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fixation constraints in salt-
affected soils are in part offset by
increased nitrogen supply
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Yuejin Li and Haigang Li*

Inner Mongolia Key Laboratory of Soil Quality and Nutrient Resources, Key Laboratory of Agricultural
Ecological Security and Green Development at Universities of Inner Mongolia Autonomous Region,
Inner Mongolia Agricultural University, Hohhot, China
Introduction: In China, alfalfa (Medicago sativa L.) is often grown on marginal

land with poor soil fertility and suboptimal climate conditions. Soil salt stress is

one of the most limiting factors for alfalfa yield and quality, through its inhibition

of nitrogen (N) uptake and N fixation.

Methods: To understand if N supply could improve alfalfa yield and quality

through increasing N uptake in salt-affected soils, a hydroponic experiment and a

soil experiment were conducted. Alfalfa growth and N fixation were evaluated in

response to different salt levels and N supply levels.

Results and discussion: The results showed that salt stress not only significantly

decreased alfalfa biomass, by 43%–86%, and N content, by 58%–91%, but also

reduced N fixation ability and N derived from the atmosphere (%Ndfa) through

the inhibition of nodule formation and N fixation efficiency when the salt level

was above 100 mmol Na2SO4 L
–1. Salt stress also decreased alfalfa crude protein

by 31%–37%. However, N supply significantly improved shoot dry weight by

40%–45%, root dry weight by 23%–29%, and shoot N content by 10%–28% for

alfalfa grown in salt-affected soil. The N supply was also beneficial for the %Ndfa

and N fixation for alfalfa with salt stress, and the increase reached 47% and 60%,

respectively. Nitrogen supply offset the negative effects on alfalfa growth and N

fixation caused by salt stress, in part through improving plant N nutrition status.

Our results suggest that optimal N fertilizer application is essential to alleviate the

loss of growth and N fixation in alfalfa in salt-affected soils.
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1 Introduction

Alfalfa (Medicago sativa L.) is a forage crop with high yield capacity,

good palatability, and high nutritive value, and is widely cultivated

across the world (Koenig et al., 1999). However, alfalfa is often sown in

marginal land in China, especially in suboptimal climate conditions and

salt-affected soils, which usually have poor soil fertility (Jia et al., 2006;

Fan et al., 2016). Salt-affected soils account for 25% of farmland (99.13

million hectares) in China and are mainly distributed in arid and

semiarid areas (Zhao and Li, 1999). Thus, salinity is one of the major

limiting factors for alfalfa productivity in these areas (Peel et al., 2004;

Nadeem et al., 2019). Strong evaporation in spring accelerates

salinization processes in the top layer of salt-affected soils and creates

a serious stress for alfalfa regrowth and emergence (Guan et al., 2019).

As a legume, alfalfa is more sensitive to salt stress than cereals

(Isayenkov, 2012). Previous studies have shown that salt stress

significantly reduces alfalfa germination by weakening respiration,

reduces biomass production by inhibiting photosynthesis, and

reduces forage quality by decreasing soluble protein (Esechie

et al., 2002; Dong et al., 2018; Lu et al., 2021). Moreover, salt

stress also reduces the nutrient adsorption ability of plants,

including nitrogen (N) adsorption ability, indirectly decreasing

plant growth (Zhu, 2001). This decline in N uptake, translocation,

and metabolism has been observed in soybeans (Glycine max L.)

experiencing salt stress (Ghassemi-Golezani et al., 2010). This is due

to the decrease in N accumulation caused by a low adsorption rate

of NH  +
4 and NO  −

3 (Frechilla et al., 2001).

N fixation is a source of N acquisition in legumes. The percentage

of alfalfa N fixation from air to total N uptake reaches 83% uptake

during the growing season (Burity et al., 1989). Salt stress can

significantly reduce N fixation by inhibiting the germination of

rhizobium–legume symbioses (Del Pilar Cordovilla et al., 1999),

inducing the deformation of root hairs (Zahran, 1999), reducing

the nitrogenase activity of nodules (Fahmi et al., 2011), and

disturbing signal exchange processes (Miransari and Smith, 2007).

The decrease in N fixation efficiency is also ascribed to the decline in

leghemoglobin content, respiration rate, malate concentrations in

nodules, and photosynthate availability (Swaraj and Bishnoi, 1999).

Raun et al. (1999) found that N fertilizer application (< 50 kg ha–1)

improves nodule formation and biological N fixation efficiency.

The N supply also increases the activity of defense enzymes and

promotes Nmetabolism in plants suffering salt stress (Kirova, 2020; The

et al., 2021). In addition, N supply increases alfalfa crude protein (CP),

and decreases acid detergent fiber (ADF) and neutral detergent fiber

(NDF) (Slamet et al., 2012). However, the response of alfalfa growth and

N fixation to N supply under salt stress conditions is unclear. Therefore,

we hypothesized that N supply can improve plant N nutrition and offset

the negative effects of salt stress on alfalfa growth and N fixation. The

objectives of this study were to (1) evaluate alfalfa growth andN fixation

in response to different salt levels; and (2) assess the effect of N supply

on alfalfa growth and N fixation in salt-affected soil.
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2 Materials and methods

2.1 Experimental set-up

2.1.1 Experiment 1
To test the response of alfalfa growth and N fixation to salt

stress, a hydroponic experiment was conducted with five salt levels

of 0, 50, 100, 150 and 200 mmol Na2SO4 L–1. There were four

replicates in each treatment. The alfalfa seeds (Medicago sativa L.

cv. Zhongmu No. 1) were surface sterilized with 10% H2O2 for

30 min. After being rinsed thoroughly in deionized water, seeds

were pre-germinated on filter papers in the dark at 25°C. When root

length reached 2 cm, six seedlings were transplanted into each pot,

which contained 2 L of a nutrient solution. The nutrient solution

consisted of (in mmol L−1) NH4NO3 5, K2SO4 0.7, CaCl2·2H2O

1.65, and MgSO4·7H2O 1; and (in mmol L−1) Fe 10 as EDTAFe-Na,

Mn 6 as MnSO4·H2O, Zn 6 as ZnSO4·7H2O, Cu 1 as CuSO4·5H2O,

B 4 as H3BO3, and Mo 1 as (NH4)6Mo7O4·4H2O. The pH of the

nutrient solution was adjusted to 6.5 every day and replaced every 5

days. Plants grew in a phytotron with a light/dark regime of 14/10

hours, relative air humidity of 45%–55%, and an average

temperature of 25°C. An additional four pots of wheat (Triticum

aestivum L. cv. Neimai No. 18) were included as non-N-fixing

reference plants for the calculation of N derived from the

atmosphere (%Ndfa). All treatments were harvested at 62 days

after transplanting.

2.1.2 Experiment 2
To test the effect of N supply on alfalfa growth and N fixation

under salt stress, a soil experiment with three N supply rates and

two salt levels was set up. The N supply rates were 0, 100, and

200 mg N kg–1 as (NH4)2SO4 and salt levels were 0 and 7.1 g

Na2SO4 kg–1, which is equal to 50 mmol Na2SO4 L–1 in a

hydroponic culture. Each treatment was replicated four times.

The soil was collected from the top layer (0–20 cm) in a field at

Hailiutu Research Base, Hohhot, China (40°38′N, 111°28′E). The
soil was calcareous alkaline soil with pH 8.85, Electrical

Conductivity of a saturated soil Extract (ECe) 130.2 μS cm–1,

Olsen phosphorus 2.61 mg kg–1, NH4OAc-K 95.37 mg kg–1, NH+
4 −

N 1.5 mg kg–1, and NO−
3 −N 5.0 mg kg–1. After being air dried, the

soils were sieved at 2 mm. Basal nutrients were added into soil at the

following rates (mg g–1): KH2PO4 100, K2SO4 271.88, MnSO4·H2O

12.29, ZnSO4·7H2O 8.86, CuSO4·5H2O 1.95, Na2MoO4·2H2O 1.01,

and FeNaEDTA·3H2O 37.60. The same cultivar of alfalfa and

germination process were used in this experiment as in

experiment 1. After 2 days of germination, 10 seeds were sown in

each pot and thinned to six at 7 days after sowing (DAS). Soil

moisture in pots was maintained at 70% field capacity by weighing.

Plants were harvested at 58 DAS. The same wheat cultivar was

sowed as non-N-fixing reference plants for the calculation of

%Ndfa.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1126017
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Wan et al. 10.3389/fpls.2023.1126017
2.2 Plant harvest and analyses

At harvest, the shoots were cut off at the soil surface. All the

roots were carefully collected. Roots were shaken to remove loose

soil and then submerged in water to remove the attached soil. The

alfalfa height, branching, stem diameter, and nodules were

recorded. Root and shoot samples were dried in an oven at 70°C

for 72 h and weighed.

Shoot d15N and N concentration were measured using an

isotope facility (Iso- prime100, Elementar, Germany). Root N

concentration was measured using an elemental analyzer

(Elementar vario MACRO cube, Germany). The %Ndfa of alfalfa

was calculated following the equation: %Ndfa = (d15Nreference
plant − d15Nalfalfa/d15Nreference plant − b) × 100, where b is the

d15N of alfalfa when wholly reliant on N fixation for its N nutrition

(Fan et al., 2006). The amount of N fixed by the alfalfa was

calculated using the following equation: N fixed = %Ndfa (%) ×

shoot dry weight × shoot N concentration (%). The N fixation

efficiency of nodules was calculated following the following

equation: N fixation efficiency = amount of N fixed/nodule weight

(Döbereiner, 1966).

The CP content was determined by a laboratory N

concentration analysis, from which the CP content can be

calculated by multiplying the N concentration by 100/16, or 6.25

(Mulder, 1839). The NDF and ADF contents were determined by

the Van Soest method (Van Soest et al., 1991).
2.3 Statistical analysis

All parameters were analyzed using analysis of variance by SAS

(v8, SAS Institute Inc., Cary, NC, USA). When effects were

statistically significant, the least significant difference (LSD) at p =
Frontiers in Plant Science 03
0.05 is presented. Figures were produced in SigmaPolt software

(v10.0, Systat Software, San Jose, CA, USA).
3 Results

3.1 Alfalfa growth

In experiment 1, alfalfa growth decreased significantly with

increasing salt levels (Figures 1A–C). The decrease in alfalfa height

ranged from 20.1% to 77.1% in salt treatments compared with the

control (Figure 1A). Stem diameters of alfalfa in 100, 150, and

200 mmol Na2SO4 L–1 levels were significantly lower than those in

the control by 35.1%, 49.9%, and 66.0%, respectively (Figure 1B).

However, a salt level of 50 mmol L–1 did not change stem diameter

compared with the control. Branching number decreased significantly

when the salt level was above 100 mmol L–1. The fewest branches were

observed in the treatment of 200 mmol Na2SO4 L
–1, which produced

2.38 branches per plant (Figure 1C).

In experiment 2, although plant height, stem diameter, and

branching were significantly inhibited by salt, N supply partially

countered these effects (Figures 1D–F). In contrast, N supply did

not improve the plant height, stem diameter, or branching of alfalfa

when compared with alfalfa that was not treated with N supply and

did not suffer salt stress. Plant height and stem diameter were higher

(13%–18%) in alfalfa with N supply treatment than in alfalfa with

no N supply that suffered salt stress (Figures 1D, E). There was no

difference in plant height and stem diameter between the alfalfa

treated with 100 and 200 mg N kg-1 supply. However, an increase in

branching was observed only in the alfalfa treated with

100 mg N kg–1 supply, which was higher by 13% than in the

alfalfa treated with no N supply (Figure 1F).

In experiment 1, there was no difference in shoot and root dry

weight between the control and the treatment of 50mmol Na2SO4 L
–1
B C

D E F

A

FIGURE 1

Alfalfa height (A), stem diameter (B), and branching number (C) in different salt levels in experiment 1. Alfalfa height (D), stem diameter (E), and
branching number (F) in different nitrogen (N) supply and salt levels in experiment 2. Error bars represent ± SD of the mean. Different letters
represent a significant difference among treatments (p ≤ 0.05). Asterisks refer to significant differences between salt levels at the same N fertilizer
supply rates.
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(Figures 2A, B). However, salt addition at levels of 100, 150, and 200

mmol Na2SO4 L
–1significantly decreased shoot dry weight compared

with the control by 63%, 76%, and 86%, respectively (Figure 2A). Like

shoot dry weight, root dry weight decreased by 43%, 53%, and

79% under the same treatments, respectively. Alfalfa root dry weight

did not significantly further decrease when salt exceeded

100 mmol Na2SO4 L
–1 (Figure 2B).

In experiment 2, N supply did not change shoot and root dry

weight in alfalfa treated without salt stress (Figures 2C, D), whereas

salt stress significantly decreased shoot and root dry weight by 49%–

67% when compared with treatments without salt stress. In alfalfa

treated with N supply, shoot and root dry weights were greater than

in alfalfa without N supply when the plants suffered salt stress

(Figures 2C, D). Shoot dry weight significantly increased by 40%

and 45% in alfalfa treated with 100 and 200 mg N kg–1, respectively,

compared with alfalfa treated without N supply (Figure 2C). Root

dry weight significantly increased by 23% and 29% in alfalfa treated

with 100 and 200 mg N kg–1, respectively, compared with alfalfa

treated without N supply (Figure 2D).
3.2 Alfalfa N uptake

In experiment 1, salt addition did not change shoot and root N

concentration, which was 3.98% on average until the salt level was

above 100 mmol Na2SO4 L–1 (Figures 3A, B). Shoot N

concentration decreased by 31.2% in alfalfa treated with

150 mmol Na2SO4 L–1 and by 37.2% in alfalfa treated with
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200 mmol Na2SO4 L–1, compared with that in the control

(Figure 3A). The difference observed in shoot N concentration

between these two treatments was not statistically significant. Like

shoot N concentration, root N concentration decreased by 9.7% in

alfalfa treated with 150 mmol Na2SO4 L–1 and 10.8% in alfalfa

treated with 200 mmol Na2SO4 L–1 compared with that in the

control (Figure 3B).

In experiment 2, salt level significantly increased shoot N

concentration by 11.7%–15.2% compared with treatments without

salt but did not change root N concentration (Figures 3C, D). There

was no difference in shoot N concentration among different N

supply treatments, regardless of salt stress. The same result was

found in root N concentration.

In experiment 1, there was no difference in shoot and root N

content between the control and alfalfa treated with

50 mmol Na2SO4 L–1 (Figures 4A, B). However, salt addition

significantly decreased shoot N content compared with that in the

control by 64%, 83%, and 91% at salt levels of 100, 150, and

200 mmol Na2SO4 L
–1, respectively (Figure 4A). In addition, root

N contents of alfalfa treated with 100, 150 and 200 mmol L–1

Na2SO4 levels were 58%, 79%, and 66% significantly lower than that

in the control, respectively (Figure 4B).

In experiment 2, N supply partially recovered the loss of shoot

N content caused by salt addition (Figures 1D–F). Shoot N content

was higher (10%–28%) in alfalfa treated with N supply than in

alfalfa treated without N supply when they suffered the same salt

stress (Figure 4C). In contrast, N supply did not change root N

content (Figure 4D).
B

C D

A

FIGURE 2

Alfalfa shoot (A) and root (B) dry weight in different salt levels in experiment 1. Alfalfa shoot (C) and root (D) dry weight in different nitrogen (N)
supply and salt levels in experiment 2. Error bars represent ± SD of the mean. Different letters represent a significant difference among treatments (p
≤ 0.05). Asterisks refer to significant differences between salt levels at the same N fertilizer supply rates.
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B

C D

A

FIGURE 4

Alfalfa shoot (A) and root (B) nitrogen (N) content in different salt levels in experiment 1. Alfalfa shoot (C) and root (D) N content in different N supply
and salt levels in experiment 2. Error bars represent ± SD of the mean. Different letters represent a significant difference among treatments (p ≤

0.05). Asterisks refer to significant differences between salt levels at the same N fertilizer supply rates.
B

C D

A

FIGURE 3

Alfalfa shoot (A) and root (B) nitrogen (N) concentration in different salt levels in experiment 1. Alfalfa shoot (C) and root (D) N concentration in
different N supply and salt levels in experiment 2. Error bars represent ± SD of the mean. Different letters represent a significant difference among
treatments (p ≤ 0.05). Asterisks refer to significant differences between salt levels at the same N fertilizer supply rates.
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3.3 Root nodules and %Ndfa

In experiment 1, nodule formation was inhibited when the salt

level was above 100 mmol Na2SO4 L
–1 (Figures 5A, B). There were 38

and 76 nodules per pot in the control and the alfalfa treated with

50mmol Na2SO4 L
–1, respectively, and nodule weight ranged from 0.13

to 0.21 g pot–1. In addition, the corresponding %Ndfa ranged from 35%

to 42%, and amount of N fixed ranged from 18.08 to 23.72 mg pot–1

when the salt level was belove 50 mmol Na2SO4 L–1 (Figure 5C;

Table 1). The N fixation efficiency showed the same result. There was

no difference in number of root nodules, weight, %Ndfa, or amount of

N fixed between the control and alfalfa treated with

50 mmol Na2SO4 L
–1 (Figure 5; Table 1).

In experiment 2, the number of nodules decreased owing to salt

stress only in the treatment with no N supply. Although salt stress

did not change the nodule number, it did significantly decrease %

Ndfa by 18%–33% compared with the alfalfa treated without salt

stress. Salt addition significantly decreased the amount of N fixed by

41%–55%. A decrease of N fixation efficiency caused by salt stress

was observed in alfalfa treated with a supply of 100 and

200 mg N kg–1 (Table 2). The number and weight of nodules

significantly increased by 80% and 78%, respectively, in alfalfa

treated with 200 mg N kg–1 compared with alfalfa treated without
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N supply and subjected to salt stress (Figures 5D, E). The %Ndfa

was significantly higher by 53% and 42% in alfalfa treated with 100

and 200 mg N kg–1 than in alfalfa with no N supply (Figure 5F). The

N supply improved the amount of N fixed by approximately 60%

but had no effect on the N fixation efficiency of nodules (Table 2).
3.4 Alfalfa quality

In experiment 1, salt addition did not change alfalfa CP, which

was 23% on average unt i l the sa l t leve l was above

100 mmol Na2SO4 L
–1. Alfalfa CP significantly decreased by 31%

and 37% in alfalfa treated with 150 and 200 mmol Na2SO4 L–1,

respectively, compared with the control (Figure 6A). Alfalfa ADF

and NDF decreased significantly with increasing salt levels.

Compared with the control, ADF did not change in alfalfa treated

with 50 mmol Na2SO4 L
–1 but showed a significant decrease of 18%

in alfalfa treated with 100 mmol Na2SO4 L–1 (Figure 6B). Salt

addition significantly decreased the NDF of alfalfa by 20% and 34%

in treatments of 50 and 100 mmol Na2SO4 L–1, respectively,

compared with the control (Figure 6C).

In experiment 2, salt stress significantly increased CP by 11%–

15% and decreased ADF and NDF by 15%–24% compared with
TABLE 1 Amount of nitrogen (N) fixed and N fixation efficiency of nodules in different salt levels in experiment 1.

Salt level (mmol Na2SO4 L
–1) Amount of N fixed

(mg pot–1)
N fixation efficiency

(mg g–1)

0 23.72 ± 10.66 a 107.44 ± 26.74 a

50 18.08 ± 0.71 a 119.62 ± 25.41 a

100 0 b 0 b

150 0 b 0 b

200 0 b 0 b
Values are means (n = 4) ± SD. Different letters represent a significant difference among different salt levels (p ≤ 0.05).
B C

D E F

A

FIGURE 5

Alfalfa nodule number (A), nodule weight (B), and nitrogen derived from the atmosphere (%Ndfa) (C) in different salt levels in experiment 1. Alfalfa
nodule number (D), nodule weight (E), and %Ndfa (F) in different nitrogen (N) supply and salt levels in experiment 2. Error bars represent ± SD of the
mean. Different letters represent a significant difference among treatments (p ≤ 0.05). Asterisks refer to significant differences between salt levels at
the same N fertilizer supply rates.
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alfalfa treated with the same N levels but without salt stress. The N

supply did not change alfalfa CP content, which was 19.1% and

21.7% on average in the alfalfa treated without and with salt stress,

respectively (Figure 6D). The same results were found for alfalfa

ADF and NDF. The ADF was 37.2% and 29.5%, and NDF was

43.1% and 35.1% on average in the alfalfa treated without and with

salt stress, respectively (Figures 6E, F).
4 Discussion

4.1 Response of alfalfa growth to salt stress
and N supply

Salt stress had a negative effect on alfalfa growth and biomass in

experiment 1. Additionally, experiment 2 also confirmed the results

and showed N supply alleviated the negative effects of salt stress.

Like chickpeas, alfalfa can bear a light salt stress that was less than

100 mmol Na2SO4 L
–1 (Qurashi and Sabri, 2013). One reason for

this could be the accumulation of soluble sugars and proline in
Frontiers in Plant Science 07
plants experiencing light salt stress, which facilitates the

maintenance of the cytoplasmic osmotic pool for growth

stabilization and cellular metabolism in plants (Farooq et al.,

2017). However, once salt concentration exceeds the critical level,

plant growth is inhibited by salt toxicity (Samineni et al., 2011). The

results show that the height, stem diameter, and branching number

of alfalfa significantly decreased when the salt level was more than

100 mmol Na2SO4 L–1 (Figures 1A–C). These responses were

attributed to the decline in the water potential of tissue, which

results in the closure of stomata and sequentially decreases

photosynthesis, resulting in reduced growth (Garg and

Manchanda, 2009; Garg and Bhandari, 2016). Root growth is

more vulnerable to salt stress than shoot growth for safflower

(Kaya, 2003). Our results did not support this difference between

root and shoots for alfalfa, as they showed a similar response to salt

stress (Figures 2C, D).

Alfalfa growth inhibited by salt stress was partially overcome by

treatments with N supply (Figures 1D–F). This finding was

consistent with previous studies in which soybeans suffering salt

stress could still achieve high plant biomass when supplied with
B C

D E F

A

FIGURE 6

Alfalfa crude protein (CP) (A), acid detergent fiber (ADF) (B), and neutral detergent fiber (NDF) (C) in different salt levels in experiment 1. Incomplete
ADF and NDF data owing to insufficient sample weight (shoot dry weight). Alfalfa CP (D), ADF (E), and NDF (F) in different nitrogen (N) supply and salt
levels in experiment 2. Error bars represent ± SD of the mean. Different letters represent a significant difference among treatments (p ≤ 0.05).
Asterisks refer to significant differences between salt levels at the same N fertilizer supply rates.
TABLE 2 Amount of nitrogen (N) fixed and N fixation efficiency of nodules in different N supply rates and salt levels in experiment 2.

Salt level N supply rate
(mg kg–1)

Amount of N fixed
(mg pot–1)

N fixation efficiency
(mg g–1)

Control

0 30.59 ± 6.21 a* 223.83 ± 97.47 a

100 37.78 ± 2.36 a* 215.64 ± 11.15 a*

200 41.13 ± 4.94 a* 288.54 ± 98.82 a*

Salt

0 13.72 ± 1.67 b 164.98 ± 72.75 a

100 22.14 ± 1.98 a 145.41 ± 34.59 a

200 22.06 ± 2.91 a 132.33 ± 51.83 a
Values are means (n = 4) ± SD. Different letters represent a significant difference at the same Na2SO4 level (p ≤ 0.05). Asterisks refer to significant differences between salt levels at the same N
fertilizer supply rates.
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120 mg N kg–1 soil in a pot experiment (Abdel Wahab and Abd

Alla, 1995). Sikder et al. (2020) found that N supply increases plant

water status, photosynthetic pigment synthesis, and gas exchange

attributes, and further improves plant growth in salt-stressed

conditions. In addition, N supply also increases the activity of

defense enzymes and decreases salt ion concentrations to alleviate

the negative effect on plant growth of legumes suffering salt stress

(Kirova, 2020; Hashemi et al., 2022). In this study, however, N

supply did not have any stimulation for alfalfa growth except where

salt stress was induced (Figures 2C, D). This is consistent with the

results of He et al. (2018), who found no significant difference in the

shoot growth of alfalfa among treatments comprising different N

application rates when plants were not suffering salt stress in

the field.
4.2 Response of alfalfa N uptake to salt
stress and N supply

Salt accumulation in the rhizosphere causes a nutritional

imbalance in plants (Miransari and Smith, 2007), including the

inhibition of N adsorption (Rabie and Almadini, 2005). Our results

showed that alfalfa shoot and root N concentrations significantly

decreased when the salt level was above 150 mmol Na2SO4 L–1

(Figures 3A, B), but the shoot and root N contents were more

sensitive to salt addition than concentrations (Figures 4A, B).

Previous studies show decreased biomass accumulation leads to a

higher nutrient concentration in plants because of the

concentration effect (Jarrell and Beverly, 1981; Li et al., 2010). We

suspect that this is why shoot N concentrations became higher

when the alfalfa suffered salt stress in experiment 2 (Figures 3C, D;

Figures 4C, D). The N supply significantly increased shoot and root

N contents through accelerating alfalfa growth in salt-affected soil

(Figures 4C, D). This indicates that salt stress induced N deficiency

in the alfalfa in this study. The N supply improved plant N nutrition

when alfalfa suffered salt stress, in line with previous studies

(Wortmann et al., 2000; Abbasi et al., 2011).
4.3 Response of alfalfa N fixation to salt
stress and N supply

Salt stress significantly suppresses nodulation formation in

legumes (Li et al., 2021). For instance, salt stress has been found

to substantially decrease the activity and density of nodules in the

pigeon pea by two to three times (Garg and Manchanda, 2008). The

nodule number and weight in alfalfa were also significantly reduced

by increasing salt levels in this study (Figures 5A–C). The reasons

for this due to salt stress could include poor root growth, fewer

available photosynthates, fewer hairs, and lower respiration rate

(Manchanda and Garg, 2008; Cornacchione and Suarez, 2015; Dıáz

et al., 2018). These factors are necessary for nodule formation, and

the effects of salt stress on them further lead to the negative impacts
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on the colonization of rhizobia in the root (Del Pilar Cordovilla

et al., 1999; Arora, 2015). Furthermore, salt stress decreased nodule

number but not nodule weight in alfalfa treated without N supply

(Figures 5D, E). This indicates that salt stress inhibited nodule

emergence rather than nodule growth. In addition, N fixation still

requires N from the soil for the early stage of nodule formation

(Bordeleau and Prevost, 1994; Lindström andMousavi, 2020). Thus,

N supply did not increase alfalfa nodule formation and the amount

of fixed N owing to there being sufficient soil N in the no-salt-stress

condition (Figures 5D–F; Table 2). However, as discussed above, the

N fixation processes of alfalfa were disturbed by salt stress. Thus, it

was not unexpected that N supply increased the nodule number and

weight of alfalfa in salt-affected soil in this study because N supply

provides the starting N for nodules and enhances the N fixation

efficiency of rhizobia through increasing the activity of nitrogenase

and nitrate reductase when legumes suffer salt stress (Abdel Wahab

and Abd Alla, 1995; Liu et al., 2022). This result aligns with previous

studies (Undersander, 2011; Elgharably and Benes, 2021). Salt stress

also reduced the N fixation efficiency of nodules, indicating that N

fixation processes were disturbed by the salt.
4.4 Response of alfalfa quality to salt stress
and N supply

Salt stress decreased the CP, ADF, and NDF of alfalfa in this

study (Figures 6A–C), which is consistent with the results of Yan

et al. (2005). Similar results have also been found in marvel grass

(Kumar et al., 2018). As per the discussion above, salt addition

decreases CP concentration in alfalfa because of the inhibition of N

uptake and N fixation (El-Sharkawy et al., 2017). The low cell wall

and lignin concentrations caused by salt addition are responsible for

the decreased ADF and NDF (Oliveira et al., 2020). A meta-analysis

showed that the CP concentration of alfalfa increases with N supply,

which is due to the higher activity of key enzymes for N metabolism

(Geisseler et al., 2010; Wan et al., 2022). However, N supply did not

change the CP concentration of alfalfa in this study (Figure 6D).

This may be explained by the alfalfa growing so fast that it caused

the dilution effect (Jarrell and Beverly, 1981). Our results showing

that alfalfa ADF and NDF were not responsive to N supply

(Figures 6E, F), are also consistent with the results of Cherney

et al. (1994).
5 Conclusion

Salt stress significantly decreased not only alfalfa biomass and

quality but also N fixation through inhibiting nodule formation and

reducing N fixation efficiency. This may be due to poorer plant N

nutrition, as our results confirmed that N supply can partially offset

the inhibition of growth and N fixation caused by salt stress. Thus,

optimal N fertilizer application is essential to alleviate loss of growth

and N fixation in salt-affected soils.
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