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SAC genes have been identified to play a variety of biological functions and

responses to various stresses. Previously, SAC genes have been recognized in

animals and Arabidopsis. For the very first time, we identified 157 SAC genes in eight

cotton species including three diploids and five tetraploids with 23 SAC members

in G. hirsutum. Evolutionary analysis classified all cotton SAC gene family members

into five distinct groups. Cotton SAC genes showed conserved sequence logos and

WGD or segmental duplication. Multiple synteny and collinearity analyses revealed

gene family expansion and purifying selection pressure during evolution. G.

hirsutum SAC genes showed uneven chromosomal distribution, multiple exons/

introns, conserved protein motifs, and various growth and stress-related cis-

elements. Expression pattern analysis revealed three GhSAC genes (GhSAC3,

GhSAC14, and GhSAC20) preferentially expressed in flower, five genes (GhSAC1,

GhSAC6, GhSAC9, GhSAC13, and GhSAC18) preferentially expressed in ovule and

one gene (GhSAC5) preferentially expressed in fiber. Similarly, abiotic stress

treatment verified that GhSAC5 was downregulated under all stresses, GhSAC6

and GhSAC9 were upregulated under NaCl treatment, and GhSAC9 and GhSAC18

were upregulated under PEG and heat treatment respectively. Overall, this study

identified key genes related to flower, ovule, and fiber development and important

genetic material for breeding cotton under abiotic stress conditions.

KEYWORDS

cotton, phylogenetic analysis, SAC genes, multiple synteny, flower, ovule, abiotic stresses
Introduction

Phospholipids group that is different from other phospholipids based on the existence of a

phosphate group of phosphatidylinositol (PI) are known as Phosphoinositides.

Phosphoinositides exist in seven forms and are important for the release of intracellular

calcium and the activation of protein kinase C (Toker, 1998). In animals and yeast
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(Saccharomyces cerevisiae), phosphoinositides play a key role in

biological mechanisms including maintenance of vacuole morphology,

actin cytoskeleton organization, vesicle trafficking, regulation of lipid

storage, and proteins activation (Takenawa and Itoh, 2001). SAC

proteins have been categorized into two groups based on protein

sequences except for SAC domains (Hughes et al., 2000). In one group

SAC domain is found in N-terminal and is linked to type II 5-

phosphatase located in C-terminal. The SAC domain of the second

group is associated with the C-terminal with unknown domains. In the

second group, protein’s C-terminal regions are different in length from

amino acid sequences. SAC domains have seven conserved motifs and

about a length of 400 amino acids. SAC domains are important for

phosphatase activities (Guo et al., 1999; Hughes et al., 2000).

In plants, SAC genes have been identified to play a variety of

functions including pollen tube growth, vesicle trafficking, osmotic

regulation, and responses to hormonal treatments and various stresses

(Zhong and Ye, 2003; Wang et al., 2017; Xiong et al., 2019). Genome

analysis indicated a large number of SAC genes inArabidopsis. However,

limited studies investigated the functions of SAC genes in plants. In

Arabidopsis, FRA7 encodes a SACprotein and plays important functions

as cell morphogenesis was altered in the fra7 mutant (Erdman et al.,

1998). Further, defective cell morphogenesis and cell wall biosynthesis

was observed by truncated SAC1 in Arabidopsis (Zhong et al., 2005).

Arabidopsis SAC2, SAC3, SAC4, and SAC5 have recognized tonoplast-

associated enzymes and play functions in vacuolar morphology. SAC6

showed high expression in flowers with induced expression by salinity

stress (Zhong and Ye, 2003), and SAC7 showed involvement in root hair

growth in Arabidopsis (Thole et al., 2008).

Cotton is a chief fiber crop and a model to study polyploidy,

species evolution, cellulose biosynthesis as well as cell wall

development (Senchina et al., 2003). Fiber development is an

intricate process that entails several plant hormones such as auxin,

gibberellins (GAs), ethylene, and brassinosteroids (Seagull and

Giavalis, 2004; Samuel Yang et al., 2006; Ali et al., 2021; Wu et al.,

2021a). The genus Gossypium contains about 45 diploid species and

seven tetraploid cotton species (Li et al., 2019; Yang et al., 2020). All

diploid and tetraploid Gossypium species constitute a single

monophyletic group originating from a common ancestor around

5–10 million years ago (mya). Among seven allopolyploid cotton

species, including G. hirsutum (AD1), G. barbadense (AD2), G.

tomentosum (AD3), G. mustelinum (AD4), G. darwinii (AD5), G.

ekmanianum (AD6), and G stephensii (AD7), G. mustelinum may

serve as the basal clade, with AD1 and G. tomentosum forming the

second clade, whereas AD2 and G. darwinii form the third clade

(Huang et al., 2021). Hybridization among A genome having similar

genomic characteristics of G. herbaceum (A1) or G. arboreum (A2)

and a D genome having similar genomic characteristics of G.

raimondii (D5) with subsequent polyploidization gave rise to seven

tetraploid cotton species including G. hirsutum and G. barbadense

around 1-2 mya (Wendel and Cronn, 2003; Malik et al., 2018). With

the improvements in sequencing and assembly of cotton genomes

(Paterson et al., 2012; Du et al., 2018) it is possible to perform a

complete study of cotton gene families. Functions of many SAC genes

have been identified in Arabidopsis but there is no previously

published study of SAC genes in cotton.

We comprehensively identified and characterized the SAC gene

family members in three diploid species (G. herbaceum, G. arboreum,
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and G. raimondii), and five tetraploid species (G. hirsutum, G.

darwinii, G. tomentosum, G. barbadense, and G. mustelinum) of

cotton. The evolutionary relationship among cotton SAC genes was

determined by phylogenetic analysis, gene structure, conserved

motifs, and sequence logos analysis. Next, multiple synteny analysis

and collinearity analysis with nonsynonymous (Ka) and synonymous

(Ks) substitution ratios (Ka/Ks ratios) were estimated. Moreover,

functions of GhSAC genes were observed by promoter cis-elements

analysis, tissue specific expression patterns analysis, and the

expression of GhSAC genes after abiotic stress treatments.
Materials and methods

Identification of cotton SAC genes

The gene sequences, protein, cDNA and gene annotation, and

genome files (gff) of G. herbaceum (WHU, version 1.0), G. arboreum

(ICR, version 1.0), G. raimondii (JGI, version 1.0), G. hirsutum (ICR,

ZM24 version 1.0), G. barbadense (HAU, version 1.0), G. tomentosum

(HGS, version 1.0), G. mustelinum (HGS, version 1.0) G. darwinii

(HGS, version 1.0) were obtained from the CottonFGD database (Zhu

et al., 2017). The identified SAC protein sequences in Arabidopsis

(Zhong and Ye, 2003) were used to find the SAC genes in observed

cotton species by Local BLASTP search. The identified SAC genes

were also confirmed by HMM (hidden Markov model) profile

obtained from the Pfam (PF02383) database (Finn et al., 2016),

PROSITE (PS50275), and Interproscan 63.0 (IPR002013) (http://

www.ebi.ac.uk/InterProScan/) (Jones et al., 2014). Identified SAC

domains containing proteins were further confirmed by NCBI

Batch-CD search (https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/

bwrpsb.cgi). We also compared the results of GhSAC genes

identified from G. hirsutum (ICR, ZM24 version 1.0) with HAU,

JGI, NAU, and ICR (TM-1 version 1.0) and found no difference.
Phylogenetic and sequence logos analysis of
SAC genes

For the phylogenetic analysis, amino acid sequences from G.

arboreum, G. hirsutum, G. herbaceum, G. raimondii, G. darwinii, G.

barbadense, G. mustelinum, and G. tomentosum were aligned by

Clustal (Larkin et al., 2007). MEGA 7.0 with ML (Maximum

likelihood) method and 1000 bootstrap value was used to generate

a tree. For sequence logos analysis, we aligned the SAC protein

sequence of G. arboreum, G. hirsutum, G. herbaceum, G. raimondii,

G. darwinii, G. barbadense, G. mustelinum, and G. tomentosum by

Clustal X 2.0 (Thompson et al., 1997). Sequence logos were

constructed using the online tool WEBLOG (Crooks et al., 2004).
Gene structure, motif distribution, and
promoter cis-elements analysis

For gene structure analysis, ClustalW was used to align GhSAC

protein sequences, and MEGA 7.0 (Kumar et al., 2016) was used to

construct an NJ tree. The exon/intron pattern was predicted by GSDS
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2.0 (Hu et al., 2010). Protein motif distribution patterns were

determined by using the MEME program (http://meme-suite.org/

tools/meme) (Bailey et al., 2006) as stated before (Qanmber et al.,

2018). Next, for the analysis of cis-elements, 2000 bp promoter

sequences of GhSAC were obtained from CottonFGD (Zhu et al.,

2017). The GhSAC promoter cis-elements were predicted using the

PlantCARE (Plant Cis-Acting Regulatory Element) database (Lescot

et al., 2002).
Chromosomal location, gene duplication,
and multiple synteny analysis

To investigate the chromosomal location of GhSACs, gff-files of

cotton genome annotation data were extracted from the CottonGen

database (ftp://ftp.bioinfo.wsu.edu/species/Gossypium_hirsutum/

NAU-NBI_G) and genes were mapped by MapInspect software (Jia

et al., 2018) on their chromosomes. For gene duplication analysis

CIRCOS (Krzywinski et al., 2009) and figure was made by TBtools

(Chen et al., 2020). Next, we used PAL2NAL (Suyama et al., 2006)

and PAML package (Yang, 2007) to calculate Ka/Ks values.
RNA extraction and qRT-PCR analysis

Leaf samples of various tissues were collected and RNAprep Pure

Plant Kit (TianGen, Beijing, China) was used to obtain RNA. RNA

was converted into cDNA by EasyScript Allin- First-strand cDNA

synthesis SuperMix for RTqPCR kit (TransGen, Beijing, China) and

used as a template for qRT-PCR. TransStart Top Green qPCR

SuperMix (TransGen, Beijing, China) was used to perform qRT-

qPCR in LightCycler 480 (Roche, Basel, Switzerland). Each

experiment was conducted in three biological replicates and

GhHis3 (AF024716) was used for the normalization of gene

expression. Primers used in this study are given in Supplementary

Table S1 and qRT-PCR analysis was performed by the 2 −DCT
method (Livak and Schmittgen, 2001).
Results

Genomic identification of SAC genes

In this study we identified 157 SAC genes in eight Gossypium

species including 10 genes in G. herbaceum, 11 genes in G. arboreum,

12 genes in G. raimondii, 23 genes in G. hirsutum, 26 genes in G.

mustelinum, 25 genes in G. barbadense, 25 genes in G. tomentosum

and 25 genes each in G. darwinii (Supplementary Table S2).

Interestingly, D genome cotton G. raimondii contains more

numbers of genes than A genome cotton G. arboreum or G.

herbaceum. Similarly, tetraploid cotton species (G. barbadense, G.

hirsutum, G. mustelinum, G. tomentosum, and G. darwinii) contained

almost double the numbers of SAC genes than diploid cotton species

(G. arboreum, G. herbaceum, and G. raimondii). Among tetraploid

species, G. hirsutum showed fewer numbers of SAC genes, however,

indicated the effects of hybridization and polyploidization in

allotetraploid cotton species. All identified SAC gene family
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corresponding chromosomes (Supplementary Table S2).

Next, we predicted the basic features of SAC genes in observed

Gossypium species and presented them in Table 1. Results indicated

that 10 SAC genes of G. herbaceum showed protein length ranges

from 558-1631 amino acids (aa) with a mean length of 861.1aa, a

median length of 831.5aa and a total length of 8611aa, and 0.0506%

occupied a position in the genome. G. arboreum SAC genes showed

protein length ranges from 597-1631aa with a mean length of

843.18aa, a median length of 828aa and total length of 9275aa, and

0.0575% occupied position in the genome. G. raimondii SAC genes

showed protein length ranges from 188-1631aa with a mean length of

851.83aa, median length of 828.5aa, a total length of 10222aa, and

0.0681% occupied position in the genome. Allotetraploid cotton G.

hirsutum SAC genes showed protein length ranges from 565-1631aa

with a mean length of 868.17aa, the median length of 828aa, and total

length of 19968aa and 0.0673% occupied a position in the genome.
Phylogenetic analysis and sequence logos
analysis of SAC gene family

To explore the evolutionary relationship of cotton SAC genes, all

protein sequences were subjected to MEGA 7.0 software and a

phylogenetic tree was constructed. To indicate the SAC genes from

G. arboreum, G. herbaceum, G. raimondii, G. hirsutum, G.

barbadense, G. tomentosum, G. mustelinum, and G. darwinii, the

prefixes Ga, Ghe, Gr, Gh, Gb, Gt, Gm and Gd were used, respectively.

The phylogenetic tree classified cotton SAC genes into five distinct

groups SAC a-d (Figure 1). SAC-d and SAC-c were the largest groups

containing 44 members each while SAC-e was the smallest with 12

members. SAC-b was the second largest group with 36 members. The

phylogenetic tree displayed that most homologous SAC genes

between diploids and tetraploids were closely clustered in the same

group, indicating the expansion and evolutionary relationship of the

SAC gene family. The phylogenetic tree indicated that groups SAC-a,

SAC-b, SAC-c, and SAC-d contain SAC genes from eight observed

cotton species while SAC-e lacks G. raimondii genes.

Further, the evolutionary pattern of SAC genes was observed in

eight observed cotton species. Multiple sequence alignment of G.

arboreum, G. hirsutum, G. herbaceum, G. raimondii, G. darwinii, G.

barbadense, G. mustelinum, and G. tomentosum SAC genes was

performed in MEGA 7.0 software and sequence logos were

constructed (Supplementary Figure S1). Sequence logos of

conserved amino acid residues among all the observed species were

highly conserved (Supplementary Figure S1A–H). Sequence logos of

conserved amino acid residues provide a better explanation of

sequence identity.
Gene duplication, multiple synteny, and
collinearity analysis of SAC genes

To study the evolution and effects of hybridization and

polyploidization, we identified the types of duplication of SAC

genes in observed cotton species. Results identified that G.

arboreum, G. hirsutum, G. herbaceum, G. raimondii, G. darwinii, G.
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barbadense, G. mustelinum, and G. tomentosum SAC genes showed

WGD (whole genome duplication) or segmental duplication.

However, one SAC gene from G. raimondii, two SAC genes from G.
Frontiers in Plant Science 04
barbadense, two SAC genes from G. tomentosum, one SAC gene from

G. mustelinum, and two SAC gene from G. darwinii showed the

dispersed type of gene duplication. Additionally, one SAC gene from

G. tomentosum and one SAC gene from G. mustelinum showed a

singleton type of gene duplication (Supplementary Table S3).

Multiple synteny analysis among G. herbaceum, G. arboreum, G.

raimondii,G. hirsutum,G. barbadense,G. tomentosum,G.mustelinum,

and G. darwinii SAC genes showed 41 orthologous gene pairs between

G. hirsutum and G. arboreum, 43 between G. hirsutum and G.

herbaceum, 44 between G. hirsutum, and G. raimondii, 65 between

G. hirsutum and G. barbadense, 65 between G. hirsutum and G.

darwinii, 64 between G. hirsutum and G. mustelinum, and 66

orthologous gene pairs between G. hirsutum and G. tomentosum

(Figure 2; Supplementary Table S4). Further, the nonsynonymous

and synonymous substitution ratios (Ka/Ks ratios) were estimated to

find the type of selection pressure in these orthologous gene pairs

during evolution. All homologous gene pairs between G. hirsutum and

G. herbaceum, G. hirsutum and G. arboreum, G. hirsutum and G.

darwinii showed Ka/Ks ratios less than 1. While all orthologous gene

pairs showed Ka/Ks ratios less than 1 except one gene pair G. hirsutum

and G. raimondii, one gene pair G. hirsutum and G. barbadense, one

gene pair G. hirsutum and G. mustelinum, and two gene pair G.

hirsutum and G. tomentosum (Supplementary Table S4).

To explore the locus relationships among the A- and D-

subgenomes of G. hirsutum and G. barbadense, we performed a

collinearity analysis (Figure 3). A total of 10 orthologous/

paralogous pairs were found in G. hirsutum with Ka/Ks < 1

(Figure 3A; Supplementary Table S5). Similarly, a total of 28

orthologous/paralogous gene pairs were found in G. barbadense

with Ka/Ks < 1 (Figure 3B; Supplementary Table S5). More

precisely, all GhSAC genes showed Ka/Ks values <0.5 while the Ka/

Ks values of 22 GbSAC genes were less than 0.5 while five genes

showed Ka/Ks values greater than 0.5.
FIGURE 1

Phylogenetic analysis of cotton SAC genes. Phylogenetic tree among
157 SAC genes from three diploids (G. herbaceum, G. arboreum, and
G. raimondii) and five tetraploids (G. hirsutum, G. barbadense, G.
tomentosum, G. mustelinum, and G. darwinii) cotton species. The
prefixes Ghe. Ga, Gr, Gh, Gb, Gt, Gm, and Gd represents G.
herbaceum, G. arboreum, G. raimondii, G. hirsutum, G. barbadense, G.
tomentosum, G. mustelinum and G. darwinii respectively.
TABLE 1 Features of cotton SAC genes.

Species No. of SAC
genes

Minimum
Length (aa)

Maximum
Length (aa)

Mean
Length

Median
Length

Total Length of all
SAC genes (aa)

Occupied position in
genome (%)

G. herbaceum
(A1)

10 558 1631 861.1 831.5 8611 0.0506

G. arboreum
(A2)

11 597 1631 843.18 828 9275 0.0575

G. raimondii
(D5)

12 188 1631 851.83 828.5 10222 0.0681

G. hirsutum
(AD1)

23 565 1631 868.17 828 19968 0.0673

G. barbadense
(AD2)

25 187 1631 866.66 828 21661 0.0738

G.
tomentosum

(AD3)

25 205 1631 811.4 813 20285 0.0679

G.
mustelinum

(AD4)

26 163 1631 822.46 813 21384 0.0734

G. darwinii
(AD5)

25 215 1631 868.56 827 21714 0.0727
Number, minimum, maximum, and median length, total length, and % occupied position in the genome for G. herbaceum, G. arboreum, G. raimondii, G. hirsutum, G. barbadense, G. tomentosum, G.
mustelinum, and G. darwinii SAC genes was estimated.
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Gene structure and protein motif analysis

To study the structural features, exon/intron and the protein

motifs of GhSAC family genes were analyzed (Supplementary Figure

S2). A NJ phylogenetic tree among GhSAC genes clustered according

to the motif distribution pattern and exon-intron structure

(Supplementary Figure S2A). The motif distribution pattern

indicated the distribution of 10 motifs across the GhSAC proteins.

GhSAC proteins with similar motif distribution patterns were closely

clustered (Supplementary Figure S2B). Members of the same group

have a similar motif distribution pattern, signifying that the motif

distribution pattern is highly conserved and they might have identical

functions. Next, the gene structure analysis indicated the distribution

pattern of CDs, intron, and UTRs. Analysis indicated the presence of
Frontiers in Plant Science 05
multiple introns in all observed GhSAC genes. However, the GhSAC

genes with similar CDs, intron, and UTRs structures were found to

make a representative clade in the phylogenetic tree (Supplementary

Figure S2C).
Chromosomal location and promotor cis-
element analysis

Next, we inspected the location of GhSACs on chromosomes

(Supplementary Figure S3). Findings showed that 23 GhSAC genes

were distributed unevenly on 17 chromosomes. Out of 23 genes, 12

GhSAC genes were placed on the chromosomes of the A-subgenome

while 11 GhSAC genes were located on the chromosomes of the D-
A B

FIGURE 3

Collinearity analysis of G. hirsutum and G. barbadense SAC genes. (A) Collinearity analysis of G. hirsutum SAC genes. (B) Collinearity analysis of G.
barbadense SAC genes. A01 to A13 represents A-subgenome chromosomes while D01 to D13 represents D-subgenome chromosomes. Homologous
gene pairs between A- to A-subgenome were represented with blue lines, homologous gene pairs between A- to D-subgenome were represented with
red lines, and homologous gene pairs between the D- to D-subgenome were represented with green lines.
FIGURE 2

Multiple synteny analysis among cotton SAC genes. Multiple synteny analysis was used to show the orthologous relationship among G. herbaceum, G.
arboreum, G. raimondii, G. hirsutum, G. barbadense, G. tomentosum, G. mustelinum, and G. darwinii SAC genes. Chromosomes of different cotton
species were represented with different colors.
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subgenome. The maximum number of genes (three genes) were

allocated on chromosome A02 of the A-subgenome and from D-

subgenome the maximum genes were placed on the D10 chromosome

(two genes). However, no gene was mapped on chromosome A01,

A03, A08, A11 and A12 and D01, D08, D11, and D12 chromosomes.

Furthermore, we used the PlantCARE database to identify the

presence of cis-elements controlling the expression of the GhSAC

genes. The results revealed that GhSAC gene promoters contain core

cis-elements (Figure 4). The GhSAC genes promoter regions shared

light-responsive boxes, zein metabolism, circadian control, anaerobic

induction, and phytochrome downregulation elements. Further,

stress-response elements including low-temperature response

elements were present in the GhSAC promotor region. Growth-

related elements including meristem expression and endosperm

expression, hormone-related elements such as auxin response,

salicylic acid response, abscisic acid response, MeJA response, and

gibberellin response were found in the GhSAC promotor region.
Tissue-specific expression pattern of
GhSAC genes

The biological functions of genes are generally correlated with the

gene expression pattern. We investigated the transcript level of

GhSAC genes in various tissues including root, stem, leaf, flower,
Frontiers in Plant Science 06
-2, 0, 5, 10, 15, 20, and 25 DPA ovule, and 1, 10, 15, 20, and 25 DPA

fiber (Figure 5). Results of qRT PCR analysis displayed that nine

selected genes showed ubiquitous expression in all observed tissues.

More precisely, GhSAC1 showed high enrichment in 15DPA ovule

tissues. GhSAC3, GhSAC14, and GhSAC20 were preferentially

expressed in flower tissues, and GhSAC5 and GhSAC6 were

preferentially expressed in 15DPA fiber and 5DPA ovule.

Interestingly, GhSAC9 and GhSAC18 were expressed specifically in

the 10DPA ovule. Overall, three GhSAC genes (GhSAC3, GhSAC14,

and GhSAC20) showed preferential expression in flower tissues, while

five GhSAC genes (GhSAC1, GhSAC6, GhSAC9, GhSAC13, and

GhSAC18) showed preferential expression in ovule tissues.

However, only one GhSAC gene (GhSAC5) showed preferentially

expressed in fiber tissues. From these findings, we may infer that

GhSAC genes might play a significant role in flowering and fiber

development in cotton.
Responses of GhSAC genes under
abiotic stresses

To check the potential biological and physiological function of

GhSAC genes, we performed the tissue specific expression pattern of

nine GhSAC genes under various stresses including cold, heat, NaCl,

and PEG (Figure 6). Abiotic stresses regulate the expression pattern of
FIGURE 4

Promoter cis-element analysis of GhSAC genes. G. hirsutum SAC genes promoter region (2kb upstream from start codon) was used to explore cis-
elements related to plant growth, abiotic stresses, and phytohormonal responses.
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various genes and affect plant growth and development. GhSAC genes

showed widely variable responses against all stresses. Overall, GhSAC

genes showed downregulation under various abiotic stresses except at

a few time points for some abiotic stresses. For instance, GhSAC5 was

downregulated under all stresses at all time points, while GhSAC1 and

GhSAC3 were upregulated only at 1h and 6h after PEG treatment

respectively. More precisely, GhSAC6 and GhSAC9 were upregulated

under NaCl treatment at all time points, while GhSAC9 and GhSAC18

were upregulated at all time points under PEG and heat stress

respectively. However, most of the GhSAC genes did not show any

specific pattern of upregulation or downregulation at different time

points under any specific abiotic stress treatment. Taken together

these findings suggest that the transcript level of GhSAC genes can be

regulated by various abiotic stresses illustrating that these might be

the possible candidate genes for breeding stress resistance in cotton.
Discussion

Allotetraploid cotton including G. hirsutum and G. barbadense

are the result of hybridization between A (G. herbaceum or G.

arboreum) and D (G. raimondii) genome diploid cotton (Wendel

and Cronn, 2003). Availability of cotton genome sequences enabled

the researchers to perform the evolutionary and functional analysis of

various gene families. Functions of SAC genes have been previously

identified in Arabidopsis. SAC genes are essential for the

phosphoinositide phosphatase activities in animals and yeast
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(Zhong and Ye, 2003). But there is no previous study of SAC genes

in cotton, especially G. hirsutum. Previously, many gene families

including MADS-box (Ren et al., 2017), GhKLCR1 (Li et al., 2019),

RH2FE3 (Qanmber et al., 2018), GhGSK (Wang et al., 2018), GhGH3

(Yu et al., 2018), GhBES1 (Liu et al., 2018), GhIDD (Faiza et al., 2019),

GhAAI (Qanmber et al., 2019c), GhHH3 (Qanmber et al., 2019a),

GhPERK (Qanmber et al., 2019b), GGPPS (Ali et al., 2020), GhGATL

(Zheng et al., 2020), GhLOG (Wang et al., 2021), and GhPHD (Wu

et al., 2021b) has been studied. In the present study, we conducted a

complete investigation of the SAC genes in eight cotton species.

Evolutionary relationship through phylogenetic analysis, sequence

logos analysis, gene structure, protein motifs, chromosomal

localization, gene duplication, multiple synteny, and collinearity

analysis was determined. GhSAC gene functions were also observed

by cis-element analysis, tissue specific expression pattern analysis, and

response of GhSAC genes under abiotic stresses.
Evolution of SAC genes in cotton

SAC genes in eight cotton species including G. arboreum, G.

hirsutum, G. herbaceum, G. raimondii, G. darwinii, G. barbadense, G.

mustelinum, and G. tomentosum, could be categorized into five

groups through phylogenetic analysis. We found that SAC-d was

the largest group containing 44 members while SAC–e was the

smallest group with 12 members. The phylogenetic tree indicated

that all groups namely SAC- a, SAC- b, SAC- c, and SAC- d contained
FIGURE 5

Expression pattern analysis of GhSAC genes. qRT-PCR analysis was performed to observe the relative expression patterns of GhSAC genes in vegetative,
ovule, and fiber tissue of the cotton plant. Each experiment was conducted in three biological repeats and the error bar represents the standard
deviation among repeats.
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SAC genes from eight observed species while SAC-e lacked the genes

from G. raimondii. The presence of SAC genes in each observed

species, with the highest number of SACs in G. mustelinum and only

10 SAC genes in G. herbaceum indicates that SAC genes have more

expansion in plants. These results were coherent with the sequence

logos of G. arboreum, G. hirsutum, G. herbaceum, G. raimondii, G.

darwinii, G. barbadense,G. mustelinum, andG. tomentosum that were

conserved in all selected Gossypium species, demonstrating that SAC

gene family is conserved throughout the evolution. The number of

SAC genes in tetraploid species G. hirsutum, G. mustelinum, G.

barbadense, G. tomentosum, and G. darwinii was equal to the total

of SAC genes in diploid cotton species G. herbaceum, G. arboreum

and G. raimondii, which prove that the tetraploid (AD genome)

cotton species formed from diploid A- and D-genome ancestors

(Wendel, 1989; Wendel and Cronn, 2003).

Structural analysis of GhSAC genes indicated that they have

multiple numbers of exons and introns. Structural differences of

exon–intron is the result of insertion or deletion and are very

important for understanding the evolution of gene families

(Lecharny et al., 2003). During evolutions, introns showed weak

selection. Loss or gain of introns during eukaryotic diversification

was extensive as proved by different genome-wide studies (Rogozin

et al., 2003; Roy and Penny, 2007). During the evolution of plant
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species, introns played a significant role (Roy and Gilbert, 2006).

Different length of introns among genes demonstrated their major

roles in the functional divergence of GhSAC genes. Further, 10

conserved protein motifs were found in GhSACs with slight protein

motif differences that might be related to plant growth and abiotic

stress tolerance. Results of protein motif analysis showed the

specificity of some motifs to a particular group, signifying the

characteristic functions of that group.

Chromosomal location showed that GhSAC genes were

distributed unevenly on different chromosomes. Uneven allocation

of GhSAC genes on the A and D subgenome chromosomes indicated

gene addition or deletion as a result of WGD or segmental duplication

events as well as due to incomplete genome sequencing. Most of

chromosomes such as A04, A05, A07, A09, A13, D02, D03, D04, D05,

D07, D09 and D13 have only one gene. A maximum number of genes

(three GhSAC genes) were found on A02 and two GhSAC genes on

D06 and D10 chromosomes. Furthermore, GhSAC genes contained

various cis-elements in their promotor region related to light

responsive, zein metabolism, circadian control, phytochrome

regulation elements, anaerobic induction, low temperature,

meristem expression, and endosperm expression, auxin response,

salicylic acid response, abscisic acid response, MeJA response, and

gibberellin response elements. Previous studies found light-induced
FIGURE 6

Responses of GhSAC genes under abiotic stresses. qRT-PCR analysis was performed to observe the relative expression patterns of GhSAC genes under
cold, heat, NaCl, and PEG treatment. Each experiment was conducted in three biological repeats and the error bar represents the standard deviation
among repeats.
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cis-elements G-box, GT1-motif, I-box, and AT-rich regions (Lam and

Chua, 1989; Gilmartin et al., 1992; Foster et al., 1994), auxin-induced

cis-elements AuxRE, DR5 (Ulmasov et al., 1997), drought-induced

cis-elements CATGTG and CACG (Tran et al., 2004). The existence

of different elements in the promotor region of GhSAC genes

predicted the functional diversity of GhSAC genes in cotton.
Duplication and expansion of SAC genes

G. hirsutum is used to study polyploidy in plants. Previous studies

proved that G. hirsutum was formed by the hybridization of G.

arboreum and G. raimondii (Wendel, 1989). During the process of

evolution, segmental duplication and translocation are known as

chromosome mutation help plants to adapt to environmental

stresses (Fraser et al., 2005). In our study, the evolutionary

mechanism of SAC genes was not fully revealed by phylogenetic

analysis, therefore we explored genomic distribution and duplication.

We observed that the total number of GhSAC genes was equal to the

total of SAC genes in G. arboreum and G. raimondii. Here, segmental

or WGD was the key to SAC gene family extension during evolution.

Some previous studies also demonstrated gene family expansion

through segmental duplication (Qanmber et al., 2018; Wu et al.,

2019; Zhao et al., 2020; Wu et al., 2021b).

In this study, G. arboreum, G. herbaceum, G. raimondii, G.

hirsutum, G. barbadense, G. tomentosum, G. mustelinum and G.

darwinii SAC genes showed WGD or segmental duplication,

however, eight SAC genes with the dispersed type of gene

duplication and two SAC genes with singleton type of gene

duplication were also observed. Interestingly, GhSAC genes showed

only WGD or segmental duplication. Multiple synteny analysis

showed almost similar orthologous genes between tetraploid G.

hirsutum and diploid G. arboreum, G. herbaceum, and G. raimondii

(41, 43 and 44 gene pairs respectively) and between G. hirsutum and

G. barbadense, G. tomentosum, G. mustelinum and G. darwinii (65,

65, 64 and 66 gene pairs respectively). Ka/Ks ratios among all

orthologous gene pairs were less than one indicating the purifying

selection of duplicated genes. Next, the locus relationship among A-

subgenomes and D-subgenomes chromosomes of G. hirsutum and G.

barbadense showed 10 orthologous/paralogous GhSAC gene pairs in

G. hirsutum with Ka/Ks < 1, and 28 orthologous/paralogous genes in

G. barbadense with Ka/Ks < 1. The Ka/Ks ratio provides insights into

the pressure of selection experienced by duplicated genes during the

course of evolution. Ka/Ks = 1.0 represents a neutral selection of

duplicated pairs of genes, Ka/Ks < 1.0 exhibits purifying selection, and

Ka/Ks > 1.0 shows positive selection during accelerated evolution.

Coupled with these findings we summarized that cotton SAC genes

experienced WGD or segmental duplication with purifying selection

pressure during evolution.
Expression profile analysis of GhSAC genes

Several studies demonstrated that SAC proteins have conserved

amino acid motifs essential for the phosphoinositide phosphatase

activities in animals and yeast. Gene expression analysis of

Arabidopsis SAC proteins verified the differential expression of
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AtSAC genes in various organs. More specifically, the AtSAC6 gene

was primarily expressed in flowers and was highly induced by salinity

stress (Zhong and Ye, 2003). Here, the expression level of GhSAC

genes was examined in different vegetative and reproductive organs.

Expression profile analysis of GhSAC genes displayed that they play

important functions in plants. Likewise, Arabidopsis SAC genes, and

G. hirsutum SAC genes exhibited differential expression in various

organs and tissues. Three GhSAC genes (GhSAC3, GhSAC14, and

GhSAC20) showed preferential expression in flower tissues, five

GhSAC genes (GhSAC1, GhSAC6, GhSAC9, GhSAC13, and

GhSAC18) showed preferential expression in ovule tissues and only

one GhSAC gene (GhSAC5) showed preferential expression in fiber

tissues. Here, GhSAC6 showed increased transcript levels in all

observed tissues and organs specifically high expression in flower

and 5DPA ovule. These findings are similar to the previous study as

the AtSAC6 gene in Arabidopsis was preferentially expressed in

flowers and other organs (Zhong and Ye, 2003). Previous studies of

SAC genes in Arabidopsis indicated that AtSAC genes showed lower

expression in leaves and roots (Zhong and Ye, 2003), but here we

observed that all GhSAC genes showed moderate to low expression

levels in leaves and roots. From these findings, we may infer that

GhSAC genes might play a vital role in flowering and ovule

development in cotton plants.

The cis-elements analysis showed that GhSAC genes can be

regulated by abiotic stress and participate in hormone signal

transduction, so we validated these results with the help of

expression pattern analysis of GhSAC genes in response to different

stress stimuli. SAC genes have a key role in the phosphatase activities

of animals and yeast (Zhong and Ye, 2003). Phosphoinositides

metabolism of plants is mainly regulated by different stress

treatments and hormones (Mikami et al., 1998; Meijer et al., 1999;

Pical et al., 1999; Meijer et al., 2001). So, we explored the expression

patterns of GhSAC genes under abiotic stress treatments. The

transcript level of the AtSAC6 was induced by salt stress treatment

(Zhong and Ye, 2003) demonstrating that AtSAC6 can be regulated by

salt stress. Consistent with the previous studies GhSAC6 showed high

expression under salt treatment. Further, hyperosmotic or salt

treatment changes the phosphoinositide level in plants (Meijer

et al., 1999; Pical et al., 1999; Dewald et al., 2001). Overall, all

GhSAC genes showed response under observed abiotic stresses for

various time points. For instance, GhSAC5 showed downregulated

response under all stresses, while GhSAC1 and GhSAC3 showed

upregulated response only at 1h and 6h after PEG treatment

respectively. Moreover, GhSAC6 and GhSAC9 showed upregulated

response under NaCl treatment, while GhSAC9 andGhSAC18 showed

upregulated response under PEG and heat stress treatment

respectively. These findings illustrated that the transcript level of

GhSACs can be regulated by different abiotic stresses indicating that

GhSAC genes can be the possible candidate genes for breeding abiotic

stress resistance in cotton.
Conclusion

Here, a total of 157 SAC genes were found in eight species of

cotton including 23 genes in G. hirsutum. Based on the phylogenetic

tree SAC genes were classified into five distinct groups. WGD or
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segmental duplication was an important source for the enlargement

of the SAC gene family in cotton. Cotton SAC duplicated genes

experienced purifying selection pressure and showed conserved

amino acid sequence logos during evolution. GhSAC genes showed

conserved gene structure with multiple exons/introns and protein

motifs. GhSAC genes showed uneven chromosomal distribution

patterns on different chromosomes of A- and D-subgenomes.

GhSAC genes play essential regulatory roles in the growth of the

cotton plant and can be regulated under abiotic stresses. Based on

expression patterns, GhSAC genes were associated with flower, ovule,

and cotton fiber development. Further, GhSAC genes were regulated

by abiotic stresses. For instance, three GhSAC genes showed

enrichment in flower tissues, five GhSAC genes were highly

expressed in ovule tissues and one GhSAC gene was highly

expressed in fiber tissues. Similarly, GhSAC5 was downregulated

under all abiotic stresses, GhSAC1 and GhSAC3 were upregulated at

1h and 6h after PEG treatment respectively, GhSAC6 and GhSAC9

were upregulated under NaCl treatment, and GhSAC9 and

GhSAC18weres upregulated under PEG and heat stress respectively.

Our study provides useful information related to the evolution of the

cotton SAC gene family, biological functions of GhSAC genes and laid

the foundation for further studies of SAC genes in other plant species.
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SUPPLEMENTARY FIGURE 1

Sequence logos analysis of cotton SAC genes. Amino acid sequence residue
analysis was performed among (A) G. herbaceum, (B) G. arboreum, (C) G.

raimondii, (D) G. hirsutum, (E) G. barbadense, (F) G. tomentosum, (G) G.

mustelinum and (H) G. darwinii SAC genes across N and C terminals.

SUPPLEMENTARY FIGURE 2

Gene structure and protein motif analysis of GhSAC genes. (A) Phylogenetic
analysis among GhSAC genes. (B) Protein motifs distribution pattern analysis
among GhSAC genes. (C) CDs, introns, and UTR structure of GhSAC genes.

SUPPLEMENTARY FIGURE 3

Chromosomal localization of GhSAC genes. GhSAC genes were localized on

their corresponding chromosomes and the color of chromosomes represents
the gene density on that chromosome. A02 to A13 represent the A-subgenome

chromosomes of G. hirsutum and D02 to D13 represent D-subgenome
chromosomes of G. hirsutum.
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