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Mapping of QTLs for
morphophysiological and
yield traits under water-deficit
stress and well-watered
conditions in maize

Basudeb Sarkar*†, Yellisetty Varalaxmi †, Maddi Vanaja,
Nakka RaviKumar, Mathyam Prabhakar, Sushil Kumar Yadav,
Mandapaka Maheswari and Vinod Kumar Singh

Division of Crop Sciences, Indian Council of Agricultural Research (ICAR)—Central Research Institute
for Dryland Agriculture, Hyderabad, Telangana, India
Maize productivity is significantly impacted by drought; therefore, improvement

of drought tolerance is a critical goal in maize breeding. To achieve this, a better

understanding of the genetic basis of drought tolerance is necessary. Our study

aimed to identify genomic regions associated with drought tolerance-related

traits by phenotyping amapping population of recombinant inbred lines (RILs) for

two seasons under well-watered (WW) and water-deficit (WD) conditions. We

also used single nucleotide polymorphism (SNP) genotyping through

genotyping-by-sequencing to map these regions and attempted to identify

candidate genes responsible for the observed phenotypic variation.

Phenotyping of the RILs population revealed significant variability in most of

the traits, with normal frequency distributions, indicating their polygenic nature.

We generated a linkage map using 1,241 polymorphic SNPs distributed over 10

chromosomes (chrs), covering a total genetic distance of 5,471.55 cM. We

identified 27 quantitative trait loci (QTLs) associated with various

morphophysiological and yield-related traits, with 13 QTLs identified under

WW conditions and 12 under WD conditions. We found one common major

QTL (qCW2–1) for cob weight and a minor QTL (qCH1–1) for cob height that

were consistently identified under both water regimes. We also detected one

major and oneminor QTL for the Normalized Difference Vegetation Index (NDVI)

trait under WD conditions on chr 2, bin 2.10. Furthermore, we identified one

major QTL (qCH1–2) and one minor QTL (qCH1–1) on chr 1 that were located at

different genomic positions to those identified in earlier studies. We found co-

localized QTLs for stomatal conductance and grain yield on chr 6 (qgs6–2 and

qGY6–1), while co-localized QTLs for stomatal conductance and transpiration

rate were identified on chr 7 (qgs7–1 and qTR7–1). We also attempted to identify

the candidate genes responsible for the observed phenotypic variation; our

analysis revealed that the major candidate genes associated with QTLs detected

under water deficit conditions were related to growth and development,

senescence, abscisic acid (ABA) signaling, signal transduction, and transporter

activity in stress tolerance. The QTL regions identified in this study may be useful
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in designing markers that can be utilized in marker-assisted selection breeding.

In addition, the putative candidate genes can be isolated and functionally

characterized so that their role in imparting drought tolerance can be more

fully understood.
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1 Introduction

Maize is a widely consumed staple food and is also used for feed

and as an industrial material. However, drought stress has become a

major challenge to its productivity, particularly during the anthesis-

silking and grain-filling stages (Lobell et al., 2014; Liu and Qin,

2021). Improving drought tolerance in maize is a complex task due

to the polygenic nature of this trait and a large amount of

genotype × environment interaction (Shinozaki and Yamaguchi-

Shinozaki, 2007; Xue et al., 2013; Thirunavukkarasu et al., 2014).

Conventional breeding has mainly improved grain yield (GY, g/

plant) in favorable environments, and has not done so in drought-

prone areas. To address these challenges, a combination of different

breeding strategies and the use of genomic tools is necessary. The

identification of quantitative trait loci (QTLs) and candidate genes,

along with the use of marker-assisted selection in breeding, is

critical for this process (Lebreton et al., 1995; Simko et al., 1997;

Collins et al., 2008). To improve plant tolerance to drought stress, it

is essential to have access to genotypic and phenotypic data, which

can be continuously analyzed to gain a better understanding of

plant responses (Ribaut et al., 2009). Drought stress can lead to a

range of morphophysiological and biochemical changes in plants,

such as decreased leaf water content and photosynthesis levels, as

well as altered metabolism. These changes can result in reduced

plant height, cob weight, biomass, and grain yield (Tester and

Langridge, 2010). Linkage and association mapping using next-

generation sequencing (NGS) technologies is becoming increasingly

popular in the identification of QTLs for complex traits, such as

drought tolerance, which is essential for marker-assisted selection

(MAS) in breeding. Biparental mapping populations are typically

used in QTL identification, in which genotypes with contrasting

traits are crossed to produce recombinant inbred lines (RILs),

followed by multiple generations of selfing. Through QTL

mapping, chromosomal fragments linked with the trait of interest

can be identified.

Previously, genetic linkage maps were created using PCR-based

markers, such as random amplified polymorphic DNA markers

(RAPDs) and simple sequence repeats (SSRs), as well as non-PCR-

based markers, such as restriction fragment length polymorphisms

(RFLPs). However, rapid advancements in sequencing technology

have led to the use of single nucleotide polymorphisms (SNPs) for

the development of high-resolution linkage maps (Elshire et al.,

2011). These developments in genomics have enabled the mapping
02
of genomic regions associated with drought tolerance through

QTLs and association mapping. Several major QTLs associated

with drought stress tolerance in maize have been reported in studies

by Sanguineti et al. (1999); Malosetti et al. (2008); Messmer et al.

(2009); Messmer et al., (2011), Almeida et al. (2013); Liu and Qin

(2021), and Leng et al. (2022). In a meta-analysis by Chen et al.

(2017), in which 33 published studies of yield-related traits in maize

were analyzed, 76 meta-QTLs were identified out of 999 QTLs

across the maize genome, although these were reported for normal

growth conditions. In a recent review, Liu and Qin (2021)

highlighted the progress that has been made in the genetic

dissection of drought tolerance in maize at different phenophases

of the crop through linkage mapping and association mapping,

using various molecular markers including RFLPs, SSRs, and SNPs.

In QTL mapping studies, QTLs can be categorized as either

‘constitutive’ (Collins et al., 2008; that is, the same QTLs are

detected in different environments) or ‘adaptive’ (that is, QTLs

are detected only in specific environments; Almeida et al., 2013).

Identification of constitutive or adaptive QTLs can provide valuable

insights into ways of improving field-level stress tolerance. Co-

localized QTLs for different traits under stress can help in

determining whether a particular trait is constitutive or adaptive

and in determining its role in improving field-level drought

tolerance. This information is important for the identification and

selection of appropriate breeding strategies to develop drought-

tolerant maize varieties.

Maize is considered a model crop for research in plant genetics

due to the availability of a vast amount of omics data (Wallace et al,

2014). The first release of the maize B73 reference genome (Schnable

et al., 2009) led to the development of several omics datasets,

including DNA resequencing, transcriptomic, metabolomic, and

proteomic data (Gore et al., 2009; Chia et al., 2012; Jiao et al., 2012;

Li et al., 2013; Wen et al., 2014; Walley et al., 2016; Wen et al., 2018;

Jiang et al., 2019; Liu et al., 2020; Wang et al., 2020). Recently, pan-

maize gene sets and a pan-Zea genomemap have been constructed to

aid in genetic improvement (Hufford et al., 2021; Gui et al., 2022),

and population-level transcripts of diverse lines are also available

(Hirsch et al., 2014; Jin et al., 2016). With the wealth of whole-

genome sequence data available, mining for candidate genes

responsible for phenotypic variation could provide valuable insights

into the molecular mechanisms of drought tolerance in maize.

Against this background, the present study aimed to map,

through linkage mapping analysis using a subset of maize RILs,
frontiersin.org

https://doi.org/10.3389/fpls.2023.1124619
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sarkar et al. 10.3389/fpls.2023.1124619
the genomic regions that are associated with drought tolerance-

related morphophysiological and yield traits, by phenotyping under

both well-watered (WW) and water-deficit (WD) conditions and

genotyping via high-throughput SNP sequencing. An additional

aim was the identification of both major and minor effect QTLs and

associated candidate genes.
2 Materials and methods

2.1 Plant material

Contrasting genotypes for drought tolerance were identified

based on multi-year evaluation of genotypes for various

morphophysiological traits (Maheswari et al., 2016). The drought-

tolerant genotype SNJ201126 and susceptible genotype HKI161

were used for development of a mapping population following

the single cob method. Initial biparental crossing between tolerant

and susceptible genotypes, was conducted during the rainy season

of the year 2014. Subsequently, the F1 generation was self-pollinated

for nine generations to develop a mapping population consisting of

264 single-plant progenies.
2.2 Phenotyping for morphophysiological
and yield-related traits

The RIL populations, consisting of 264 single-plant progenies

and their parents, were planted in a single-row plot of 2.5 m, with

60 cm spacing between rows and 25 cm between plants. Separate

experiments were conducted under both WW and WD conditions,

following a randomized complete block design (RCBD) with three

replications. In the experiment under WW conditions, populations

were grown under normal growth conditions until maturity, with

irrigation whenever required. However, in the experiment under WD

conditions, irrigation was provided only up to the vegetative stage,

i.e., 45 days after sowing (DAS); this was followed by imposition of a

water deficit for a period of 10 days in order to expose plants to

drought stress, which coincided with the anthesis-silking interval

(ASI). These two sets of experiments with different treatments were

repeated for two seasons: specifically, the rainy season of 2018 and the

post-rainy season 2018–19. The experiments were carried out with

appropriate plant protection measures in place, and in accordance

with recommended practices for growing healthy crop. During the

2018 rainy season, the weekly average temperature varied between

17.9°C and 31.3°C, with relative humidity of 57.1%–84.5%; during the

post-rainy season, the temperatures recorded fell between 11.4°C and

30.4°C, with relative humidity of 40.9%–83%. The total rainfall

recorded was 377 mm and 16 mm during the rainy and post-rainy

seasons, respectively (Figure S1).

Various morphophysiological parameters were recorded under

both WW and WD conditions: these consisted of Normalized

Difference Vegetation Index (NDVI), net CO2 assimilation rate

(Anet), stomatal conductance to water vapor (gs), transpiration rate

(TR), leaf temperature (LT), and anthesis-silking interval (ASI).

Yield-contributing traits (i.e., cob height (CH), cob weight (CW),
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total biomass (TB), and grain yield (GY) were recorded for three

representative plants of each genotype. NDVI was measured using a

GreenSeeker® 505 device (Manuel NTech Industries Inc., Ukiah, CA,

USA). This device measures the reflected light on the canopy of crops

in the 660 nm (red) and 770 nm (near-infrared) bands. The NDVI

value for any given point in the image, at a particular phenophase of

the crop, is equal to the difference in the intensities of reflected light in

the red and infrared range divided by the sum of these intensities.

Anet, gs, LT, and TR were measured using the LI-6400 portable

photosynthesis system (LI-COR Instruments, Inc., Lincoln,

NE, USA).
2.3 SNP genotyping

The mean phenotyping data for the mapping population

(consisting of 264 single-plant progenies), as evaluated under both

WW and WD conditions, were used for a cluster analysis, carried out

by the average-linkage distance method using SAS® version 9.3

statistical software (SAS Institute Inc., Cary, NC, USA; Cary, 2011).

The cluster analys i s us ing combined mean data on

morphophysiological and yield-related traits [i.e., relative water

content, canopy temperature depression, quantum yield, Soil Plant

Analysis Development (SPAD) chlorophyll meter readings, NDVI,

proline content, net CO2 assimilation rate, gs, TR, LT, plant height, CH,

cob length, cob girth, number of kernel rows per cob, number of

kernels per row, CW, grain yield, TB per plant, and harvest index]

under WD conditions was used to group the mapping population into

diverse groups. Specifically, the population was grouped into eight

clusters (Table S1) based on the average distances between all pairs of

cluster members between the clusters. The RIL IDs (264 in total), their

corresponding cluster IDs, and the corresponding distances are shown

in Table S1. A subset of 79 RILs were selected from these eight clusters

in such a way as to fully capture the genetic diversity of the mapping

population (Table S2). The frequency distribution of this subset, when

compared with the whole population for different traits, was found to

represent the phenotypic variation of the population. Along with this

subset of 79 RILs, the parents SNJ201126 and HKI161 (in triplicate)

were subjected to SNP genotyping at Bionivid Technology Pvt. Ltd.,

Bengaluru, India. The Illumina NGS workflow for SNP genotyping was

employed, as follows. First, the young leaves of 15-day-old seedlings of

each genotype were used for DNA isolation using the DNAeasy Plant

Mini Kit (Qiagen, Hilden, Germany). Next, the DNA quality and

quantity were determined via agarose gel electrophoresis and a

NanoDrop spectrophotometer, respectively. For library construction,

DNAwas fragmented randomly and adapters were ligated to the 5′ and
3′ ends. These fragments were then amplified by PCR and purified

from the gel. Clusters were generated by loading the library into a flow

cell, where fragments were captured on a lawn of surface-bound oligos

complementary to the library adapters. After cluster generation, the

templates were sequenced. Sequencing was carried out using Illumina

SBS technology, a system that detects single bases as they are

incorporated into template strands. As all four reversible terminator-

bound dNTPs are present during each sequencing cycle, natural

competition minimizes incorporation bias and reduces the raw error

rate in comparison to other technologies. This enables highly accurate
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base-by-base sequencing that virtually eliminates sequence-context-

specific errors, even within repetitive sequence regions and

homopolymers. Sequencing data were subsequently converted to raw

data for analysis. The Illumina sequencer generates raw images utilizing

sequencing control software for system control and base calling

through an integrated primary analysis software tool called Real-

Time Analysis (RTA). The base calls (BCL) binary was converted to

FASTQ format using Illumina package bcl2fastq. The total numbers of

bases and reads, along with values of GC (%), Q20 (%), and Q30 (%),

were calculated for all samples. The raw sequences of genotyping data

were deposited in the NCBI database (http://www.ncbi.nlm.nih.gov/

sra/PRJNA913688) with accession number PRJNA913688.
2.4 Statistical analysis

The phenotyping data of the subset of 79 RILs, which were

generated in two seasons underWW andWD conditions, were used

for statistical analysis, as the sequencing data were generated for the

same set. Individual and combined (i.e., over seasons and

treatments) analyses of variance (ANOVAs) were carried out for

morphophysiological traits; Pearson ’s simple correlation

coefficients were also calculated and heritability estimates were

made using SAS version 9.3. For combined analyses, the

homogeneity of variance component was determined using

Bartlett’s test (Bartlett, 1937). Broad-sense heritability was

calculated as per the following formula:

Broad‐sense heritability   (H2)   =  
s2G
s2P

where s2G is the total genotypic variance and s2P is the total

phenotypic variance. Frequency distribution histograms for all traits

were generated using Matplotlib tools (Hunter, 2007). Matplotlib is a

cross-platform data visualization and graphical plotting library for

Python. The Pyplot module was used to generate plots, and the

Scipy.stats module (Virtanen et al., 2020) was used to compute and

draw histograms of theWW andWD data; evenly spaced points over

a specified interval on the x-axis were created using numpy.linspace,

and the norm of the probability density function is displayed on the

plots. The Kolmogorov–Smirnov method (Kolmogorov–Smirnov

Test, 2008) was used to test for normality. Descriptive statistics

were calculated using SAS, version 9.3.
2.5 Bioinformatics analyses

2.5.1 SNP calling and filtering
The raw reads of the sequencing data of 79 RILs and their

parents were generated in FASTQ format for all samples and

imported into a TASSEL GBS pipeline (Glaubitz et al., 2014;

Zhang et al., 2015), implemented in TASSEL version 5.0.

Maize genotype B73, Zm-B73-Reference-NAM-5.0-Genome-

Assembly–NCBI (https://www.ncbi.nlm.nih.gov/assembly/

GCF_902167145.1/) was used as the reference genome. The

qualifying filtering steps of the sequence reads were mapped onto

the genome using the Burrows–Wheeler Alignment (BWA) tool (Li
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and Durbin, 2009). The mapped reads were then exported as a

sequence alignment map (SAM) file for SNP calling and genotyping

(Bradbury et al., 2007). A total of 176 Gb of data was generated for

all sequenced samples. To filter the parent’s call, replicates were first

merged by ensuring that at least two replicates had observed calls,

and the most common allele was taken as the parent call, with the

alternate call within replicates of parents taken to reflect genotyping

errors. Functional annotation of SNPs was carried out using the

Ensembl Plants variant effect predictor (VEP) tool (http://

plants.ensembl.org/Zea_mays/Tools/VEP?db=core) with maize

reference assembly Zm-B73-REFERENCE-NAM-5.0. The SNPs

already reported in the database were clustered into a non-

redundant reference SNP cluster and assigned a unique rsID; for

SNPs that did not clearly correspond to a clear rsID, an internal ID

was given. In addition, SNPs with a minor allele frequency (MAF),

i.e., a frequency of< 5%, were filtered out before analysis.
2.5.2 Linkage map construction and QTL analysis
Linkage map construction and QTL analysis were carried out

using QTL IciMapping software, version 4.2 (Meng et al., 2015). The

SNP data consisting of DNA bases (i.e., A, T, G, or C) were converted

into the format recognized by the QTL IciMapping software using the

SNP conversion functionality. SNPs showing non-polymorphism in

parents or progenies, or missing in one or more of the parents, were

removed by this functionality. The datasets thus generated for the

RILs population therefore consisted of either one of the parental types

(A or B) or missing data. Linkage map construction was carried out

using the MAP functionality and comprised three steps: grouping,

ordering, and rippling. The grouping of markers was based on

anchored marker information and a logarithm of the odds (LOD)

threshold score of 2.5 for unanchored markers. The ordering

algorithm used was K-optimality by recombination, using the

random nearest neighbor (NN) count route (10). The criteria used

in rippling were a window size of five and recombination frequency

(REC). Finally, the output was used to generate the linkage map. The

anchoring and genotypic data generated along with the phenotypic

data were used for QTL identification. A total of 1,241 SNPs were

finally selected for analysis. The Biparental Populations (BIP)

functionality of the software was used to study the association of

these SNPs with morphophysiological and yield-related traits. The

mapping method used was the inclusive composite interval mapping

(ICIM) method for QTL with additive effects (i.e., ICIM-ADD). The

mapping parameters set were stepwise scanning by 1 cM, deletion of

missing phenotypic data, phenotype on marker variables (PIN) of

0.001, and a LOD threshold of 2.5. The QTL effects were estimated

based on LOD, additive effect of identified loci, and percentage of

phenotypic variation explained (PVE%). QTLs with PVE% of ≥ 15%

and< 15% were regarded as major and minor effect QTLs,

respectively. The standard procedure was followed for QTL

nomenclature (McCouch, 2008).

The linkage map view package of R (The R Foundation for

Statistical Computing, Vienna, Austria; Ouellette et al., 2018) was

used to display the QTLs identified under WW and WD conditions,

capturing only the regions where QTLs were located. An epistatic

analysis was carried out using the IciMappingVer.4.1 EPI epistatic
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module, with default parameter settings (LOD = 5, step = 1 cM, and

stepwise regression probability< 0.0001). The combined phenotyping

data from two seasons (i.e., the rainy and post-rainy seasons) and two

different environments (i.e., the WW and WD conditions) were used

to carry out a joint QTL analysis with additive-by-environment (A-

by-E) interactive effects in a multi-environment trial (MET) module

of the ICIM method (Meng et al., 2015). The parameters of the QTL

analysis were set as follows: LOD threshold: 2.5; 1,000 permutations;

step: 1 cM; and PIN: 0.001. The confidence interval (CI) of each QTL

was determined by using LOD > 3.

2.5.3 Functional annotation of SNPs
Functional annotation of the selected SNPs was carried out

using the VEP tool in Ensembl Plants (https://plants.ensembl.org/

Zea_mays/Tools/VEP). The VEP tool analyses the variants and

predicts the functional consequences of both known and unknown

variations. The reference genome assembly was Zm-B73-

REFERENCE-NAM-5.0 for each SNP to identify rs-ID, location,

allele, consequence, gene, feature type, biotype, exon/intron, and

TREMBL protein IDs were identified.

2.5.4 Identification of candidate genes in the
genomic region spanning QTLs for water-deficit
stress conditions

The QTL intervals obtained in the linkage map were further

studied for the prediction of candidate gene(s) associated with the

respective QTLs, using the maize genome sequence available at

Ensembl Plants (https://ensembl.gramene.org/Zea_mays/). Marker

intervals were mapped for their physical locations and the

sequences between the intervals were retrieved using NCBI-

BLAST. The numbers and types of genes present in the sequences

were also identified. Functional annotation of the genes present

within the QTL regions was carried out using the Database for

Annotation, Visualization and Integrated Discovery (DAVID) tool

for gene functional annotation (https://david.ncifcrf.gov/

summary.jsp) and the maize genetics and genomics database

(GDB) (https://www.maizegdb.org). The genomic region covering

each QTL was further searched for the presence of QTLs reported

by genome-wide association studies using the maize genome

database (https://jbrowse.maizegdb.org).
3 Results

3.1 Phenotypic variation in the
mapping population

The population consisted of 79 RILs, which demonstrated wide

variation in their morphophysiological and yield-related traits (i.e.,

NDVI, Anet, gs, TR, LT, ASI, CH, CW, TB, and GY) under WW and

WD conditions (Table S3). All traits were affected by WD.

Histograms of the frequency distributions of these traits in the

WW and WD conditions are presented in Figure 1. All traits

followed a near-normal distribution, with the exception of

stomatal conductance, which is positively skewed in the WW
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condition. Based on the significance values obtained using the

Kolmogorov–Smirnov test, the traits Anet, LT, CH, CW, GY, and

TB followed a normal distribution under both under WW and WD

conditions, whereas the traits gs and TR followed a normal

distribution under the WD condition (Table S4). This indicates

that the selected RILs captured the genetic variability of the entire

population to be utilized for QTL identification. The descriptive

statistics of the mapping population under WW and WD

conditions for morphophysiological and yield-related traits,

including coefficients of variation (CV%), skewness, kurtosis, and

heritability, are provided in Table S5. Moderate broad-sense

heritability (H2), ranging between 0.45 and 0.71, was observed for

all traits, and a wide range of coefficients of variation was also

observed among these traits.

A combined ANOVA over trials across seasons (i.e., rainy vs.

post-rainy) and conditions (i.e., WW vs. WD) indicated significant

interactions among season, treatment type, and genotype for most

traits. For total biomass (TB), all interaction effects were significant

except seasons × treatments (Table S6). For ASI, the interaction effects

for treatments × genotypes and seasons × treatments × genotypes were

non-significant. The significant variation by genotype, environment,

and their interaction for a number of traits indicated that these traits

were influenced by both genetic and environmental factors. A simple

correlation coefficient analysis revealed significant positive

correlations of NDVI with CH, CW, GY, and TB; Anet with gs and

TR; gs with TR; CH with TB, GY, and TB; CW with GY and TB; and

GY with TB under both WW and WD conditions. In addition, a

significant positive correlation of NDVI with LT, and of CH with CW

and GY, was observed under WD conditions (Table S7).
3.2 QTL mapping

The numbers of raw SNPs and polymorphic SNPs between the

parents after filtering with MAF< 5%, along with their distribution

in various chromosomes, the number of mapped SNPs in the

linkage map, and the average marker interval, are presented in

Table 1. The largest number of markers (219) was detected on chr 2,

and the smallest (65) on chr 10. In the present study, 27 QTLs were

identified; of these, 13 were detected under WW conditions, 12

under WD conditions, and two (qCH1–1 and qCW2–1) under both

WW and WD conditions (Table 2; Figure 2). Major and minor

QTLs were detected only in chromosomes 1, 2, 3, 5, 6, and 7 (out of

the 10 maize chromosomes studied under WW and WD

conditions), and no QTLs were detected in chromosomes 4, 8, 9,

or 10. Under WD conditions, QTLs for CH (qCH1–1 and qCH1–2)

and ASI (qASI1–1) and for NDVI, CW, TB, and GY were detected

in chromosomes 1 and 2. Similarly, three (qAnet3–1, qgs3–1, qCH3–

1), two (qgs6–1, qGY6–1) and one (qgs7–2) QTLs were detected in

chromosomes 3, 6, and 7, respectively, under WD conditions

(Figure 2). QTLs with PVE% greater than 15% were regarded as

major QTLs. Among the 13 QTLs detected under WW conditions,

three major QTLs were identified for traits Anet, gs, and TR, with

LOD scores ranging from 2.54 to 6.07 and PVE% ranging from

15.86% to 21.47%. Ten minor QTLs were detected for traits LT, TR,

gs, TB, CH, and ASI, with LOD scores ranging from 2.54 to 3.2 and
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https://plants.ensembl.org/Zea_mays/Tools/VEP
https://plants.ensembl.org/Zea_mays/Tools/VEP
https://ensembl.gramene.org/Zea_mays/
https://david.ncifcrf.gov/summary.jsp
https://david.ncifcrf.gov/summary.jsp
https://www.maizegdb.org
https://jbrowse.maizegdb.org
https://doi.org/10.3389/fpls.2023.1124619
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sarkar et al. 10.3389/fpls.2023.1124619
PVE% ranging from 6.75% to 14.91% (Table S8). Among the 12

QTLs detected under WD conditions, three were major QTLs

identified for traits NDVI, gs, and CH, with LOD scores ranging

from 3.49 to 4.45 and PVE% ranging from 15.05% to 18.59%. Nine

minor QTLs were detected for traits Anet, NDVI, ASI, CH, gs, TB,
Frontiers in Plant Science 06
and GY, with LOD scores ranging from 2.52 to 3.37 and PVE%

ranging from 9.69% to14.25% (Table 2). Among these, two QTLs

were detected under both WW and WD conditions: these were a

minor QTL for the CH trait and a major QTL for the CW trait,

located on chromosomes 1 and 2, respectively.
FIGURE 1

Frequency distribution of the phenotypic data of the RILs population of the various morphophysiological and yield related traits. The values of the
parents (P1 - HKII61 and P2 SNJ201126 are indicated by arrows); NDVI, Normalized difference vegetation index; Anet, Net CO2 assimilation rate; gs,
Stomatal conductance to water vapor; TR, Transpiration rate; LT, Leaf temperature; CH, Cob height; ASI, Anthesis-silking interval; CW, Cob weight;
TB, Total biomass; GY,Grain yield/plant; WW, Well-watered; WD, Water-deficit stress.
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For the trait NDVI, one major and one minor QTL were

detected on chr 2, with LOD scores of 3.93 and 3.19 and

capturing 18.59% and 14.02% PVE, respectively. For the Anet

trait, major and minor QTLs were detected on chr 3, with LOD

scores of 3.24 and 2.52 and capturing 17.24% and 14.25% PVE,

respectively. For the gs trait, two major QTLs on chr 6 and three

minor QTLs, one on chr 3 and two on chr 7, were detected. The

LOD scores for these ranged from 2.54 to 4.45, and PVE% ranged

from 9.69% to 18.21%. For the TR trait, one major QTL was

detected on chr 7 (with a LOD score of 6.07 and PVE% of

21.47%), and two minor QTLs were detected, one on chr 1 (with
Frontiers in Plant Science 07
a LOD score of 2.87 and PVE% of 10.81%) and one on chr 3 (with a

LOD score of 2.72 and PVE% of 10.11%).

For the ASI trait, three minor QTLs were detected, two on chr 1

and one on chr 6, with LOD scores of 2.61, 3.02, and 3.2 and PVE%

of 13.92%, 14.91%, and 13.56%, respectively. For the CH trait, one

major QTL, with a LOD score of 3.49 and PVE% of 15.05%, was

detected on chr 1. In addition, three minor QTLs were detected on

chromosomes 1, 3, and 8, with LOD scores of 2.52, 2.8, and 2.77 and

PVE% of 13.84%, 11.18%, and 14.9%, respectively. For the TB trait,

three minor QTLs were detected, two on chr 2 and one on chr 5,

with LOD scores of 2.53, 2.58, and 2.55 and PVE% of 13.51%,
TABLE 1 Numbers of single nucleotide polymorphisms (SNPs) on the 10 chromosomes of maize used for quantitative trait locus (QTL) mapping.

SNPs Chr
1

Chr
2

Chr
3

Chr
4

Chr
5

Chr
6

Chr
7

Chr
8

Chr
9

Chr
10

Total

Raw SNPs (n) 7,145 5,539 4,997 4,853 5,246 3,879 3,846 4,306 3,438 3,247 46,496

Polymorphic SNPs between the parents after filtering with
MAF< 5% (n)

1,878 1,409 1,419 1,171 1,302 1,030 1,188 1,171 842 851 12,261

Mapped SNPs in linkage map (n) 144 219 182 85 96 95 163 119 73 65 1,241

Average marker interval (cM) 5.61 3.14 3.86 5.84 5.77 4.15 3.49 4.12 4.97 6.23
frontie
MAF, minor allele frequency; cM, centimorgan.
TABLE 2 Quantitative trait loci (QTLs) identified for various morphophysiological and yield-related traits under water-deficit (WD) conditions.

QTL name Conditions QTL
type

Chromosome Position of
QTL

Left marker Right marker LOD PVE
(%)

Add Interval map dis-
tance (cM)

Map
distance
(cM)

qNDVI2–1 WD Minor 2 174 rs812099243 rs822182360 3.19 14.02 –

0.02
172.5–175.5

3

qNDVI2–2 WD Major 2 388 rs131350195 S2_66658066 3.93 18.59 0.03 378.5–388.5 10

qAnet3–1 WD Minor 3 314 S3_169283017 S3_173528165 2.52 14.25 –

1.94
312.5–317.5

5

qgs3–1 WD Minor 3 168 S3_5950551 S3_5721251 3.37 12.87 –

0.02
164.5–171.5

7

qgs6–1 WD Major 6 109 S6_126753475 rs836167502 4.45 18.21 –

0.02
105.5–112.5

7

qgs7–2 WD Minor 7 372 S7_139259301 S7_139259336 2.89 9.69 0.02 370.5–374.5 4

qASI1–1 WD Minor 1 129 rs128441140 rs128842621 2.61 13.92 0.22 120.5–139.5 19

qCH1–1 WW, WD Minor 1 266 S1_38965222 S1_38965211 2.52 13.84 3.53 263.5–266.5 3

qCH1–2 WD Major 1 740 S1_6365045 rs818095140 3.49 15.05 4.16 738.5–741.5 3

qCH3–1 WD Minor 3 235 S3_194753667 rs277236564 2.8 11.18 –

3.35
232.5–239.5

7

qCW2–1 WW, WD Major 2 442 S2_213060766 S2_18995588 3.03 17.95 8.59 434.5–445.5 11

qTB2–2 WD Minor 2 455 S2_18995588 S2_14679066 2.58 11.5 17.91 444.5–464.5 20

qGY2–1 WD Minor 2 457 S2_18995588 S2_14679066 2.78 10.54 6.2 445.5–467.5 22

qGY6–1 WD Minor 6 275 S6_89546385 S6_179562549 2.54 11.33 6.41 250.5–286.5 36
cM, centimorgan; NDVI, Normalized Difference Vegetation Index; Anet, net CO2 assimilation rate (mmol CO2 m
–2 s–1); gs, stomatal conductance to water vapor (mol m–2 s–1); ASI, anthesis-

silking interval (days); CH, cob height (cm); CW, cob weight (g/cob); TB, total biomass (g/plant); GY, grain yield (g/plant); WW, well-watered conditions; WD, water-deficit conditions; Chr,
chromosome; LOD, logarithm of odds ratio; PVE (%), percentage of total phenotypic variance explained by the QTL; Add, additive effect; QTL, quantitative trait locus.
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11.50%, and 13.04%, respectively. For the GY trait, two minor QTLs

were detected, one on chr 2 and one on chr 6, with LOD scores of

2.78 and 2.54 and PVE% of 10.54% and 11.33%, respectively.

Finally, for the CW trait, one major QTL was detected on chr 2,

with a LOD score of 3.03 and PVE% of 17.91%.
3.3 Identification of co-localized QTLs

Of the 27 QTLs detected under WW and WD conditions, three

pairs of co-localized QTLs were identified. For traits TR and ASI,

two QTLs (qTR1–1 and qASI1–1) were co-localized at the marker

interval rs128441140–rs128842621 on chr 1, with LOD scores of

2.87 and 2.61 and PVE% of 10.81% and 13.92%, respectively. For

traits gs and GY, two QTLs (qgs6–2 and qGY-6–1) were co-localized

at the marker interval S6_89546385–S6_179562549 on chr 6, with a

LOD score of 2.54 and 2.54 and PVE% of 15.86% and 11.77%,

respectively. Finally, for the gs and TR traits, two QTLs (qgs7–1 and

qTR7–1) were co-localized at the marker interval S7_166501967–

rs130671858 on chr 7, with LOD scores of 2.73 and 6.07 and PVE%

of 11.3% and 21.07%, respectively.
3.4 Epistatic interaction among QTLs

Eleven significant digenic epistatic QTLs for traits Anet, gs, TR,

LT, ASI, CW, and TB were detected (Table 3; Figures S2A, B). The

corresponding LOD scores ranged between 5.0 and 5.91, and PVE%

ranged from 16.60% to 37.43%. The negative epistatic values (add-
Frontiers in Plant Science 08
by-add) indicated that there was a stronger epistatic effect of

recombinant genotype than of parental genotype. The epistatic

effect of QTLs was negative for traits TB, Anet, and LT, but

positive for traits gs, ASI, TR, Anet, and CW. The genomic region

on chr 2 between the markers rs129243511 and S2_229825946

showed epistatic interaction for the CW trait on chr 8, located

between the markers S8_145945904 and S8_148216407. This

interaction contributed 37.43% of the PVE. Two epistatic

interactions were identified for Anet. The first involved the region

on chr 1 between the markers S1_3798004 and rs128441140, which

showed epistatic interaction with the region on chr 3 located

between the markers rs129555629 and S3_183844216. This

interaction contributed 17.60% of the PVE. For the second, a

region on chr 2 between the markers rs72722896 and

rs276685886 showed epistatic interaction for Anet with a region

on chr 3, located between the markers S3_2276048 and

S3_89193637. This interaction contributed 16.71% of the PVE.

Finally, the genomic region on chr 2 between the markers

rs131971876 and rs129196105 showed epistatic interaction for the

TR trait with the region on chr 7 located between the markers

S7_131791490 and S7_136261108. This interaction contributed

29.55% of the PVE.
3.5 QTL–environment interaction

Using the MET (multi-environmental trials) module of ICIM, a

total of 53 QTLs were identified for various traits (Table S9). Of

these, 21 QTLs were common to those identified by the ICIM-ADD
FIGURE 2

Positions of the quantitative trait loci (QTLs) for various morphophysiological and yield-related traits on seven chromosomes in the recombinant
inbred line (RIL) population grown under well-watered and water-deficit conditions. The scaled numbers on the left side of the chromosomes
indicate genetic length (cM), with the corresponding markers on the right side. The colored bars and triangles represent the QTLs identified for the
various traits and the condition, respectively. Anet, net CO2 assimilation rate; ASI, anthesis-silking interval; CH, cob height; CW, cob weight; gs,
stomatal conductance to water vapor; GY, grain yield; LT, leaf temperature; NDVI, Normalized Difference Vegetation Index; TB, total biomass; TR,
transpiration rate; chr, chromosome; WW, well-watered conditions; WD, water-deficit conditions.
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TABLE 3 Epistatic interactions observed for morphophysiological and yield-related traits.

arker Right marker
1

Second chromo-
some

Position2
(cM)

Left marker
2

Right marker
2 LOD PVE

(%)
Add-by-
adda

8004 rs128441140 3 350 rs129555629 S3_183844216 5.08 17.60 3.56

8961 rs276685886 3 635 S3_2276048 S3_89193637 5.91 16.71 -3.90

38002 S6_148279548 7 120 rs130642102 rs836234066 5.32 16.60 0.05

79195 rs130488903 8 250 rs814260212 S8_73973624 5.48 18.05 0.05

1876 rs129196105 7 365 S7_131791490 S7_136261108 5.79 29.55 0.63

65742 S4_182462050 6 170 rs55624911 rs130311785 5.22 34.85 -0.60

52549 rs833320055 3 270 rs839843727 rs277263572 5.86 24.89 0.31

48506 S1_302412690 3 210 rs131368069 rs132076316 5.00 20.18 0.27

3511 S2_229825946 8 220 S8_145945904 S8_148216407 5.13 37.43 7.58

7839 rs130004128 5 295 S5_24426031 S5_29004727 5.10 22. 50 -24.04

4757 rs129243510 5 255 S5_9853336 S5_10571036 5.19 18.89 -18.16

tance to water vapor (mol m–2 s–1); TR, transpiration rate (mmol H2O m–2 s–1); LT, leaf temperature (°C); ASI, anthesis-silking interval (days); CW, cob weight (g/cob); TB, total
ithm of the odds ratio, where the threshold value was ≥ 5; PVE(%), total phenotypic variance in percentage explained by the QTL; add-by-adda, additive-by-additive effect; negative
antitative trait locus.
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method. One QTL for each of the traits gs, ASI, and GY and two

QTLs for the LT trait were identified using the ICIM-ADD method

but were not detected by MET analysis. Conversely, the MET

analysis identified 32 QTLs for traits Anet, CH, ASI, TB, GY,

NDVI, LT, and CW that had not been detected using the ICIM-

ADD method. The proportion of phenotypic variation captured by

additive and dominance effects [PVE(A)] ranged from 0.13% to

14.36%, and the proportion captured by additive- and dominance-

by-environment effects [PVE(A by E)] for corresponding QTLs

ranged from 0% to 7.92% (Table S9). Thus, PVE(A by E) was

significantly lower than PVE(A). Most QTLs detected through the

MET module of ICIM were non-significant. However, traits Anet,

ASI, gs, and TR were found under MET to make greater

contributions to phenotypic variation (with contributions ranging

from 5.24% to 21.7%), they were not found to contribute to the

significant QTL × E interaction effect (Table 4).
3.6 Functional annotation of SNPs

The functional annotation of genes associated with the major and

minor QTLs for morphophysiological and yield-related traits and

their biological/molecular functions under WD and WW conditions

are shown in Tables 5, S10, respectively. The QTL regions with

important genes imparting stress tolerance for different traits

belonged to the categories of signal transduction (GY:

Zm00001eb297570, protein serine/threonine phosphatase);

transcription factors [NDVI: Zm00001eb118010, G2-like

transcription factor 27; ASI: Zm00001eb295810 , NAC-

type transcription factor (NAC87)]; transporter activity (Anet:

Zm00001eb146040, chloride channel protein; gs: Zm00001eb324180,

sugar carrier protein C; TR: Zm00001eb015510, phospholipid-

transporting ATPase; CH: Zm00001eb363270, calcium-transporting

ATPase); cell wall biosynthesis and its organization (TR:

Zm00001eb144960, lipoxygenase; TR: Zm00001eb145080, pectin

acetyl esterase); photosynthesis (gs and TR: Zm00001eb324240,

chlorophyll a/b-binding protein, chloroplast); and carbon
Frontiers in Plant Science 10
utilization (CH: Zm00001eb002270, glyceraldehyde phosphate

dehydrogenase B1).
3.7 Identification of candidate genes in
the genomic region spanning QTLs
under WD conditions

Table S11 shows the names of the QTLs, their chromosome

locations, left markers, right markers, QTL intervals (cM), the

physical location of each QTL region (i.e., start and end), its size,

and the number of genes within the QTL region. Of the 14 QTLs

identified under WD conditions, two QTLs, qgs7–2 and qCH1–1,

encompassed a single gene, namely the Nicotinamide adenine

dinucleotide phosphate-binding Rossmann-fold superfamily

protein (Zm00001eb316940) and LIM homeodomain proteins

transcription factor 2 (Zm00001eb011970), respectively. Although

the physical distances between the markers of the QTLs qgs6–1,

qASI1–1, qCW2–1, and qGY6–1 were large, linkage with the trait

could not be ascertained, meaning that these were not used. The

physical sizes of the QTLs qNDVI2–1, qNDVI2–2, qAnet3–1, qgs3–1,

qCH1–2, qCH3–1, qTB2–2, and qGY2–1 were below< 5 Mbp; these

encompassed 22, 108, 264, 35, 31, 64, 372, and 372 protein-coding

genes, respectively. Genes that played a significant role in WD

tolerance in these QTL intervals were also identified. The details of

QTLs detected in earlier studies in the QTL regions, i.e., qAnet3–1,

qgs3–1, qASI1–1, qCH3–1, and qGY6–1, are listed in Table S12.
4 Discussion

High variability was observed in various morphophysiological

and yield-related traits under WW and WD conditions in a field

phenotyping study of the RIL population. In particular, significant

variation was observed in the NDVI, Anet, gs, TR, LT, ASI, CH, CW,

TB, and GY traits. The RIL population displayed transgressive

segregation for traits Anet, CH, TB, and GY under both
TABLE 4 Quantitative trait locus (QTL) × environment (E) interactions in the recombinant inbred line (RIL) population over two seasons (rainy and
post-rainy).

Trait Chromosome Position Left
marker

Right
marker

LOD LOD
(AbyE)

PVE PVE
(AbyE)

Add AbyE_01 AbyE_02

Anet 3 314 S3_169283017 S3_173528165 2.55 1.1 9.51 3.55 –1.09 0.84 –0.84

Anet 3 324 S3_174361072 rs129386882 3.23 1.35 15.53 7.92 –1.22 –1.24 1.24

ASI 1 786 rs131202973 S1_10907875 3.18 1.06 5.24 0.37 –0.09 –0.02 0.02

gs 3 168 S3_5950551 S3_5721251 3.33 2.17 6.14 2.64 –0.01 0.01 -0.01

gs 6 109 S6_126753475 rs836167502 4.66 2.15 10.17 1.81 –0.02 0.01 -0.01

gs 7 372 S7_139259301 S7_139259336 2.89 2.14 5.71 3.06 0.01 -0.01 0.01

gs 8 232 S8_152991912 S8_123369436 2.65 2.65 5.59 5.46 0.00 -0.01 0.01

TR 7 162 S7_166501967 rs130671858 6.29 1.48 21.7 7.34 0.45 0.32 –0.32
fr
cM, centimorgan; Anet, net CO2 assimilation rate (mmol CO2 m
–2 s–1); gs, stomatal conductance to water vapor (mol m–2 s–1); NDVI, Normalized Difference Vegetation Index; TR, transpiration

rate (mmol H2O m–2 s–1); LOD, logarithm of the odds ratio; LOD (AbyE), LOD score for additive- and dominance-by-environment effects; PVE (AbyE), phenotypic variation explained by
additive- and dominance-by-environment effects at the current scanning position; AbyE_01, additive- and dominance-by-environment effect 1 at the current scanning position; AbyE_02,
additive- and dominance-by-environment effect 2 at the current scanning position.
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conditions, suggesting the presence of new combinations of

multiple genes with more positive or negative effects on

quantitative traits than were present in either parent. The

identification of progeny plants with favorable gene combinations

means that they can serve as donors for further genetic

improvement. The frequency distributions for the RIL subset

showed near-normal distributions for most traits, indicating their

polygenic nature. Positive correlations were observed between the
Frontiers in Plant Science 11
Anet trait and its related traits, such as gs and TR, and between yield

and its related traits, such as CW, TB, and GY, under both

conditions. NDVI was positively correlated with CH, CW, TB,

and GY under both conditions. TR also showed a positive

correlation with gs as did Anet with gs and TR, under WD

conditions. Previous studies have also reported positive

correlations between NDVI and GY (Trachsel et al., 2016).

Interestingly, significant positive correlations were observed
TABLE 5 List of annotated genes present within quantitative trait loci (QTLs) identified under water-deficit (WD) conditions for various
morphophysiological and yield traits.

QTL
name Chromosome

Position
(start–
end bp)

Position
of SNP SNP

Gene
size
(bp)

Locus ID Annotation Biological process

qNDVI2–
1

2
241,929,343–
241,931,437

241,930,638 G 2094 Zm00001eb118010
G2-like transcription factor
27 (glk27)

DNA binding

qAnet3–1

3
169,275,199–
169,279,402

169,283,017 C 4203 Zm00001eb144000
E3 ubiquitin–protein ligase
RGLG1

Metal ion binding

3
169,278,633–
169,284,255

169,283,017 C 3002 Zm00001eb144010
Amino acid/auxin permease
20

Amino acid transport

3
173,533,121–
173,537,574

173,528,165 A 4318 Zm00001eb145030
BTB/POZ and TAZ domain-
containing protein 3

Ubiquitin conjugation
pathway

qgs3–1 3
5,718,725–
5,721,785

5,721,251 G 3060 Zm00001eb120960
Putative transcription factor
bHLH041

Protein dimerization
activity

qgs6–1

6
126,751,036–
126,754,755

126,753,475 A 3719 Zm00001eb280280
Brassinosteroid-insensitive 1-
associated receptor kinase 1

Protein serine/threonine
kinase activity

6
120,726,441–
120,737,326

120,736,548 G 10,885 Zm00001eb278890
Transcription elongation
factor SPT5

mRNA binding/
transcription regulation

qgs7–2 7
139,256,603–
139,259,621

139,259,301 C 3018 Zm00001eb316940
NAD(P)-binding Rossmann-
fold superfamily protein

Oxidoreductase activity

qASI1–1 1
53,207,544–
53,208,672

53,209,688 C 1128 Zm00001eb015510
Phospholipid-transporting
ATPase

Phospholipid
translocation

qCH1–1 1
38,963,680–
389,674,58

38,965,222 A 3565 Zm00001eb011970
LIM zinc-binding domain-
containing protein

Cell cycle related

qCH1–2 1
6,360,197–
6,362,989

6,365,045 A 2792 Zm00001eb002270
Glyceraldehyde phosphate
dehydrogenase B1

Glucose metabolic
process

qCH3–1

3
194,748,309–
194,750,865

194,753,667 A 2556 Zm00001eb151120
Pentatricopeptide repeat-
containing protein

Organellar biogenesis

3
195,624,083–
195,628,950

195,627,269 G 3257 Zm00001eb151330
Receptor-like serine/threonine
protein kinase

Protein
phosphorylation/
assimilate partitioning

qCW2–1 2
241,494,911–
241,497,812

241,498,576 G 2651 Zm00001eb117750
Proline-rich receptor-like
protein kinase PERK4

Protein serine/threonine
kinase activity

qTB2–2 2
14,676,667–
14,679,369

14,679,066 T 2562 Zm00001eb072580
Osjnbb0016d16.16-like
protein

–

qGY2–1 2
14,676,667–
14,679,369

14,679,066 T 2562 Zm00001eb072580
Osjnbb0016d16.16-like
protein

–

qGY6–1

6
179,555,644–
179,566,050

179,562,549 C 7615 Zm00001eb297570
Protein serine/threonine
phosphatase

Protein
dephosphorylation

6
179,563,176–
179,566,051

179,562,549 C 2875 Zm00001eb297580
Pentatricopeptide repeat-
containing protein
mitochondrial

Zinc ion binding
NDVI, Normalized Difference Vegetation Index; Anet, net CO2 assimilation rate (mmol CO2 m
–2 s–1); gs, stomatal conductance to water vapor (mol m–2 s–1); ASI, anthesis-silking interval (days);

CH, cob height (cm); CW, cob weight (g/cob); TB, total biomass (g/plant); GY, grain yield (g/plant); SNP, single nucleotide polymorphism.
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between morphophysiological and yield-related traits in the present

study (Table S7), whereas only non-significant correlations were

reported in an earlier study (Nikolić et al., 2012).
4.1 QTL mapping

The genetic map in this study consisted of 1,241 SNP markers

spread across 10 linkage groups, covering a total genetic distance

of 5,471.55 cM, with an average marker density of 4.4 cM per marker.

RIL mapping populations are widely used for QTL identification (Li

et al., 2013; Yang et al., 2016), and in this study, 27 QTLs were

identified for various morphophysiological and yield-related traits

under both WW conditions (13 QTLs) and WD conditions (12

QTLs). Notably, for the NDVI trait, both a major and a minor QTL

were detected on chr 2, with bin position 2.10 under WD conditions.

Previous studies have also reported QTLs for NDVI and plant height in

two BC1F2:3 backcross populations (LPSpop and DTPpop), with 18

QTLs identified in total (Trachsel et al., 2016). In the DTPpop

population, QTLs for NDVI influencing stay-green habit (SEN6)

were also detected in bins 8.01 and 2.07. The present study identified

several QTLs associated with various morphophysiological and yield-

related traits under both WW and WD conditions. For the Anet trait, a

major QTL (under WW conditions) and a minor QTL (under WD

conditions) were identified on chr 3 (bp 3.05), which also showed the

presence of a minor QTL for the TR trait underWW conditions. QTLs

for the TR trait were also detected on chrs 1 and 7. Twomajor QTLs for

the gs trait were identified on chr 6 (under WD conditions) and two

minor QTLs, one on chr 3 (under WD conditions) and one on chr 7

(under WW conditions), were also identified. A previous study by Yu

et al. (2015) identified 32 QTLs associated with chlorophyll a,

chlorophyll b, total chlorophyll content, net CO2 photosynthetic rate,

stomatal conductance, intercellular CO2 concentration, and TR.

Another study reported on the photosynthetic performance of maize

grown in drought environments (Zhao and Zhong, 2021). In a previous

study conducted by Pelleschi et al. (2006), 19 major QTLs were

identified for various physiological traits under drought-stressed and

WW regimes. QTLs for the stomatal conductance trait have been

found on all chromosomes in maize except for chr 5 (Quarrie et al.,

1994; Sanguineti et al., 1999). In the present study, twominor QTLs for

the LT trait (under WW conditions) were identified on chrs 6 and 8.

Three minor QTLs for the ASI trait were also identified: two on chr 1

(one under WW and the other under WD conditions) and one on chr

6 (under WW conditions). A total of 33 QTLs for the ASI trait under

WD stress have been reported in earlier studies, distributed across all

chromosomes (Semagn et al., 2013). Additionally, QTLs for ASI under

both WW and WD conditions were also identified in another study

(Hu et al., 2021). In this study, we identified onemajor QTL underWD

stress and two minor QTLs (one under WW and one under WD

conditions) for cob height on chr 1, as well as one minor QTL on each

of chrs 3 (under WD conditions) and 8 (under WW conditions).

Previous studies have also reported QTLs for cob height on all 10

chromosomes (Beavis et al., 1994; Lubberstedt et al., 1997; Li et al.,

2016), with 21 QTLs identified for both PH and CH in three common

genomic regions in two biparental populations (Li et al., 2016).

However, our study identified major and minor QTLs (qCH1–2 and
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qCH1–1) at different positions on chr 1 compared with those identified

in previous studies. QTLs for cob height have also been reported on

chrs 3, 4, 5, 6, and 8 in previous studies, but at different bs (Yang et al.,

2008; Zhao et al., 2018; Tadesse et al., 2020). Grain yield is a highly

complex trait that is influenced by many genes, each exerting only a

small effect (Hallauer andMiranda, 2010). Earlier studies have reported

on a QTL atlas that includes the major genes for GY and its associated

traits (Zhou et al., 2020). In our study, we identified QTLs for the CW

and GY traits on chr 2, which were physically located at bps 241,494,

911–241,497,812 and bps 14,676,667–14,679,369, respectively. These

QTLs are different from the previously reported meta-QTLs (Zhou

et al., 2020). We also identified another QTL for grain yield on chr 6,

located at bps 179,555,644–179,566,050, which is also different from the

meta-QTLs that have been previously reported on this chromosome.

Additionally, we identified three minor QTLs for the TB trait: two on

chr 2 (one under WW and the other under WD conditions) and one

on chr 5 (under WW conditions). Similar studies have also identified

QTLs for biomass production and leaf area. For example, Chen et al.

(2011) identified seven QTLs for biomass production and leaf area in

the marker interval bnlg1832–P2M8/j (bp 1.05) on chr 1. Rahman et al.

(2011) identified a QTL for yield on chr 1 that was co-located with the

QTLs for root traits, total biomass, and osmotic potential in a region of

about 15 cM. These studies suggest that genetic control of biomass and

yield is complex and involves multiple QTLs distributed across

different chromosomes and genomic regions.

The missing proportion of phenotypic variance for a trait may be

attributed to epistasis (Carlborg and Haley, 2004), a term that refers to

non-allelic interaction that can modify the degree of phenotypic

expression by suppressing or enhancing the expression of interacting

genes (Mackay et al., 2014; Rahman et al., 2017). Although our study

was limited by a smaller population size, it is possible that epistatic

effects, in addition to a few major and minor loci, contributed to the

variation observed in the morphophysiological and yield-related traits

studied, such as Anet, gs, TR, LT, ASI, CW, and TB. However, further

validation using a larger mapping population is necessary to confirm

these findings. To better understand the stability of QTLs across

different environments, it would be beneficial to evaluate this

population in multiple locations, across multiple years, and under

different treatments, such as variable temperature and watering regimes

(Boer et al., 2007). Although our study used a smaller population size, a

joint analysis over multiple years was conducted to establish the

stability of QTLs and to evaluate the interactions between QTLs and

the environment. Our findings suggest that, with the exception of gs
with respect to the QTL located at the marker interval S8_152991912–

S8_123369436 on chr 8, most of the traits were associated with non-

significant effects of environment in terms of the expression of QTLs,

which captured only a small proportion of the phenotypic variation

explained by additive-by-environment effects.
4.2 In silico analysis of the genomic region
spanning QTLs and identification of
candidate genes for stress tolerance

In this study, analysis of the genomic region of the QTLs using

in silico methods led to the identification of candidate genes
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associated with stress tolerance. The QTL qNDVI2–1 contained two

important genes: Golden 2-like (GLK) transcription factor 27

(Zm00001d007962, GRMZM2G173882, and Zm00001eb118010)

and cold-regulated 413 plasma membrane prote in 2

(Zm00001d007968). The Golden 2-like (GLK) transcription factor

27 gene plays a crucial role in regulating chloroplast growth and

development, and also contributes to the maintenance of stay-green

traits (Chen et al., 2016; Qin et al., 2021), whereas the cold-regulated

413 plasma membrane protein 2 gene enhances osmotic stress

tolerance through enhanced expression of AtCor78/AtRD29A

(Zhou et al., 2018). In the QTL interval of qNDVI2–2, three genes

were identified: barren stalk 2 (Zm00001eb084940), AP2-EREBP

transcription factor 131 (Zm00001eb084810, GRMZM2G087059,

and Zm00001d003884), and potassium high-affinity transporter 1

(Zm00001eb084630, GRMZM2G093826, and Zm00001d00386).

These genes contribute to stress tolerance through their

involvement in signaling (Yao et al., 2019), plant growth and

development (Xie et al., 2019), and facilitation of potassium (K+)

ion distribution in shoots (Qin et al., 2019). Overall, these genes in

the QTL region for the NDVI trait play roles in maintaining stress

tolerance through signaling and transporter activity.

In our study, we also found that the QTL interval of qAnet3–2

contained several genes that encode various transcription factors,

such as ABI3/VP1 transcription factor 31 (Zm00001eb144270,

Zm00001d042460), AP2-like ethylene-responsive transcription

factor (GRMZM2G141638 , ZM00001EB144510), ARR-B-

transcription factor 6 (Zm00001eb144290, Zm00001d042463),

bHLH t r an s c r i p t i on f a c t o r 132 (Zm00001d042482

GRMZM2G114873), AP2/EREBP transcription factor 53

(Zm00001d042492) , and GRAS transcription factor 7

(GRMZM2G013016). These transcription factors play important

roles in the regulation of downstream genes through binding to

DNA elements in the promoter regions of the target genes. These

genes also play vital roles in plant growth, development, hormone

signaling, and stress responses (Kimotho et al., 2019). Additionally,

we ident ified t ranspor te r s , such as the magnes ium

(GRMZM2G139822, ZM00001EB144080) and proline transporters

1 and 2 (ZM00001EB144010, GRMZM2G078024), that are essential

for maintenance of membrane homeostasis. Magnesium is a vital

component of chlorophyll, which plays a crucial role in absorbance

of sunlight during photosynthesis. It also acts as a phosphorus

carrier in plants and is essential for phosphate metabolism

(Hermans et al., 2013). Overall, our findings suggest that the

qAnet3–2 QTL region plays a vital role in the regulation of

transcription factors and transporters, which are crucial for

various physiological processes in plants.

The QTL qgs3–1 contains three genes that are critical for plant

stress tolerance and development. The bHLH transcription factor

70 (GRMZM2G397755 and Zm00001d039459) is a key regulator of

stress-related genes, enabling the plant to activate adaptive

responses under various abiotic stresses. This transcription factor

also plays a vital role in synthesis of flavonoids, which are essential

for stress tolerance (Qian et al., 2021). The epidermal patterning

factor-like protein (GRMZM2G077219, Zm00001d039470, and

Zm00001eb121050) is involved in the development of stomatal

cells in the upper epidermis of plant leaves (Lee et al., 2012). This
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protein is crucial for gaseous exchange in plants, which is vital for

photosynthesis and respiration. The third gene, glutaredoxin 12

(Grx12) (Zm00001eb121030, GRMZM2G303044, Zm00001d039468,

and Zm00001eb121020), is a stress-related redox sensor that plays a

significant role in signaling through glutathione. Grx12 enables

glutathione to play a signaling role through glutathionylation of

target proteins (Zaffagnini et al., 2012). The minor QTL qgs7–2

includes the gene Zm00001eb316940, which encodes for the NAD

(P)-binding Rossmann-fold superfamily protein. Although the

exact function of this protein is not well understood, it is known

to bind to NAD and NADP and is predicted to play a role in

metabolic processes.

The QTL qCH1–1 was expressed under both WW and WD

conditions, and it is associated with the gene Zm00001eb011970,

which encodes the LIM zinc-binding domain-containing protein

DA1–2. This protein is related to ubiquitin binding and the

expression of cell cycle genes, which contribute to long-distance

phloem transport (Park et al., 2014). The LIM domain is a protein

interaction domain that is involved in many cellular processes,

including signal transduction, transcriptional regulation, and

cytoskeletal organization. The QTL qCH1–2 encompasses the

gene encoding calcium-dependent protein kinase 36 (CDPK 36),

which translates elevated calcium concentration into enhanced

protein kinase activity and subsequent downstream signaling

events (Singh et al., 2018). Calcium is an important secondary

messenger in plants that plays a crucial role in a wide range of

signaling pathways, including stress responses, development,

and growth.

The QTL qCH3–1 encompasses two important genes: receptor-

like protein kinase (RLK) G-type lectin S-receptor-like serine/

threonine-protein kinase (ZM00001EB151330), and homeobox

transcription factors (Zm00001d043231 and ZM00001EB151130).

The first gene, RLK, is a member of the cell-surface receptor-like

protein kinase family, which is critical in perception of signals.

RLKs have active functions in various physiological processes such

as plant growth and development, and in responses to both biotic

and abiotic stresses (Ye et al., 2017). The G-type lectin S-receptor-

like serine/threonine-protein kinase is involved in signaling during

plant reproduction and defense against pathogens. Homeobox

genes play a crucial role in specifying cell identity and positioning

during embryonic development (Khan et al., 2018). They regulate

various developmental processes, such as organogenesis,

morphogenesis, and differentiation. The QTL qCH3–1 includes

the genes encoding RLK and homeobox-transcription factors,

which play critical roles in plant growth, development, and

responses to both biotic and abiotic stresses.

The QTLs qTB2–1 and qGY2–1 were found to be located within

the same genomic region and contained several genes encoding for

various transcription factors. ABI3/VP1 transcription factor 12 is

involved in seed maturation and germination, and the AP2/EREBP

transcription factor is known to regulate gene expression in

response to various environmental cues. Calcium-dependent

protein kinase 5 (CDPK 5) is a key component of the calcium

signaling pathway and plays a crucial role in stress responses. The

GRAS transcription factor is involved in various developmental

processes, including root and shoot development, while MYB-
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related transcription factor 20 is involved in the regulation of

secondary metabolism. The RING zinc finger protein-like RING/

U-box superfamily protein and zinc finger C3HC4-type family of

proteins are involved in protein degradation and the regulation of

gene expression, respectively (Kimotho et al., 2019). In addition to

these transcription factors, the QTL region also contained various

stress-inducible genes, such as abscisic acid receptor PYL9, which

plays a critical role in drought and salt stress responses, and the

dehydration-responsive element-binding protein 1D, which is

involved in the regulation of water stress-responsive genes. The

guard cell S-type anion channel SLAC1 is involved in stomatal

regulation, while the WD40 repeat-like superfamily of proteins are

involved in various developmental processes, including cell division

and differentiation. The naked endosperm, sucrose synthase, and

xyloglucan galactosyltransferase genes are all involved in seed

development and are essential for proper seed maturation.

Overall, this study has identified several candidate genes that

play crucial roles in various physiological processes, including the

perception of external signaling, expression of functional proteins

involved in stress tolerance, and the regulation of gene expression in

response to environmental cues. These findings have important

implications for crop improvement, as they provide valuable

insights into the molecular mechanisms underlying stress

tolerance and growth and development in plants.
5 Conclusion

The investigation conducted in this study revealed a substantial

amount of variation in a range of morphophysiological and yield-

related traits in the mapping population under both WW and WD

conditions. Bothmajor andminor QTLs were identified for these traits.

Interestingly, one major QTL (qCH1–2) and one minor QTL (qCH1–

1) for cob height were identified at different genomic positions than in

earlier studies. Co-localized QTLs were also detected for traits gs and

GY on chr 6 (qgs6–2 and qGY6–1), and for traits gs and TR on chr 7

(qgs7–1 and qTR7–1). The major candidate genes associated with QTLs

were also detected under WD stress conditions and were found to be

involved in growth and development, senescence, ABA signaling, signal

transduction, and transporter activity processes contributing to WD

tolerance. To facilitate marker-assisted selection in breeding, the QTL

regions identified in this study could be fine-mapped and converted

into SSR markers. In addition, the putative candidate genes could be

isolated and functionally characterized, and the high-yielding and

better-performing RILs could be used for genetic improvement

of maize.
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