hordeum vulgare 126 99 34 112 150 156 266 13

12 Malus domestica 139 238 45 216 253 114 250 28

13 Medicago truncatula 140 185 37 197 123 124 259 18

14 Nicotiana benthamiana 133 203 53 266 228 159 277 34

15 Nicotiana tabacum 210 319 93 337 280 210 435 46

16 Oryza sativa 109 121 27 138 158 94 169 15

17 Phaseolus vulgaris 102 181 31 155 106 105 203 19

18 Solanum lycopersicum 81 140 27 137 101 70 161 22

19 Solanum melongena 65 105 23 132 95 57 121 15

20 Solanum tuberosum 125 126 45 185 131 95 206 19

21 Sorghum bicolor 134 145 42 172 180 166 297 21

22 Triticum aestivum 171 263 43 181 263 186 324 20

23 Vigna angularis 92 120 27 253 115 122 192 30

24 Vigna radiata 88 117 21 113 82 63 153 15

25 Vigna unguiculata 22 26 5 38 20 34 61 6

26 Zea mays 161 203 54 204 189 216 308 26
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diversified presence in many of the eukaryotic organisms, be it

fungi, amoebae, or higher eukaryotic plants (Ülker and Somssich,

2004; Yamasaki et al., 2005; Zhang and Wang, 2005; Rushton et al.,

2010). The genome-wide characterization and analysis in model

plants stipulate a widely authenticated and accepted classification

system of the WRKY TF family specific to plants. It consists of 60

amino acids in their highly conserved DBD (called WRKY domain)

(Eulgem et al., 2000). The WRKY domain comprises the

WRKYGQK motif at N- terminus, a highly conserved motif, and

a zinc-finger region at C -terminus binding to W-box (TTG ACT/

C), which shows higher affinity towards DNA binding, although

other binding sites also have been reported (Ciolkowski et al., 2008;

van Verk et al., 2008; Li et al., 2010; Schmutz et al., 2010; Ishiguro

et al., 2011; Brand et al., 2013; Rinerson et al., 2015; Cia et al., 2018).

The number of genes encoding for the WRKY family varies

amongst plants being 171 WRKY genes in wheat,161 in maize, 94

in chickpea, 171 in rice, etc (Table 1).

WRKY TFs have a diverse role in various plant processes, such as

development, germination, seed dormancy and were first reviewed in

2010 (Rushton et al., 2010). Since then, its role has been thoroughly

studied and experimented with. However, its significance in

regulating stress response is of prime importance. It has been

known to regulate and interconnect multiple environmental

stimulations (Rushton et al., 2010; Rushton et al., 2012;

Schluttenhofer and Yuan, 2015; Banerjee and Roy choudhury,

2015; Phukan et al., 2016). There has been a detailed review of

WRKY TFs in various abiotic stresses such as cold (Zou et al., 2010;

Guo et al., 2015; Dai et al., 2016; Yu et al., 2016), drought (Tripathi

et al., 2014; He et al., 2016; Liu J et al., 2016; Chu et al., 2015; Li R

et al., 2015; Raineri et al., 2015; Yan et al., 2015; Wang Y et al., 2016;

Wani et al., 2018; Jha et al., 2019), salt (Wang L et al., 2014; Ding et al.,

2015; Ma et al., 2015; Bai et al., 2018), osmotic stress (Mao et al., 2011;

Li H et al., 2013; Marchive et al., 2013; Phukan et al., 2016; Jiang et al.,

2017; Li et al., 2020), heat (Grover et al., 2013; Cai et al., 2015; He

et al., 2016; Wang Y et al., 2016; Ohama et al., 2017; Sita et al., 2017;
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Cheng Z et al., 2021) and many more in economically

important crops.

Many previous studies have described that plants harbour

evolutionarily conserved defense mechanisms against pests (Peng

et al., 2011; Sun et al., 2015; Kloth et al., 2016; Yang et al., 2017; Jha

et al., 2020) and pathogens such as fungus (Turck et al., 2004; Guo

et al., 2011; Inoue et al., 2013; Dang et al., 2014; Zhang, 2014), and

bacteria (Deslandes et al., 2002; Kim et al., 2008) (Table 2). Most

WRKY TF have been known to show negative regulation towards

stress, while only a few exhibit positive responses during stress (Kim

et al., 2008; Xing et al., 2008).

WRKY TFs have been reported to regulate the biosynthesis of

several secondary metabolites like phenols, lignin, flavonoids, tannins

etc., and their inducible expression analysis revealed a role in

regulating defense-related PSM biogenesis (Guillaumie et al., 2010;

Wang et al., 2010; Grunewald et al., 2012; Phukan et al., 2016).

For instance, WRKY3 and WRKY6 have been reported for their role

in the biosynthesis of volatile terpenes in tobacco (Skibbe et al., 2008).

Artemisinin, an isolated sesquiterpenoid lactone majorly used as an

antimalarial drug, is extracted fromArtemisia annua (Meshnick et al.,

1996); it has shown upregulation in the presence of WRKY1

(Asadollahi et al., 2008). Similarly, AaWRKY17 is reported to

positively regulate artemisinin synthesis in providing resistance

against Pseudomonas syringae (Chen et al., 2021).

Another PSM, Hydroxycinnamic acid amide (HCAA), is a

phenol derived from the phenylpropanoid pathway, which is

majorly involved in lignin biosynthesis and is derived from

phenylalanine (Humphreys et al., 1999; Vogt, 2010; Rio et al.,

2021). WRKY1 in late blight-infected potato plants binds to its

promoter sites (Yogendra et al., 2015). Similarly, associated genes

like ACT, DGK, and GL1 are activated in wheat by TaWRKY70,

upon encountering fungi (Kage et al., 2017). Red rot caused by

Fusarium in barley, HvWRKY23 promotes the expression of genes

like CHS, HCT and PAL, which further induces HCAA biosynthesis

(Karre et al., 2019). Likewise, StWRKY8 enhances the expression
FIGURE 3

An abundance of various Plants TFs in important economic crops.
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level of COR2, NCS, and TyDC genes majorly involved in the

production of benzyl iso-quinoline alkaloids in potatoes; against

bacterial attack (Yogendra et al., 2017). In addition, SsWRKY18,

SsWRKY40, and SsMYC2 play a regulatory role in the production

of abietane-type diterpenes in Salvia sclarea, which exhibits

antimicrobial (Alfieri et al., 2018).

Phytoalexins, another secondary metabolite, belonging to

the stilbene family, are considered significant regulators of plant

defense (Jiang et al., 2010; Ahuja et al., 2011). Resveratrol in

grapes has been the first reported class of phytoalexins (Lanz

et al., 1991). VvWRKY8 has been found to modulate the

biosynthesis of resveratrol in grapes which ultimately can be

engineered to enhance resistivity (Jeandet et al., 2019). It was

shown to negatively regulate the stilbene synthase gene (Jiang

et al . , 2019). ZmWRKY79 in maize caused increased
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phytoalexin accumulation under biotic stress conditions (Fu

et al., 2017). Similarly, GaWRKY is responsible for the increased

production of gossypol, which shows anti-feeding properties in

cotton (Xu et al., 2004). WsWRKY1, in Withania, has been

reported to significantly reduce phytosterol accumulation,

resulting in decreased resistance to bacteria, fungi, and insects

(Singh et al., 2017). In addition, SsWRKY18, SsWRKY40, and

SsMYC2 show regulation in accumulating abietane (diterpene)

in Salvia sclarea, which exhibits antimicrobial properties

(Alfieri et al., 2018). Another example CjWRKY1 from Coptis

japonica controls berberine biosynthesis (Kato-Noguchi and

Takeshita , 2013) .The regulatory roles of WRKY TFs

production have been explored extensively. This information

can be employed to engineer biot ic stress resistance

in transgenics.
TABLE 2 Role of Transcription factors in the biosynthesis of plant secondary metabolites in plants.

S.No. Biotic stress Families Transcriptional
Factors

Plant
Species

Secondary
Metabolites

References

1. Pathogen Attack AP2/ERF PnERF1 P. notoginseng Saponins Deng et al., 2017

WRKY StWRKY1 S. tuberosum HCAAs Yogendra et al., 2015

bHLH TSAR1/TSAR2 M. falcata Saponins Mertens et al., 2016

MYB CsMYBF1 C. sinensis Flavonoids and HCAAs Wang et al., 2018

MYB AtMYB11/12/111 A. thaliana Flavonoids Mishra et al., 2010

WRKY WsWRKY1 W. somnifera Phytosterol Singh et al., 2017

WRKY TaWRKY70 T. aestivum HCAAs Kage et al., 2017

WRKY SsWRKY18/40 S. sclarea Diterpenoids Alfieri et al., 2018

MYB OsMYB30/55/110 O. sativa HCAAs Kishi-Kaboshi et al., 2018

MYB AtMYB11/12/111 A. thaliana Flavonoids Mishra et al., 2010

bZIP OsTGAP1 O. sativa Diterpenoid phytoalexins Miyamoto et al., 2015

bZIP OsbZIP79 O. sativa Diterpenoid phytoalexins Miyamoto et al., 2015

bZIP SlHY5 S. lycopersicum Anthocyanin
Monoterpenoids

Liu et al., 2018

bHLH DPF O. sativa Diterpenoid phytoalexins Yamamura et al., 2018

MYB AtMYB12 A. thaliana Flavonoids Hamamouch et al., 2020

2. Nematode Attack WRKY GmWRKY136,
GmWRKY53,
GmWRKY86

G. max SA Yang et al., 2017

WRKY SlWRKY45,
SlWRKY3, SIWRKY70

S. lycopersicum Phenolics (Chinnapandi et al., 2017; Chinnapandi
et al., 2019

MYB AtMYB75 A. thaliana SA Shen X et al., 2018

MYB TaMYB19, TaMYB2,
TaMYB44

T. aestivum SA Shen X et al., 2018

3. Insect Attack
Toxic against
herbivory

WRKY OsWRKY45, OsWRKY46 O. sativa Ethylene, H2O2 Huang et al., 2016

AP2/ERF NtERF32 N. tabaccum Nicotine Sears et al., 2014

AP2/ERF EREB58 Z. mays Sesquiterpenes Li M et al., 2015
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3.2 MYB

MYB (Myeloblastosis) TFs are essential and functionally diverse

proteins in eukaryotes (Jia et al., 2004). It is widely studied in plants,

highlighting its importance in the system. Scientific investigations

on Zea mays led to the isolation of the first MYB-TF in 1980s, which

was homologous to the MYB proto-oncogene present in animals

(Paz-Ares et al., 1987). MYB proteins typically have two distinct

regions: N-terminus with a conserved DNA binding MYB domain,

and a variable C-terminus making these TFs functionally diverse

(Frampton et al., 1991). MYB domains generally contain 1–4

imperfect repeats of 50–53 amino acid residues each. Each repeat

contains three a-helices, of which the second and third helices are

responsible for specific gene recognition (Ogata et al., 1996). The

third helix is the central part that makes contact with the major

groove of DNA (Jia et al., 2004). Based on the number of repeats

and their position, MYB TFs are categorized into four classes:1R

(R1/2, R3-MYB), 2R (R2R3-MYB), 3R (R1R2R3-MYB), and 4R

(R1/R2-like repeats) (Dubos et al., 2010).

Various growth and developmental processes in plants involve

MYB TFs, such as flower color development in Glycine max

(Takahashi et al., 2013) and signal transduction in A. thaliana,

Zea mays, Oryza sativa, and cassava (Bakhshi and Arakawa, 2006;

Raffaele et al., 2006; Liao et al., 2016). MYB TFs also control cell

cycle and morphogenesis in various plants (Joaquin and Watson,

2003; Cominelli and Tonelli, 2009; Baumann et al., 2007). In

addition to these diverse roles, MYB has also been well

documented to regulate secondary metabolite synthesis in many

plants, for instance, Camellia sinensis, A. thaliana, and Medicago

truncatula (Verdier et al., 2012; Ambawat et al., 2013; Patra et al.,

2013; Liu et al., 2015; Nguyen et al., 2016; Zhao et al., 2022). This

production and regulation of secondary metabolites help combat

enemies during biotic stress. Whenever any pathogen or insect

attacks a plant, it tends to fortify its cell walls and membranes to halt

the invasion (Table 2) (Kim et al., 2003; Kim et al., 2013). Several

MYB factors are shown that control lignin biosynthesis (Zhu et al.,

2020; Xiao et al., 2021). CmMYB15 in Chrysanthemum morifolium

binds to AC elements of lipid synthesis gene promoter to regulate

lignin biosynthesis during aphid invasion. Overexpressing

CmMYB15 led to a reduction in aphid proliferation (An et al.,

2019). MdMYB30, a His MYB-TF was found to improve disease

resistance by regulating wax biosynthesis in apples (Zhang et al.,

2019). In some plants, secondary metabolites like phytoalexins are

produced to inhibit the growth of pathogens. Sorghum MYB TF y1

(yellow seed 1) protects maize from Colletotrichum sublineolum

infection by synthesizing 3-deoxyanthocyanidin phytoalexins

(Ibraheem et al., 2015; Chen et al., 2018). VdMYB1, a member of

the R2R3-MYB TF, induce a defense response in the grapevine

against Erysiphe necator fungal infection by activating stilbene

synthase 2 gene (VdSTS2) (Yu et al., 2019).

MYB TFs are also reported to modulate the production of

essential PSMs such as flavonoids, glycolipids, hydroxycinnamic

acid amides (HCAAs), and proanthocyanidins during biotic stress.

AtMYB29 and AtMYB76 are correlated to the synthesis of aliphatic

glucosinolate in Arabidopsis. On the other hand, AtMYB34,
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AtMYB51, and AtMYB122 are responsible for indole

glucosinolate (IG) accumulation which is related to tryptophan

biosynthesis genes (CYP79B2, CYP79B3, and CYP83B1) expression

(Dubos et al., 2010). Arabidopsis triple mutant MYB-34/MYB-51/

MYB122 has shown increased Plectosphaerella cucumerina

susceptibility due to reduced IG levels (Frerigmann et al., 2016).

MYBs are well known to control anthocyanin production. In

Arabidopsis thaliana, AtMYB113, AtMYB114, AtMYB75, and

AtMYB90 modulate phenylpropanoid pathway to alter

anthocyanin levels (Gonzalez et al., 2008). Similarly, in Asiatic

hybrid lily plants, anthocyanin can be regulated by MYB6 and

MYB12 (Yamagishi et al., 2010). In citrus, CsMYBF1 upregulates

chalcone synthase (CHS) gene during certain flavonoid production

(Liu J et al., 2016). In Camellia sinensis, CsMYB2/CsMYB26 have

been found to promote flavonoid accumulation by binding to

CsF30H and CsLAR gene promoters, thus improving resistivity

against Exobasidium vexans, the causative agent of blister blight

(Nisha et al., 2018). It was reported that Arabidopsis AtMYB11,

AtMYB12, and AtMYB111 play an essential role in flavonoid

production and that heterologous expression of AtMYB TFs can

be heterologously expressed to increase flavonoid content in several

other plants (Wang Y et al., 2016).

Besides significant positive regulatory roles, AtMYB75 has a

negative impact on flavonoid synthesis, which results in reduction

of kaempferol-3,7-dirhamnoside. This reduction makes the plants

susceptible to insect attack (Onkokesung et al., 2014). In rice,

phenylpropanoid pathway genes are upregulated by MYB30,

MYB55 and MYB110, which accounts for increased HCCAs

content (Kishi-Kaboshi et al., 2018). In comparison, the

proanthocyanidin biosynthesis genes are downregulated by

VvMYBC2-L1 in grapes, negatively regulating proanthocyanidin

biosynthesis (Huang et al., 2014). Moreover, enhanced

proanthocyanidins can elevate resistance against wounding in

Rosa rugosa by the action of RrMYB5 and RrMYB10 (Shen Y

et al., 2019). In Poplar trees, PtMYB115 helps in enhancing

resistance during Dothiorella gregaria infection by binding to

ANR1 & LAR3 genes to elevate proanthocyanidin levels (Wang

et al., 2017). Given the ample information in this field, it is worth

discussing how MYB TFs regulate these PSMs’ production, which

would help to generate generate future stress-tolerant crops of

economic value (Ambawat et al., 2015; Dubos et al., 2010).
3.3 AP2/ERF

AP2/ERFs (APETALA2/Ethylene Response Factor) consist of

an AP2 DNA binding domain consisting of 40–70 conserved

amino acids, which was first discovered in floral homeotic

gene APETALA2 (AP2) of A. thaliana (Feng et al., 2005; Nakano

et al., 2014). It is categorized into four subfamilies based on the

variation of conserved domains: AP2, DREB, RAV, and ERF.

Reportedly AP2 comprises two AP2 domains, DREB contains one

AP2 and an A-subfamily, RAV consists of one AP2 and a B3

domain, while ERF has one AP2 and a B-subfamily (Zhou et al.,

2016). In addition to imposing transcriptional and post-
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translational control upon growth, developmental, hormonal, and

stress-responsive genes, AP2/ERFs transcription factors also govern

biosynthesis and regulation of secondary metabolites (Mizoi et al.,

2012; Licausi et al., 2013; Gibbs et al., 2015; Chandler, 2018, Xie

et al., 2019).

Scientists have also reported the role of ERF TFs in plant

defense against different pathogens, which can be employed to

enhance pathogen resistance in crops by engineering pathways

regulating specialized secondary metabolites. In Catharanthus

roseus, ORCA1 and ORCA2 are two AP2/ERF proteins that bind

to the promoters of biosynthetic genes of terpenoid indole alkaloid

(TIA) (Menke et al., 1999). JA-induced ORCA3-TF binding to the

JERE element of the promoter then induces two TIA biosynthetic

genes encoding tryptophan decarboxylase and strictosidine

synthase (vander Fits and Memelink, 2000). ORCA3, 4, and 5 in

C. roseus interact with each other and act on MAPK to regulate TIA

biogenesis (Paul et al., 2017; Paul et al., 2020). These TIAs, like

catharantins, are involved in fungal and insect resistance by

protecting the leaf surface of C. roseus from pathogenic infections

and insect infestation (Roepke et al., 2010).

Steroidal glycoalkaloids (SGAs) are cytotoxic, which benefits

plants to resist pathogen and insect invasion (Friedman, 2002;

Friedman, 2006; Itkin et al., 2013; Nakayasu et al., 2017). In

tobacco and C. roseus, GLYCOALKALOID METABOLISM 9

(GAME9) is found to regulate the biosynthesis of SGAs.

Modifications in gene expression for SGA production and

mevalonate pathway due to overexpression and knockdown,

respectively. (Cárdenas et al., 2016). GAME9/JRE4 bind to the

promoter region of SGA biosynthetic gene, which results in the

upregulation of GAME, CAS, HMGR, SGT, and C5-SD genes

(Thagun et al., 2016). GAME9 is reported to be a regulator of

SGA biosynthesis to provide Spodoptera litura resistance in

tomatoes (Nakayasu et al., 2018). Similar SGAs accumulation and

regulation were discussed in tomatoes and potatoes (Cárdenas et al.,

2016; Thagun et al., 2016; Nakayasu et al., 2018).

Nicotine, a tobacco alkaloid, is a repellent that facilitates plant

protection against herbivores (Steppuhn et al., 2004). The AP2/ERF

gene has been reported to be responsible for nicotine biosynthesis in

tabacco. Accumulating nicotine biosynthesis results in positive

action of NtERF189 and ORC1 on the associated genes, and

NtMYC2, a JA inducer, also has the same effect (Shoji and

Hashimoto, 2011; De Boer et al., 2011). Expression of putrescine

N-methyltransferase coding gene, NtPMT1a, involved in nicotine

biosynthesis, was found to be downregulated by NtERF32 (Sears

et al., 2014). ERF located at NIC-2 locus regulates biosynthesis in

tobacco of nicotine against herbivory (Shoji et al., 2010 and De Boer

et al., 2011), NtORC1/ERF221 and NtJAP1/ERF10 in tobacco have

been positively regulated by PMT gene which synthesizes nicotine

and pyridine alkaloids (De Sutter et al., 2005; Thagun et al., 2016).

Taxol, an anticancer and plant defense compound, provides

resistance against Phytophthora capsici infection (Young et al.,

1992). TcERF12 and TcERF15, are regulators of taxol

biosynthesis, the former having adverse effects while the latter

having positive action (Zhang et al., 2015). Another class of

antimicrobial metabolites is the hydroxycinnamic acid amides

(HCAAs), which confer resistance to many fungi like Alternaria
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brassicicola and Botrytis cinerea on plants (Meraj et al., 2020).

ORA59, another AP2/ERF TF, governs HCAA production by

controlling AtACT (agmatine coumaryl transferase) (Li

et al., 2018).

Saponins have been shown to have a variety of functions,

including serving as phytoprotectants (Papadopoulou et al., 1999;

Avato et al., 2006). In Panax notoginseng, PnERF1 was discovered

to bind to the saponin biosynthesis gene (HMGR, FPS, DS, SS)

promoters that increase total saponin content in overexpressing

lines (Deng et al., 2017). Furthermore, lignin is an essential

defensive substance as a fundamental component of the plant cell

wall. GbERF1 prevents Verticillium dahliae infection in Gossypium

barbadense by increasing lignin production (Guo et al., 2016).

Genome-wide & transcriptome analysis confirmed that

gypenosides (a triterpenoid saponin) in Gynostemma are

regulated under biotic stress (Xu et al., 2020). Similarly, in

Solanum melongena, Smechr0902114, and Smechr1102075, which

belong to ERF TF, were reported to regulate anthocyanin

biosynthesis (Li et al., 2021).

Several ERFs have been known to activate the transcription of

various disease-responsive genes such as PR (pathogenesis-related),

glucanase, chitinase, etc. They have also been reported in the

regulation of abiotic stress (Yi et al., 2004; Seo et al., 2010; Fukao

and Mito et al., 2011; Fahad et al., 2017; Li Z et al., 2015; Verma

et al., 2016; Chen et al., 2017; Nolan et al., 2017; Van den Broeck

et al., 2017; Ye et al., 2017; Bechtold and Field, 2018; Chen et al.,

2021) and biotic stress (Lorenzo et al., 2003; Zarei et al., 2011;

Moffat et al., 2012, Zhang et al., 2009; Liu et al., 2011; Liu et al., 2012;

Müller and Munné-Bosch, 2015; Abiri et al., 2017). Many elicitors

(Dzhavakhiya and Shcherbakova, 2007) originating from yeast,

fungi, and bacteria have been lately studied to induce the

synthesis of PSMs (Dzhavakhiya et al., 2007; Hu et al., 2003;

Sang et al., 2010; Almagro et al., 2012; Awad et al., 2014; Naik

and Al-Khayri, 2016; Jan et al., 2021a).
3.4 NAC

NAC [NAM (no apical meristem)], ATAF1/2, and CUC2 (cup-

shaped cotyledon) are TF families that are quite connected to plant

stress response (Ahuja et al., 2010). NAC proteins consist of a highly

diverse C-terminal transcription regulatory (TR) domain, a

conserved N-terminal binding domain, and a transmembrane

domain (Puranik et al., 2012; Tweneboah and Oh, 2017).

Functional genomics studies have revealed that NAC genes are

well distributed in different plant species. According to the latest

Transcription Factor Database (TFDB) records, 138 non-redundant

NAC genes exist in the model plant, i.e., A. thaliana, around 263 in

Triticum aestivum, 158 in Oryza sativa and 189 in Zea mays and

many others (Table 1).

The NAC gene families show extensive regulation under

environmental stresses (Nakashima et al., 2012; Nuruzzaman

et al., 2013). Many investigations on these lines revealed the role

of NAC TFs during abiotic stress; however, in recent years, biotic

stress has also gained attention among plant scientists. It has also

been reported that NAC regulates defense responses against
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microbe and insect attacks (Puranik et al., 2012). During pathogen

attack, NAC induces hypersensitive response in essential crops such

as Glycine max (Faria et al., 2011), sorghum (Zhang et al., 2013),

wheat (Saad et al., 2013), barley (Chen et al., 2013), rice (Liu et al.,

2018) and other plants (Zhou et al., 2018). PSMs production during

stress is one of the prime defense mechanisms controlled by NAC

TFs. Among them, phytoalexins are low molecular mass PSMs

produced during pathogen attacks (Ahuja et al., 2012). In A.

thaliana, ANAC042 confers plant resistivity to Alternaria

brassicicola attack by binding to the promoter of camalexin

biosynthetic genes (Saga et al., 2012; Duan et al., 2017).

Camalexin (3’-thiazol-2’-yl-indole) is a well-known primary

phytoalexin released after microbial infection in many plants

(Nguyen et al., 2022). Glyceollin, another isoflavonoid-derived

phytoalexin from soybean is positively regulated by GmNAC42-1

which imparts resistivity to plants (Jahan et al., 2019).

NAC TFs also regulate ROS homeostasis during stress

conditions by regulating certain PSMs. The Arginine

decarboxylase gene (ADC) controls putrescine biosynthesis,

which can regulate ROS homeostasis. In Poncirus trifoliata,

PtrNAC72 was found to regulate the expression of ADC (Wu

et al., 2016). Furthermore, glutathione biosynthesis is regulated by

MfNAC in Medicago falcate, which controls the expression of

glyoxalase-1 (GLO1) gene (Duan et al., 2017).

In Hevea brasiliensis, latex biosynthesis is governed by

HbNAC1, which shows binding affinity towards the CACG motif

present in the promoter region of small rubber protein. This may

have a potential role in healing wounds caused by herbivores (Cao

et al., 2017). Many NAC TFs have also been found to regulate

specific genes involved in defense systems negatively. From Norway

spruce (Picea abies), PaNAC03 has been reported to regulate

flavonoid biosynthesis genes like CHS, LAR3 negatively, and

F3’H, consequently providing resistance to Heterobasidion

annosum (Danielsson et al., 2011). Similarly, ANACO32

negatively regulates anthocyanin biosynthesis genes like DFR,

LODX, and ANS (Mahmood et al., 2016). Flavonoids and

anthocyanin have been well-documented as important secondary

metabolites produced during the plant-pathogen arms race (Shah

and Smith, 2020, Sivankalyani et al., 2016).
3.5 bZIP

The basic-leucine-zipper (bZIP) proteins, a class of TFs, are

crucial regulators of plant growth and development. It consists of a

conserved bZIP domain composed of contiguous a-helix. It consists
of a primary region (18 amino acids), NLS, and sequence-specific

DNA binding region at the N-terminus, which is highly conserved,

followed by leucine zipper (heptad repeats of hydrophobic amino

acids) at the C-terminus, which is less conserved (Jakoby et al.,

2002; Nijhawan et al., 2008; Landschulz et al., 1988; Ellenberger

et al., 1992; Furihata et al., 2006; Liao et al., 2008). The bZIP

members are identified in many species, such as rice (94), wheat

(186), maize (216), Arabidopsis (127), and so on (Table 1; Figure 3).

bZIP TFs are widely associated with plant stresses (Alves et al.,

2013; Li et al., 2017). However, its function has been extensively
Frontiers in Plant Science 10
studied in regulating abiotic stress (Banerjee and Roy choudhury,

2017; Baillo et al., 2019) such as drought, chilling, heat, osmosis,

high salinity, etc., (Golldack et al., 2014). They are more diverse in

plants as compared to microorganisms and animals (Maillet et al.,

2021). The role of bZIP under biotic stress such as herbivory,

wounding, pathogen attack, etc., and the plant’s protection via

phytohormone signaling pathways or hypersensitive responsive

defense mechanisms have been remotely studied (Zhang H et al.,

2017; Joo et al., 2019). The molecular regulation of bZIP during a

pathogen attack has been very well reviewed by Alves et al., 2013.

Similarly, the regulatory roles of bZIP against resistance to

pathogens have already been reported (Noman et al., 2017). For

example, four bZIP genes have been reported in Glycine max

(GmbZIPE1, GmbZIPE2, GmbZIP105, and GmbZIP62) that

defend plants against Asian soybean rust (ASR), which in turn

produces PSMs (Alves et al., 2015). In cassava, it has been revealed

that Xanthomonas axonopodis pv. manihotis induces MebZIP3 and

MebZIP5 upon infection (Li et al., 2017).

Okada et al., 2009 have shown that OsTGAP1 in rice binds to the

promoter of OsKSL4 and OsCPS4 and enhances terpenoid

phytoalexins accumulation, improving resistivity against blast

disease. Some specific bZIP proteins are also involved in

pharmaceutically important SMs. SmbZIP20 and SmbZIP7

are known to regulate tanshinone in Salvia miltiorrhiza (Cao et al.,

2018). Similarly, AabZIP1 regulates artemisinin synthesis inArtemisia

annua (Shen Q et al., 2019). Li et al., 2017 have engineered cassava

bacterial blight-resistant plants by overexpressing MebZIP3 and

MebZIP5. There are many reports explaining the role of bZIP in

plant defense against pathogens, but their importance during plant

defense against insects and nematode attacks is still less explored;

these areas have great potential for further exploration.
3.6 bHLH TFs

bHLH (basic-helix-loop-helix) TFs are one of the TF families

found in eukaryotes, mainly plants (Carretero-Paulet et al., 2010). It

consists of two connected regions the N-terminal region (basic in

nature) followed by the HLH domain (40-50 amino acid residues)

and a highly conserved HERmotif (Atchley et al., 1999; Massari and

Murre, 2000; Toledo-Ortiz et al., 2003) that binds to DNA and

regulates transcription both positively and negatively (Yang et al.,

2020). It was first reported in Zea mays for regulating abiotic stress

response (Ludwig et al., 1989).

Many studies have deciphered the role of bHLH concerning

environmental stresses (Babitha et al., 2015; Jin et al., 2016; Qian

et al., 2021). However, reports of the role of bHLH in biotic stress

are scarce (Meraj et al., 2020). bHLH has been known to regulate

hormonal signaling pathways, especially Jasmonic acid that triggers

plant immunity (Tian et al., 2015). They have also been found to

regulate stress responses by controlling the production of secondary

metabolites like flavonoids, anthocyanins, glucosinolates (GLs),

phytoalexins, etc. (Sun et al., 2018).

Generally, bHLH interacts with MYB TFs to control specific

gene expression. It has been explicitly reported in Arabidopsis,

bHLH-04 to 06 interaction with MYB51 regulates the
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biosynthesis of GLs and the biosynthesis of anthocyanin and

flavonoids through the phenylpropanoid pathway (Frerigmann

et al., 2014). Similarly, GLABRA3 (GL3), Enhancer of GLABRA3

(EGL3), and Transparent Testa 8 (TT8) proteins of the bHLH

family were found to activate anthocyanin biosynthetic genes

after binding to MYB transcriptional complex (Dubos et al.,

2010). MYC2, another bHLH member, has regulatory roles in

jasmonic acid signaling by binding to Jasmonic acid responsive

element (JARE) called ORCA-3, which acts as a promoter and

enhances alkaloid biosynthesis (Zhang et al., 2011). MdMYC2 in

Arabidopsis upregulates certain anthocyanin-related genes,

promoting sesquiterpene synthesis (Nemesio-Gorriz et al.,

2017). Similarly, in rice, diterpenoid phytoalexin factor (DPF)

has been seen to regulate the production of diterpenoid

phytoalexin, which could have a potential role during

pathogen attack (Yamamura et al., 2015).

In Nicotiana benthamiana, NbbHLH1, NbbHLH2, and

NbbHLH3 have been implicated in nicotine biosynthesis

through virus-induced gene silencing (VIGS) by binding to the

promoter of putrescine N-methyltransferase (Todd et al., 2010).

HMGR activation in Medicago truncatula is accountable for

saponin synthesis, which TSAR1 and TSAR2 regulate.

(Mertens et al., 2016). Avenacin, an important saponin, has

been found to check the fungal growth in plants. As mutants of

Avena strigosa deficient in avenacin become susceptible to

Gaeumannomyces graminis var. tritici infection (Papadopoulou

et al., 1999). An IAA-LEUCINE RESISTANT3 (ILR3) has been

reported to have a significant role against nematode infestation

by regulating aliphatic GLs production (Samira et al., 2018).

Although many stress-related TFs have been reported, the exact

molecular mechanism of TFs regulating these PSMs is still a

research hotspot.
4 MiRNAs - master regulators of plant
defense response

As discussed earlier, microRNAs (miRNAs) are a class of small

(20-24 nucleotide long), non-coding RNAs that play a presiding part

in regulating gene expression post-transcriptionally through

degrading their target mRNA or halting translational machinery (D.

Baulcombe, 2004). During these years, the miRNA has gained massive

attention by scientists due to its widespread role in plant development

and stress tolerance (Yang T et al., 2007). Emerging evidences suggest

its potential role in regulating several defense-related genes during

biotic stress (Ruiz-Ferrer and Voinnet, 2009; Kumar, 2014; Šečić et al.,

2021). Typically, miRNAs target specific genes that are directly or

indirectly involved in any defense pathway when a plant faces pest and

pathogen attack. During stress, many miRNAs have been found to

target genes involved in the production of defense-related compounds

like secondary metabolites (Owusu Adjei et al., 2021). Meanwhile,

miRNAs have also been reported to control many transcription factors

that control the production of defense products (Javed et al., 2020).

Thus, miRNAs are crucial factor to be emphasized during stress as

they also regulate the regulators i.e, TFs.
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4.1 MiRNAs involved in PSM production

Secondary metabolites are one of the prime plant products used

by plants to combat pest and pathogen attacks. Thus, differential

regulation of these SMs is quite obvious during stress. miRNAs have

been found to chiefly regulate these PSMs (Owusu Adjei et al.,

2021). Kettles et al. (2013) have shown that miRNA mediates the

regulation of secondary metabolites like camalexin, which provides

resistivity to Arabidopsis against green peach aphids. miR393 is well

documented to be involved in plant defense by shifting resources to

the glucosinolate pathway from the camalexin pathway resulting in

the production of the most effective PSMs (Robert-Seilaniantz et al.,

2011). It has also been found that the flg22 application leads to the

surge of miR393, suggesting involvement in defense.

miR169 is known for its participation in anthocyanin

biosynthesis in Piper nigrum by targeting UGT79B1, an

anthocyanidin 3-O-glucoside 2’’-Oxylosyltransferase enzyme;

along with 73 other miRNAs indicating a significant role in

regulating metabolic pathway during biotic stress (Ding et al.,

2021). Additionally, miR828 and miR858 target repressors

of MYB, which leads to the activation of anthocyanin

biosynthesis pathway and accumulation of anthocyanin and

flavonol.VvMYB114 is targeted by miR828 and miR858 that

represses various enzymes such as DFR (Dihydroflavonol-4-

reductase) and UFGT (UDP-glucose : flavonoid 3-O-

glucosyltransferase) in grapes (Tirumalai et al., 2019). Sometimes

miRNAs can also target certain genes to regulate PSMs production

during biotic stresses. The squamosal promoter-binding protein-

like (SPL) 9 gene can be targeted by miRNA156, which contributes

to Arabidopsis’ stress resistance by promoting the massive

accumulation of anthocyanins (Cui et al., 2014).
4.2 MiRNAs regulating TFs

TFs play a prime role during any defense response, thus being

the preferred target of miRNA to bring changes at the molecular

level (Li and Zhang, 2016). Many reports suggest the role of miRNA

in controlling various stress-responsive TFs (Lima et al., 2012;

Koroban et al., 2016; Samad et al., 2017). Additionally, a sufficient

number of miRNAs have been documented to regulate TFs, such as

MYB, NAC, WRKY, ERF, ARF, and bHLH, which have been

previously discussed to control the production of secondary

metabolites. In wheat, miR164 has been found to negatively

interact with NAC21/22, which ultimately enhances the

susceptibility to stripe rust brought on by the pathogen, Puccinia

striiformis (Zheng et al., 2016).

Similarly, to target leaf spot fungus, Alternaria alternate, Md-

miRNA395 and Md-miRNA156ab were reported to target

MdWRKY26 and MdWRKYN1, respectively (Zhang Q et al.,

2017). Sly-miR1127 is known to regulate slyWRKY75 during

Botrytis cinerea infection in tomato plants (López-Galiano et al.,

2017). Magnaporthe oryzae stimulated the expression of miR5819

and miR5075 in rice, and it was discovered that these miRNAs
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specifically aimed at OsbZIP38 and OsbZIP27, respectively. PvAP2-

ERF genes in Phaseolus vulgaris L. have also been revealed to be the

target of miRNAs from other plant species, with miR156, miR172,

and miR838 possibly being involved in the regulation of ERF/AP2

(Kavas et al., 2015). During rhizobial infection, the concentration

of miR160 and miR164 that influence ARF (ARF17, ARF10, and

ARF16) and NAC respectively changed (Basel Khraiwesh et al.,

2012; H. Li et al., 2010).
4.3 MiRNAs orchestrating PSMs
productions through TFs

Since our focus is to deliberate on regulating PSMs

biosynthesis by TFs, it is worthwhile to include how miRNAs

modulate PSMs biosynthesis. During any biotic stress, many of the

secondary metabolites are differentially regulated. Several

miRNAs have been reported to target transcription factors to

control secondary metabolite biosynthetic pathways (Figure 4)

(Jiang et al., 2021). Xia et al., 2012 reported that miR828 targets

MYBs to control anthocyanin production. Similarly, miR858-

targeted MYBs were associated with lignification, anthocyanin

production, and stress responses (Xia et al., 2012). These

lignification and anthocyanin production are a well-known

mechanisms for wall fortification during pathogen attacks (Shah

and Smith, 2020). AtMYB111, AtMYB11, and AtMYB12,

transcriptional activators of genes associated with flavonoid

biosynthesis, are negatively regulated by miR858. AtMYB111,

AtMYB11, and AtMYB12 positively modulated the defense response

against Plectosphaerella cucumerina in Arabidopsis (Camargo Raḿirez

et al., 2017).
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Khan et al., 2020 have also demonstrated the interaction of

miR858 with MYB1 and concluded that miRNA mimic technique

could enhance resistivity against fungal attacks in Artemisia annua.

The geometrid Ectropis oblique poses a significant threat to the tea

plant Camellia sinensis L. (Wang et al., 2014). During E. oblique

attack, can-miR171 was reported to interact with bHLH, ultimately

contributing to the production of secondary metabolites related to

defense (Jeyaraj et al., 2017).

Although an elaborated study has been done in understanding

the role of miRNA that regulates transcription factors, there are a

few literature that supports the role of miRNA in regulating PSMs.

But a correlation of miRNAs regulating TFs that regulate SM

production during biotic stress is focused in the present review,

which will aid in administering the production of SMs by

controlling either the pathway directly or via the TFs. Thus,

combining the molecular research to industrial engineering opens

a whole bunch of opportunity to future researchers and

industrialists that use secondary metabolites in production of

various products such as medicines and cosmetics.
5 Conclusion and future perspective

Since plants are sessile, they have evolved complex regulatory

mechanisms to respond to environmental stresses. In topical years,

there has been a substantial upsurge in the importance of metabolic

adaptation in plants under hostile environmental conditions. PSMs

are natural products produced in plants when exposed to potential

enemies. There are many transcription factors, WRKY, bHLH,

bZIP, NAC, MYB, and AP2/ERF, that mediate the production

and regulation of secondary metabolites related to plant defense
FIGURE 4

Schematic representation of the mechanism of transcription factors (TFs) regulating secondary metabolites (SMs) biosynthesis under biotic stress. At
the time of biotic stress such as fungal, bacterial, viral, or insect attack, various pathogen-associated molecular patterns (PAMPs) and damage-
associated molecular patterns (DAMPs) are recognized by the cell wall and membrane receptors like pattern recognition receptors (PRRs). Upon
recognition, various stress signals are induced in the form of reactive oxygen species (ROS) burst, nitric oxide (NO) signalling, calcium signalling, etc.
These stress signals ultimately trigger the expression of defense-responsive TF genes. These TFs like WRKY, MYB, NAC, bZIP, bHLH, etc. regulate the
production of different secondary metabolites in the plant. These SMs protect the plant through lignification, wax synthesis, wound healing, ROS
homeostasis, and many other mechanisms. Certain microRNAs (miRNAs) are also involved in controlling TF expression which in turn regulates SM
production. The dashed line indicates the exact mechanism of SM production governed by miRNA, which is yet to be deciphered.
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against pests and pathogen attacks. Therefore, it is crucial to focus

on the regulators such as miRNAs that control TFs and

understanding their defensive role in plants under biotic

constraints. TFs play a role in regulating PSMs fine-tune the

expression of these TFs, and miRNas can, synchronize the

synthesis and functional regulation of SMs during any pathogenic

attack. This information can be utilized in future to modulate the

production of SMs in any desired crop creating an enhanced variety

in terms of resistivity, medicinal value or yield. In future, specific

technologies, like miRNAmimicking, can be widely used to develop

advanced SMs-producing plants to aid crops to combat stress and

also to the pharmaceutical industries to produce desired amounts of

medicinally important SMs. Since ancient times, plant extracts from

a diverse range of medicinal plants have been used in the treatment

of different diseases, owing to the presence of specific PSMs. With

the recent increase in inclination towards traditional medicine

(Chinese medicine and Ayurveda) and plant products for treating

various diseases like diabetes, respiratory problems, arthritis,

malaria and even certain cancers, the research on PSMs has

gained momentum (Seca and Pinto, 2019). A thorough

understanding of molecular pathways governing SM production

can thus aid in enhanced SM producing engineered plants.
Author contributions

AS and IS conceptualized and supervised the study. AS, MK, IS,

and AR contributed to the investigation. MK wrote the original

draft. AS, IS, and AR contributed to reviewing, editing, and

visualization. AS, IS, and AR contributed to the formal analysis.

AS, IS, and AR contributed to funding acquisition. AS and IS
Frontiers in Plant Science 13
contributed to resources. All authors contributed to the article and

approved the submitted version.
Funding

AS was supported by SERB (Grant no. ECR/2017/002478). AR

was supported by grant No. CZ.02.1.01/0.0/0.0/15_003/0000433,

“EXTEMIT – K project,” and by grant No. CZ.02.1.01/0.0/0.0/

16_019/0000803 financed by the Operational Program Research,

Development and Education (OP RDE).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
References
Abdalla, M. A., and Mühling, K. H. (2019). Plant-derived sulfur-containing natural
products produced as a response to biotic and abiotic stresses: A review of their
structural diversity and medicinal importance. J. Appl. Bot. Food Qual 92, 204–215.
doi:?10.5073/JABFQ.2019.092.029

Abiri, R., Shaharuddin, N. A., Maziah, M., Yusof, Z. N. B., Atabaki, N., Sahebi, M.,
et al. (2017). Role of ethylene and the APETALA 2/ethylene response factor
superfamily in rice under various abiotic and biotic stress conditions. Environ. Exp.
Bot. 134, 33–44. doi: 10.1016/j.envexpbot.2016.10.015

Aftab, T. (2019). A review of medicinal and aromatic plants and their secondary
metabolites status under abiotic stress. J. Medicinal Plants 7 (3), 99–106.

Ahmed, E. F., Elkhateeb,W. A., Taie, H. A., Rateb,M. E., and Fayad,W. (2017). Biological
capacity and chemical composition of secondary metabolites from representatives Japanese
lichens. J. Appl. Pharm. Sci. 7 (1), 098–103. doi: 10.7324/JAPS.2017.70113

Ahuja, I., de Vos, R. C., and A.M. and Hall, R. D. (2010). Plant molecular stress
responses face climate change. Trends Plant Sci. 15 (12), 664–674. doi: 10.1016/
j.tplants.2010.08.002

Ahuja, I., Kissen, R., and Bones, A. M. (2012). Phytoalexins in defense against
pathogens. Trends Plant Sci. 17 (2), 73–90. doi: 10.1016/j.tplants.2011.11.002

Ahuja, I., Rohloff, J., and Bones, A. M. (2011). “Defence mechanisms of brassicaceae:
implications for plant-insect interactions and potential for integrated pest
management,” in Sustainable agriculture, vol. 2. (Dordrecht: Springer), 623–670.

Alfieri, M., Vaccaro, M. C., Cappetta, E., Ambrosone, A., De Tommasi, N., and
Leone, A. (2018). Coactivation of MEP-biosynthetic genes and accumulation of
abietane diterpenes in salvia sclarea by heterologous expression of WRKY and
MYC2 transcription factors. Sci. Rep. 8 (1), 1–13. doi: 10.1038/s41598-018-29389-4

Almagro, L., Gutierrez, J., and Pedreño Sottomayor, M.A. M. (2014). Synergistic and
additive influence of cyclodextrins and methyl jasmonate on the expression of the
terpenoid indole alkaloid pathway genes and metabolites in C atharanthus roseus cell
cultures. Plant Cell, Tissue and Organ Culture (PCTOC), 119, pp.543–551.
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