
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Ferrante Neri,
University of Surrey, United Kingdom

REVIEWED BY

Huiling Chen,
Wenzhou University, China
Huaming Chen,
The University of Sydney, Australia

*CORRESPONDENCE

Zhiguo Chen

chenzhiguo@nuist.edu.cn

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 14 December 2022

ACCEPTED 27 January 2023
PUBLISHED 15 February 2023

CITATION

Chen Z, Xing S and Ren X (2023) Efficient
Windows malware identification
and classification scheme for plant
protection information systems.
Front. Plant Sci. 14:1123696.
doi: 10.3389/fpls.2023.1123696

COPYRIGHT

© 2023 Chen, Xing and Ren. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 15 February 2023

DOI 10.3389/fpls.2023.1123696
Efficient Windows malware
identification and classification
scheme for plant protection
information systems

Zhiguo Chen1,2*, Shuangshuang Xing1,2 and Xuanyu Ren1,2

1Engineering Research Center of Digital Forensics, Ministry of Education, Nanjing University of
Information Science and Technology, Nanjing, China, 2School of Computer and Software, Nanjing
University of Information Science and Technology, Nanjing, China
Due to developments in science and technology, the field of plant protection and

the information industry have become increasingly integrated, which has resulted

in the creation of plant protection information systems. Plant protection

information systems have modernized how pest levels are monitored and

improved overall control capabilities. They also provide data to support crop

pest monitoring and early warnings and promote the sustainable development

of plant protection networks, visualization, and digitization. However,

cybercriminals use technologies such as code reuse and automation to generate

malware variants, resulting in continuous attacks on plant protection information

terminals. Therefore, effective identification of rapidly growing malware and its

variants has become critical. Recent studies have shown that malware and its

variants can be effectively identified and classified using convolutional neural

networks (CNNs) to analyze the similarity between malware binary images.

However, the malware images generated by such schemes have the problem of

image size imbalance, which affects the accuracy of malware classification. In

order to solve the above problems, this paper proposes a malware identification

and classification scheme based on bicubic interpolation to improve the security of

a plant protection information terminal system. We used the bicubic interpolation

algorithm to reconstruct the generated malware images to solve the problem of

image size imbalance. We used the Cycle-GAN model for data augmentation to

balance the number of samples among malware families and build an efficient

malware classification model based on CNNs to improve the malware

identification and classification performance of the system. Experimental results

show that the system can significantly improve malware classification efficiency.

The accuracy of RGB and gray images generated by the Microsoft Malware

Classification Challenge Dataset (BIG2015) can reach 99.76% and

99.62%, respectively.

KEYWORDS

protection information system, terminal protection, malware classification, image
enhancement, data augmentation, deep learning
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1123696/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1123696/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1123696/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1123696/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1123696&domain=pdf&date_stamp=2023-02-15
mailto:chenzhiguo@nuist.edu.cn
https://doi.org/10.3389/fpls.2023.1123696
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science

Chen et al. 10.3389/fpls.2023.1123696
1 Introduction

Due to increasing levels of industrialization and urbanization,

dozens of major diseases and pests found on 2 billion hectares of land

around the world all year round (Sun et al., 2019). The management

of these diseases and pests requires a significant amount of manual

input for agricultural plant protection operations, resulting in a sharp

rise in labor costs (Yongliang et al., 2019; Brown et al., 2022).

Therefore, intelligent plant protection information systems such as

rice canopy pest monitoring systems (Li et al., 2022), field pest

monitoring and forecasting systems (Liu et al . , 2022),

meteorological monitoring systems, and crop disease real-time

monitoring and early warning systems have been widely used. The

visualization and digitization of pest information improve the

efficiency of pest forecasting and reduces the amount of work for

plant protection staff at the grassroots level. Users can view data in

real-time and manage equipment remotely through a cloud platform

or mobile application to realize information management, so as to

complete wireless transmission, transportation control, and

information data sharing among information collection stations at

all levels. However, agricultural-related data storage terminals face

increasingly complex agricultural and network security situations, are

threatened by various malicious software, and bear security risks such

as data leakage, data theft, data loss, and data trafficking. Therefore,

security systems must respond quickly to malware using new attack

techniques, protect terminals from attacks, maintain the security and

integrity of plant protection data, and protect the interests of farmers

and the benefits of agricultural production. This paper aims to find an

effective method to accurately classify malware and its variants into

their families, so as to improve the malware identification and

classification efficiency and enhance the comprehensive security

protection capabilities of terminal systems in the construction of

plant protection informatization. Many companies and scholars have

proposed various malware classification techniques, which are mainly

divided into two categories: signature-based classification and

anomaly-based classification (Gandotra et al., 2014). Most

commercial antivirus products use a signature-based approach to

determine whether the software is malicious by scanning and

matching signatures of known malware. This approach can quickly

identify existing malware in a malware library with a low error rate

but cannot identify unknown malware. Due to developments in

computing power and artificial intelligence, the anomaly-based

method has attracted much attention. Researchers have proposed

many malware classification schemes based on this technique, which

effectively overcome the limitations of signature-based methods.

Malware classification schemes based on the anomaly method

mainly extract features through static and dynamic analysis and

selects a classification algorithm to build a model.

Dynamic analysis is the observation of the real behavior of a

program at runtime which is achieved by monitoring the program’s

execution in a sandbox or a virtual machine (Galal et al., 2016;

Jamalpur et al., 2018). During monitoring, actions performed by

programs (such as library usage, API calls (Salehi et al., 2017),

network traffic, etc.) are recorded as reports. Researchers analyze

characteristics in the reports to effectively categorize malware.

Dynamic analysis methods attempt to discover all the actual

operations of a program based on its behavior. Therefore, unknown
Frontiers in Plant Science 02
and variant malware samples can be identified to improve the

efficiency of malware classification (Ghiasi et al., 2015). However,

dynamic analysis has certain limitations, such as possible infection of

terminal systems, lack of suitability for real-time classification, and

compromised monitoring due to evasion techniques.

Static analysis is a method of identifying and classifying

executable programs without running them. It scrutinizes the

“genes” of a file, rather than the current behavior which can be

changed or delayed to an unexpected time in order to evade the

dynamic analysis (Nissim et al., 2014). Static analysis has been

proposed that mostly used by anti-malware products for automatic

malware analysis. This technique allows the study of different features

to build a classification system that effectively distinguishes the

families to which malware belongs, such as opcode instructions (Lu,

2019), binary (Lad and Adamuthe, 2020), API (D’Angelo et al., 2020),

PE header information (Rezaei et al., 2021), etc. This method can

classify unknown malware and its variants, and is easier to implement

than dynamic analysis. However, static malware analysis suffers from

low accuracy and a high false positive rate. To overcome these

shortcomings, most existing systems combine a large number of

different types of features (Kim et al., 2018). Using a large number

of features will cause time consumption and memory overhead, and is

not suitable for real-time classification.

In recent research, static analysis methods combining malware

visualization and deep learning (Liao et al., 2021; Chen et al., 2023)

effectively alleviated the pressure of feature engineering technology in

processing a large number of features, reduce time overhead, and

make up for the shortcomings of traditional static classification

methods (Yuan et al., 2020), which has achieved success in the field

of malware classification. These methods visualize the binary

sequence of malware as gray, RGB, or other types of images as the

input of the models and use deep learning algorithms to build effective

classification models that are most conducive to distinguishing the

families to which malware belongs (Pinhero et al., 2021). However, in

the process of visualizing the binary sequence of malware into image

representation, most researchers use the zero-filling method which

generates images with redundant and irrelevant features (Tekerek and

Yapici, 2022). This affects the accuracy of malware classification. The

existing malware benchmark datasets have the problem of unbalanced

malware family data. The researchers proposed using GAN network

(Park et al., 2020; Wang et al., 2022) to expand the data of small class

samples to improve the efficiency of malware identification and

classification. In response to the above problems, this paper

proposes a malware classification system based on bicubic

interpolation, Cycle-GAN, and CNNs. The accuracy of the test on

the BIG2015 dataset provided by Microsoft can reach 99.76%.

The main contributions of the paper are as follows:

(i)We performed image enhancement on images converted from

byte files using bicubic interpolation to preserve the integrity of

malware data, addressing malware image size imbalances and image

conversion distortions.

(ii)We used Cycle-GAN to perform data augmentation on gray

and RGB images transformed from the BIG2015 dataset, solving the

data imbalance among malware families.

(iii)We used the optimized DenseNet model to build a system to

improve the efficiency of malware classification and the security

capabilities of plant protection information terminal systems.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
This paper is organized as follows. Section 2 provides an overview

of the related work. Section 3 presents the materials and methodology.

Section 4 describes the proposed system based on deep learning.

Section 5 presents the experimental results and analysis. Section 6

summarizes this paper and future work.
2 Related work

2.1 Malware identification based on
deep learning

Deep learning techniques such as CNN and recurrent neural

networks (RNNs) have been widely used in the field of malware

identification. Kumar et al (Kumar, 2021) proposed a malware

classification system based on a fine-tuned convolutional neural

network (MCFT-CNN). Without prior knowledge of feature

engineering, binary code analysis, reverse engineering, detection,

and avoidance, the system can effectively identify unknown

malware samples. The classification accuracy of MalImg and

BIG2015 datasets reached 99.18% and 98.63%, and the prediction

time was 5.14ms and 5.15ms, respectively. The experimental results

demonstrated the high efficiency of the system in identifying

unknown malware, and the results on different datasets verify the

universality of the system. Vasan et al. (2020) proposed an image-

based malware classification system that uses a CNN architecture

(IMCEC) to identify packed and unpacked malware. The

experimental results show that the classification accuracy of

packaged and unpackaged malware on the MalImg dataset reaches

98% and 99%, respectively. Vasan et al. (2020) proposed a malware

classification system based on deep learning. The proposed fine-tuned

convolutional neural network architecture (IMCFN) can effectively

detect hidden code, obfuscated malware, and its variants.

Experimental results show that the classification accuracy of

MalImg and IoT-android datasets can reach 98.82% and 97.35%,

respectively. Wang et al. (2021) proposed a gray image-based malware

detection and classification system consisting of a deep efficient

attention module (DEAM) and a DenseNet module. A detection

accuracy of 99.3% was achieved on a dataset constructed from 1,087

benign samples collected by the authors and 1,087 malware samples

randomly selected from the MalImg and BIG2015 datasets. The

classification accuracy of 98.5% and 97.3% on the MalImg and

BIG2015 datasets also verifies that the system can significantly

improve the efficiency of malware classification. Gilbert et al

(Gibert et al., 2018) proposed a deep learning system based on

entropy flow to classify malware. The system used the entropy

signal of wavelet transform to describe the change of entropy

energy and achieved the purpose of classification by mining the

similarity between the malware’s entropy streams. Experimental

results show that the classification accuracy of the BIG2015 dataset

reached 98.28%. Gao et al. (2020) proposed a cloud-based semi-

supervised transfer learning (SSTL) framework consisting of

detection, prediction, and transfer components. Experimental

results on the BIG2015 dataset show that semi-supervised transfer

learning can improve the accuracy of detecting components from

94.72% to 96.9%. Hemalatha et al. (2021) proposed an efficient

malware classification system based on deep learning methods. The
Frontiers in Plant Science 03
system uses a high-weight class-balanced loss function in the final

classification layer of the DenseNet model, which achieves remarkable

results in malware classification by addressing the data imbalance

problem. The classification accuracy of the system on the MalImg,

BIG2015, MaleVis, and Malicia datasets reached 98.23%, 98.46%,

98.21%, and 89.48%, respectively.

Deep learning technology can achieve more flexible malware

feature representation, abstract all kinds of information contained

in malware images layer by layer, and help to develop automatic and

general models for identifying and classifying malware. Therefore,

this paper uses the DenseNet deep learning model to build a malware

classification system to effectively identify and classify malware and

its variants.
2.2 Malware identification based on
visualization technology

In the field of malware identification, researchers use visualization

technology to visualize malware samples as image representations and

identify malware by analyzing the visual similarity between images.

Jian et al (Gao et al., 2020). proposed a deep neural network-based

malware classification system (SERLA). The system utilizes image

visualization and data augmentation techniques to convert the

BIG2015 dataset into three-channel RGB images as input to the

SERLA system. The experimental results show that the classification

accuracy of the SERLA system on the BIG2015 dataset is 98.13%.

Gibert et al. (2019) proposed a malware classification system based on

gray images and deep learning methods. The system can capture

similar characteristics between malware variants and precisely classify

them into families. Experimental results show that applying the CNN

model to the BIG2015 dataset achieves a classification accuracy of

97.5% and an average classification time of 0.001s. Ni et al. (2018)

proposed an efficient malware classification system based on the CNN

model and SimHash. The authors converted the disassembly malware

code from the BIG2015 dataset into SimHash-based gray images,

extracted pixel features through the CNN model, and effectively

identified the family of malware. The experimental results show

that the classification accuracy of the system on the BIG2015

dataset can reach 99.26%. Kalash et al. (2018) proposed a gray

image-based malware classification system. The authors converted

malware binary files into gray images and efficiently classified them

through a CNN model. The experimental results show that the

classification accuracy of the system on the Malimg and BIG2015

datasets reaches 98.52% and 99.97%, respectively. Jang et al. (2020)

proposed a fastText-based local feature visualization method. This

method extracts local features such as opcodes and API function

names from malware and selects important local features in each

malware family for embedding and visualizing through a word

frequency-inverse document frequency algorithm. The experimental

results show that the classification accuracy of this method on the

BIG2015 dataset is about 99.65%.

The malware classification method based on visualization

technology does not require disassembly and a time-consuming

feature extraction process and can capture the difference between

malware and its variants, so as to effectively classify malware.

Therefore, malware visualization methods are beneficial to improve
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
classification efficiency while reducing system complexity. Moreover,

the visualization method can be applied to large-scale malware

classification tasks without employing feature engineering

techniques. This paper leverages visualization techniques to convert

the BIG2015 dataset into gray and RGB image representations for the

efficient classification of malware families.
2.3 Malware identification based on
GAN networks

Generative adversarial networks (GANs), which consist of

generative networks and discriminative networks, can be used for

image-to-image translation and to generate high-quality images. In

the field of malware classification, researchers use GANs to augment

the data of classes with a small number of samples, so as to solve the

problem of unbalanced malware datasets and improve classification

efficiency. Tekerek et al (Tekerek and Yapici, 2022). proposed a

malware classification system composed of cycle-consistent

generative adversarial networks (Cycle-GAN) and DenseNet121

models. The byte files of the BIG2015 dataset were converted into

gray and RGB images by B2IMG, the Cycle-GAN model was used to

expand the data of the small sample family, and the DenseNet121

model was used to effectively classify the malware. The experimental

results show that a classification accuracy of 99.73% is achieved on

RGB images converted from the BIG2015 dataset. Rigaki et al (Rigaki

and Garcia, 2018) proposed a method of generating network traffic

with GANs to simulate other types of traffic. The authors modified the

source code of the malware by receiving parameters from the GAN to

modify the behavior of its command-and-control (C2) channel,

thereby simulating Facebook chat network traffic. Experimental

results show that GAN provides effective sample data for malware

classification while successfully modifying malware traffic. Won et al

(Won et al., 2022) proposed a generative adversarial network-based

malware simulation framework (PlausMal-GAN) to augment

malware image data. Experimental results show that the framework

is beneficial for identifying and predicting zero-day malware-like

images. Gao et al. (2022) proposed an efficient classification

framework (MaliCage) for packaged malware. Experimental results
Frontiers in Plant Science 04
show that the MaliCage framework composed of a packer detector,

malware classifier, and packer GAN can classify packed malware with

an accuracy of 91.66%. Singh et al. (2019) proposed a GAN-based

malware image generation model (MIGAN). Experimental results

show that MIGAN can improve the performance of classifiers by

performing data augmentation on malware images generated from

binary files, intrusion detection, and log files.

The creation of data labels for the benchmark dataset requires

manual marking and is time consuming, however, GANs can learn

features from real data and generate similar data without data labels.

GANs can be used to generate network traffic and simulate malware

data to expand the dataset, thus effectively improving the

identification and classification performance. Therefore, this paper

uses the Cycle-GAN model to expand the image data to balance the

number of samples.
3 Materials and methodology

3.1 Dataset

The Microsoft Malware Classification Challenge Dataset

(BIG2015) (Ronen et al., 2018) is a benchmark dataset in the field

of malware classification. The dataset contains more than 20,000

assembly and bytecode files composed of 9 different malware families:

Ramnit, Lollipop, Kelihos_ver3, Vundo, Simda, Tracur, Kelihos_ver1,

Obfuscator.ACY, and Gatak. The specific data distribution is shown

in Table 1. Each byte file contains a hexadecimal representation of the

file’s binary content, excluding headers. Each ASM file contains

various metadata information extracted from the binary file, such

as logs of function calls, strings, etc. This paper uses the byte files in

this dataset for system verification and analysis.
3.2 Bicubic interpolation

Bicubic, Lanczos, and other bicubic interpolation algorithms have

been successfully applied to data enhancement, digital splicing of

multiple scenes, and information extraction (Rifman, 1973; Bernstein,
TABLE 1 Malware families in the training dataset.

No. Family Number of samples Type

1 Ramnit 1541 Worm

2 Lollipop 2478 Adware

3 Kelihos_ver3 2942 Backdoor

4 Vundo 475 Trojan

5 Simda 42 Backdoor

6 Tracur 751 TrojanDownloader

7 Kelihos_ver1 398 Backdoor

8 Obfuscator.ACY 1,228 Any kind of obfuscated malware

9 Gatak 1,013 Backdoor

Total 10,868
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
1976). Bicubic interpolation preserves the details of the original image

as much as possible by interpolating or increasing the number/density

of pixels in the image. In this algorithm, the value of the function f at

the point (x, y) is obtained by calculating the weighted average of the

nearest 16 sample points in the rectangular grid. The interpolation

function in each direction is calculated using the formulas of Eq. (1)

and Eq. (2).

W(x) =

(a + 2) xj j3−(a + 3 xj j2+1 for  xj j ≤ 1

a xj j3−5a xj j2+8a xj j − 4a for 1 < xj j < 2

0otherwise

8>><
>>:

9>>=
>>; (1)

Where x is the distance between the pixel point (x, y) and the last 16

sample points, a is usually 1 or 0.5.

For the interpolated pixel point (x, y) (x, y can be floating

numbers), select a point near 4 × 4 and use Eq (2) to calculate the

weighted sum.

f (x, y) =o3
i=0o3

j=0f (xi, yj)W(x − xi)W(y − yi) (2)

As shown in Figure 1, suppose the size of the source image A ism × n,

and the size of the scaled target image B is M × N. According to the

ratio, the corresponding coordinates of B(X, Y) on A can be obtained

from A(x, y) =A(X × (m/M), Y × (n/N)). of the target image. Point P is

the coordinate at (X, Y) corresponding to the target image B on the

source image A. Assume that the coordinates of P are P(x + u, y+v,

where x, y represent the integer part, and u, v represent the fractional

part. As shown in Figure 1, the position of the nearest 16 pixels is

represented by a(i, j=1, 2, 3, 4). According to Eq. (1), the influence

factorW on the pixel value of point P is used to obtain the pixel value

of the corresponding point of the target image, so as to achieve the

purpose of image scaling.

In the field of malware classification, bicubic interpolation can

effectively balance image size and correct distorted images (Keys,

1981). Dai et al. (2018) proposed a gray image-based malware

classification system. The authors used the bicubic interpolation

algorithm to equalize the size of the gray image converted from the

memory dump file and used the image features extracted from the

gradient histogram as input for malware classification. Experimental

results show that the system achieves a classification accuracy of

95.2% on the Open Malware Benchmark dataset. Cui et al. (2018)
Frontiers in Plant Science 05
proposed a deep learning-based malware classification system. The

author used a bicubic interpolation algorithm to equalize the size of

gray images converted frommalicious code and used a CNNmodel to

classify malware images. Experimental results show that the accuracy

of the system on the MalImg dataset can reach 94.5%.

In this paper, the bicubic interpolation algorithm is used to enhance

the gray and RGB images generated by the BIG2015 dataset to

overcome the problems of pixel distortion and image size imbalance

in the image conversion process. Experimental results show that image

enhancement is beneficial to remove redundant and irrelevant features

and improve the accuracy of malware classification.
4 Proposed system

The plant protection information system is also threatened by

malware when it is monitoring and defending against pests and

diseases. In order to ensure the safe and stable operation of the plant

protection information system, we proposed a static identification and

classification system architecture of malware, as shown in Figure 2. The

classification system utilizes bicubic interpolation, Cycle-GAN, and

DenseNet121 to improve the efficiency of malware classification. The

system mainly includes three parts: (1) Image generation and image

enhancement, (2) Data augmentation, and (3) Classification model.

Image Generation and Image Enhancement: The hexadecimal features

of the byte files in the BIG2015 dataset are converted to decimal features

between 0 and 255, and the malware is visualized as gray and RGB

images. We use the bicubic interpolation algorithm to enhance the gray

and RGB images to solve the problems of image distortion and size

imbalance. Data augmentation: We use the Cycle-GAN model to

perform data augmentation on a small number of samples in the

BIG2015 dataset to address data imbalances among malware families.

Classification model: We build an efficient malware identification and

classification system using deep learning algorithms (DenseNet121).
4.1 Image generation and image
enhancement

This paper uses the byte-to-image method (B2IMG) proposed by

Tekerek et al (Tekerek and Yapici, 2022) to convert the byte files of
B

A

FIGURE 1

Position of the last 16 pixels of point P.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
the BIG2015 dataset into gray and RGB images, as shown in

Algorithm 1. Firstly, the algorithm detects and removes

meaningless line numbers, characters, and numbers such as “??”

and “00”. Secondly, the remaining hexadecimal number is

converted to a decimal value between 0 and 255 and is loaded into

the pixel array. The aspect ratio of the image is obtained by dividing

the total number of decimal array elements by the number of channels

in the image and taking the square root of it. Finally, the decimal pixel

array elements between 0 and 255 are loaded into the 2-dimensional

gray image and the 3-dimensional all-0 value matrix of the RGB

image to obtain the image of each malware.

We used the bicubic interpolation algorithm to perform image

enhancement on the RGB and gray images generated by the B2IMG

method, as shown in Figures 3A, B. All image sizes are unified to 224

× 224 images as input to the DenseNet121 model.
Fron
Step 1: While (Read Line with (filename))

Step 2: Line split in pixel array according to

the spaces

Step 3: Foreach (item in pixel array)

Step 4: IF (item ==?? OR item<=00)
tiers in Plant Science 06
Step 5: Clear item

Step 6: ELSE

Step 7: Convert item hexadecimal to decimal

Step 8: Load the converted item in pixel array

Step 9: End While

Step 10: image size = Ceil (
ffi
pixel array length

color channel

q
)

Step 11: Create a matrix with the size of (image

size X image size X color channel)

Step 12: Load 0 values in matrix

Step 13: Reshape pixel array with (image size X

image size X color channel)

Step 14: Load pixel array in matrix

Step 15: Convert matrix to image
ALGORITHM 1
Algorithm of B2IMG.
4.2 Data augmentation

GANs usually require paired data, but paired data for malware

images is hard to obtain in practical applications. Cycle-GAN
FIGURE 2

Architecture of the proposed system.
BA

FIGURE 3

Images generated using the bicubic interpolation technique: (A) RGB image, (B) Gray image.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
generates image data without pairing data (Zhu et al., 2017), which

greatly reduces the difficulty of malware image augmentation.

Therefore, in order to solve the problem of unbalanced malware

family samples, this paper uses the Cycle-GAN model to learn the

features between different images of the same malware family, so

as to augment the data of small sample family malware. Figure 4

shows the malware data augmentation process, which includes 2

generative models and 2 discriminative models.

The specific process of generating the reconstructed malware

image A from the real malware image A is as follows (the real

malware image B generated the reconstructed malware image B is

the same).

Firstly, train the generative model GAB(GAB:A!B and the

discriminative model DB, obtain the adversarial loss function LGAN
minimized by Eq. (3) and Eq. (4) to obtain the optimal model, and

convert the real malware image A into the simulated malware

image B.

LGAN (GAB,DB,A,B) = Eae Pdata(a)
½(DB(GAB(a)) − 1)2� (3)

LGAN (GAB,DB)

=
Eae Pdata(a)

½(DB(GAB(a)))
2� + Ebe Pdata(b)

½(DB(b) − 1)2�
2

(4)

denotes the collection of malware images belonging to category A and

fbjgMj=1 denotes the collection of malware images belonging to

category B. a~Pdata(a) denotes the data distribution of malware

images of category A and b~Pdata(b) denotes the malware images of

category B data distribution. Secondly, the simulated malware image

B is reconstructed into malware image A. By minimizing the cyclic

consistency loss function Lcyc in Eq. (5) and identifying loss function

Lidt in Eq. (6), the parameters of the generated model were adjusted to

ensure the similarity between the reconstructed malware image A and

the real malware image A.

Lcyc(GAB,GBA, lA, lB)

= lA · Eae Pdata(a)
½jjGBA(GAB(a)) − ajj1�

+ lB · Ebe Pdata(b)
½jjGAB(GBA(b)) − bjj1�

(5)

(5)
Frontiers in Plant Science 07
Lidt(GAB,GBA, lA, lB, lidt)

= Eae Pdata(a)
½jjGBA(GAB(a)) − ajj1� · lA · lidt

+ Ebe Pdata(b)
½jjGAB(GBA(b)) − bjj1� · lB · lidt (6)

The generative model can be expressed as a mapping function

GAB: A!B, GBA: B!A. The discriminative model is expressed as

DA, DB. LA and LB represent the cycle consistency loss weights of A

and B images, respectively. Lidt denotes the identity loss weight of the

reconstructed image A and the real image A.

Finally, the optimal performance of the Cycle-GAN network is

obtained by minimizing the functions GAB*, GBA*in Eq. (8).

L(GAB,GBA,DA,DB, lA, lB, lidt)

= LGAN (GAB,DB,A,B) + LGAN (GBA,DA,B,A)

+ Lcyc(GAB,GBA, lA, lB) + Lidt(GAB,GBA, lA, lB, lidt) (7)

GAB ∗,GBA ∗ = arg DA,DB
max
GAB ,GBA

minL GAB,GBA,DA,DBlA, lB, lidtð Þ
(8)

The function Lcyc(GAB,GBA,DA,DBlA, lB, lidt) in Eq. (7) represents

the sum of loss functions. As shown in Table 2, we used the Cycle-

GAN model to augment 300, 738, 400, 100, and 400 samples for the 5

fami l ies of Vundo, S imda, Tracur , Kel ihos_ver1 , and

Obfuscator.ACY, respectively.
4.3 Classification model

With improvements in computing power and the scale of the

explosion of malware data, traditional machine-learning algorithms

are no longer sufficient to identify and classify malware families

effectively. The image-based deep learning method does not require

specialized domain knowledge and manual parameter adjustment,

and can learn independently through the model to improve

classification efficiency. As shown in Figure 5; Huang et al. (2017)

proposed a dense convolutional network (DenseNet) consisting of

three dense blocks in CVPR in 2017. In each dense block module, the
FIGURE 4

Data augmentation methods.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
output features of all previous layers are used as the input of

subsequent layers. The reuse of features can reduce network

parameters and reduce model complexity. Compared with other

networks, the DenseNet optimization problem is less difficult and

can be extended to hundreds of layers. The DenseNet structure

integrates identity mapping, deep supervision and attributes of

different depths, which can alleviate the problem of gradient

disappearance and enhance feature transfer and usage efficiency.

Therefore, this paper uses the classic DenseNet (DenseNet121) to

build a malware identification and classification model based on

malware images. In order to prevent overfitting, we used dropout to

simplify the network structure and improved the model’s

generalization ability. After the FC layer of DenseNet121, we added

an FC layer of size 512 to prevent overfitting and reduce

redundant parameters.
5 Experimental results and analysis

5.1 Experimental setup

The BIG2015 dataset was split into two as 80% training and 20%

testing. Test data was not used during the training phase. All experiments

used 10-fold cross validation to prevent overfitting. According to the

principle of the 10-fold CV model, 90% of the data at each fold training

phase was used for training, and the remaining 10% was used in the

validation phase. The final results were obtained with test data never

present in the training phase. The experiment mainly uses Pytorch and

the programming language is Python 3.8. Stochastic Gradient Descent

(SGD) was used for optimization in this experiment, the value of learning

rate was 0.03 and the value of momentum was 0.9.
Frontiers in Plant Science 08
This paper uses metrics such as precision, recall, accuracy and F1-

score to evaluate the effectiveness of the proposed system. These

metrics are widely used in the field of classification and can objectively

measure the performance of malware classification systems.

Accuracy is the most commonly used measure of evaluation, and

is defined as the number of samples that correctly predict the

malware’s family divided by the total number of samples. Specificity

represents the proportion of the sum of predicted and actual sample

number not in this malware family to the sum of actual sample

number not in this malware family. Precision represents the

proportion of the number of samples that are correctly predicted to

belong to the actual malware family to the number of samples that are

predicted to belong to that malware family. Recall represents the ratio

of the number of samples that are correctly predicted to belong to the

family of malware to the number of families that the samples actually

belong to. F1-score is a comprehensive evaluation index for

measuring precision and recall

Accuracy =
TP + TN

TP + FN + TN + FP
(9)

Specificity =
TN

TN + FP
(10)

Precision =
TP

TP + FP
(11)

Recall =
TP

TP + FN
(12)

F1 = 2
Precision � Recall
Precision + Recall

(13)
FIGURE 5

Network structure of DenseNet.
TABLE 2 The number of trainings, augmented trainings, and test data for BIG2015.

No. Family Train Data Augmented Train Data Test Data

1 Ramnit 1,079 0 462

2 Lollipop 1,735 0 743

3 Kelihos_ver3 2,060 0 882

4 Vundo 333 300 142

5 Simda 30 738 12

6 Tracur 526 400 225

7 Kelihos_ver1 279 100 119

8 Obfuscator.ACY 860 400 368

9 Gatak 710 0 303
f
rontiersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
Where TP is true positive, TN is true negative, FP is false positive, and

FN is false negative.
5.2 Experiment with data augmentation

In order to verify the effectiveness of the system, this paper

conducts experiments on gray images and RGB images based on

the original BIG2015 dataset and the augmented dataset.

5.2.1 Experimental results on gray images
We used the method described in Section 4.1 to convert the malware

into a gray image representation and reconstructed the generated

malware gray images using the bicubic interpolation algorithm. The

Cycle-GAN model was used for data augmentation to build a malware

identification and classification system based on DenseNet121.

Table 3 shows that implementing the data augmentation method

on gray images can improve the AUC, specificity, precision, recall, F1-

score, and classification accuracy of most malware families. The

accuracy of Vundo and Obfuscator.ACY families before data

augmentation were 99.66% and 99.08%. After data augmentation

the accuracy increased by 0.06% and 0.28%, reaching 99.72% and

99.36%. It is worth noting that after data augmentation, the AUC and

recall of the Simda family both reached 100% from 95.81% and

91.67%, respectively, indicating that all Simda family malware were

accurately classified. The specificity and precision of the Tracur family

were increased from 99.67% and 95.56% to 99.70% and 96.99% after

data augmentation. Although the accuracy of the Kelihos_ver1 family

decreased by 0.16% after data augmentation compared with that

before data augmentation, the misclassification of a small data in a

small sample family has little impact on the overall performance of

the system. Therefore, data augmentation based on gray images can

effectively improve the performance of malware classification systems.

5.2.2 Experimental results on RGB images
In order to verify the generalization of the proposed system to

feature images that have different textures and the effectiveness of the
Frontiers in Plant Science 09
system, we used the method described in Section 4.1 to convert

malware into RGB image representations to construct a malware

identification and classification system.

As shown in Table 4, the use of data augmentation on RGB

images can significantly improve the evaluation indicators such as

AUC, specificity, precision, recall, F1-score, and classification

accuracy of 8 malware families such as Ramnit, Kelihos_ver3, and

Vundo. After data augmentation, the classification accuracy of

Vundo, Simda, Tracur and Obfuscator.ACY families increased from

99.85%, 99.94%, 99.48%, and 99.29% to 99.91%, 99.97%, 99.60%, and

99.36%, which was an increase of 0.06%, 0.03%, 0.12%, and 0.07%.

Although the classification accuracy of the Ramnit, Kelihos_ver1, and

Gatak families did improve, the F1-score of the Ramnit family as a

measure of precision and recall increased by 0.03%, reaching 98.18%.

The Kelihos_ver1 and Gatak families still maintain high classification

accuracy of 99.97% and 99.88%. Experimental results show that the

augmentation of RGB image data can solve the problem of sample

imbalance among malware families, which is beneficial to improve the

performance of malware identification and classification systems.

The results in Tables 3, 4 verify that our proposed malware

identification and classification system based on bicubic

interpolation, Cycle-GAN, and DenseNet121 model can effectively

identify and classify malware into their corresponding families.

Meanwhile, it can be seen that the classification performance of the

system based on the RGB image representation of malware is better

than that of the gray image representation. The classification accuracy

of Lollipop, Kelihos_ver3, and Gatak families without data

augmentation is 99.69%, 99.94%, and 99.88% for RGB images.

These values are higher than the 99.42%, 99.85% and 99.63%

accuracy for gray images. After data augmentation, the classification

performance of the system based on RGB images was greatly

improved in almost all families compared to gray images. Notably,

the classification system based on RGB images achieved an accuracy

of over 99.3% on each malware family. In particular, the classification

accuracy on the Kelihos_ver3 family reached 100%. The experimental

results show that the RGB image representation of malware has richer

texture patterns and more feature information than the gray image
TABLE 3 Experimental results of gray images converted from BIG2015 dataset.

Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 Obfuscator.ACY Gatak

Without
Augmentation

Accuracy 0.9954 0.9942 0.9985 0.9966 0.9994 0.9948 0.9991 0.9908 0.9963

AUC 0.9901 0.9924 0.9982 0.9695 0.9581 0.9826 0.9915 0.9770 0.9905

Specificity 0.9975 0.9956 0.9987 0.9994 0.9997 0.9967 0.9997 0.9948 0.9976

Precision 0.9849 0.9852 0.9966 0.9859 0.9167 0.9556 0.9916 0.9592 0.9769

Recall 0.9827 0.9892 0.9977 0.9396 0.9167 0.9685 0.9833 0.9592 0.9834

F1-Score 0.9838 0.9872 0.9972 0.9622 0.9167 0.9620 0.9875 0.9593 0.9801

With
Augmentation

Accuracy 0.9942 0.9926 0.9985 0.9972 0.9997 0.9942 0.9975 0.9936 0.9982

AUC 0.9810 0.9905 0.9986 0.9759 1.0000 0.9764 0.9753 0.9939 0.9960

Specificity 0.9996 0.9944 0.9983 0.9994 0.9997 0.9970 0.9994 0.9935 0.9987

Precision 0.9978 0.9912 0.9955 0.9859 0.9367 0.9699 0.9832 0.9384 0.9868

Recall 0.9624 0.9865 0.9989 0.9524 1.0000 0.9558 0.9512 0.9943 0.9934

F1-Score 0.9798 0.9838 0.9972 0.9689 0.9565 0.9579 0.9669 0.9708 0.9901
fronti
ersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
representation and is more conducive to the construction of

classification systems.
5.3 Comparison and discussion

To demonstrate the effectiveness of our proposed system, Table 5

shows a comparison between the results of this paper and existing

relevant studies based on the BIG2015 dataset. The studies used CNN,

DenseNet, EfficientNetB1 and EfficientNetB7 models, as well as

frameworks such as SERLA, RNN+ SSTL and CNN+ Cycle-GAN.

We converted byte files into image representations and adopted

an improved CNN model (DenseNet121) to build the system.
Frontiers in Plant Science 10
Compared with Gilbert et al (Gibert et al., 2018; Gibert et al., 2019).

and Hemalatha et al. (2021) using the CNN model, our classification

accuracy has increased by 1.44%, 2.22%, and 1.26%, reaching 99.72%.

We used the Cycle-GANmodel to balance the number of samples

in the malware dataset to build an identification and classification

system. Compared to the classification system composed of DEAM

and DenseNet (Wang et al., 2021), the accuracy, precision, and F1-

Score are improved by 2.46%, 3.6%, and 2.99%, respectively. In terms

of accuracy, precision, and F1-Score, our system improved by 1.45%,

0.22%, and 0.09% compared with the SERLA model (Gao et al., 2020),

which was also constructed based on RGB images generated by the

BIG2015 dataset, reaching 99.76%, 98.9%, and 98.39%. Compared to

the above hybrid models composed of multiple classification modules,
TABLE 5 Comparison of the proposed system to systems in the literature using the BIG2015 dataset.

Authors Year Models Dataset AUC Precision Recall F1-Score Accuracy

Gibert et al. (2018) 2018 CNN Bytes – – – 96.36% 98.28%

Gibert et al. (2019) 2020 CNN Bytes (Grayscale) – 94.00% – – 97.5%

Hemalatha et al. (2021) 2021 CNN Bytes (Grayscale) – 98.58% 97.84% 98.21% 98.46%

Wang et al. (2021) 2021 CNN+ DEAM Bytes (Grayscale) – 95.3% 95.4% 95.4% 1

Gao et al. (2020) 2020 RNN+ SSTL Bytes+ ASM – 96.92% 96.9% 96.81% 96.9%

Jian et al (Gao et al., 2020) 2021 SERLA Bytes+ ASM – 98.68% 97.93% 98.3% 98.31%

Acharya et al. (2021) 2021 EfficientNetB1 Bytes (Grayscale) – 96.00% 97.00% 97.00% 98.57%

Pratama et al (Pratama and Sidabutar, 2022) 2022 EfficientNetB7 Bytes (Grayscale) 98.01% 97.96% 97.93% 97.93% 99.56%

Pratama et al (Pratama and Sidabutar, 2022) 2022 EfficientNetB7 Bytes (RGB) 98.30% 98.36% 98.35% 98.34% 99.63%

Tekerek et al (Tekerek and Yapici, 2022) 2022 CNN+ Cycle-GAN Bytes (Grayscale) 98.13% 97.53% 96.50% 96.93% 99.58%

Tekerek et al (Tekerek and Yapici, 2022) 2022 CNN+ Cycle-GAN Bytes (RGB) 98.51% 98.52% 97.16% 97.76% 99.73%

Proposed System – CNN Bytes (Grayscale) 98.33% 97.25% 96.89% 97.07% 99.61%

Proposed System – CNN Bytes (RGB) 98.69% 97.84% 97.53% 97.68% 99.72%

Proposed System – CNN+ Cycle-GAN Bytes (Grayscale) 98.75% 97.62% 97.72% 97.47% 99.62%

Proposed System – CNN+ Cycle-GAN Bytes (RGB) 98.89% 98.90% 97.92% 98.39% 99.76%
fr
Bold text highlights authors’ contributions and experimental results.
TABLE 4 Experimental results of RGB images converted from BIG2015 dataset.

Ramnit Lollipop Kelihos_ver3 Vundo Simda Tracur Kelihos_ver1 Obfuscator.ACY Gatak

Without
Augmentation

Accuracy 0.9948 0.9969 0.9994 0.9985 0.9994 0.9948 0.9997 0.9929 0.9988

AUC 0.9924 0.9961 0.9989 0.9830 0.9582 0.9730 0.9998 0.9841 0.9964

Specificity 0.9957 0.9976 1.0000 1.0000 0.9997 0.9980 0.9997 0.9955 0.9993

Precision 0.9740 0.9919 1.0000 1.0000 0.9167 0.9733 0.9916 0.9647 0.9934

Recall 0.9890 0.9946 0.9977 0.9660 0.9167 0.9481 1.0000 0.9726 0.9934

F1-Score 0.9815 0.9933 0.9989 0.9827 0.9167 0.9605 0.9958 0.9686 0.9934

With
Augmentation

Accuracy 0.9948 0.9963 1.0000 0.9991 0.9997 0.9960 0.9997 0.9936 0.9988

AUC 0.9855 0.9952 1.0000 0.9897 0.9615 0.9780 0.9998 0.9927 0.9978

Specificity 0.9986 0.9972 1.0000 1.0000 1.0000 0.9990 0.9997 0.9938 0.9990

Precision 0.9913 0.9906 1.0000 1.0000 1.0000 0.9867 0.9916 0.9511 0.9901

Recall 0.9724 0.9933 1.0000 0.9793 0.9231 0.9569 1.0000 0.9915 0.9967

F1-Score 0.9818 0.9919 1.0000 0.9896 0.9600 0.9716 0.9958 0.9709 0.9934
onti
ersin.org

https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
we only used a CNN model to identify and classify the families to

which malware belongs, which can effectively reduce model

complexity, time, and memory consumption.

We used the bicubic interpolation algorithm to enhance the malware

images generated by the BIG2015 dataset to solve the problem of image

size imbalance and effectively improve the performance of the malware

identification and classification system. The classification accuracy of

gray images and RGB images is 0.04% and 0.03% higher than that of the

same image representation in (Tekerek and Yapici, 2022), reaching

99.62% and 99.76%. Compared with the EfficientNet-B model

proposed by Acharya et al. (2021), the classification accuracy on gray

images increased by 1.05%, reaching 99.62%.We compared our model to

the B2IMG-based EfficientNetB7 model in (Pratama and Sidabutar,

2022)and achieve improved accuracy of 0.06% and 0.13% for gray and

RGB images, reaching 99.62% and 99.76% respectively.

We combined image enhancement and data augmentation

techniques to preserve more malware classification information

while maintaining image data integrity, generating high-quality

malware images for small sample families that balance malware

data distribution. The 99.76% accuracy, 98.9% precision, 97.92%

recall, 98.39% F1-score, and 98.89% AUC on the RGB images

generated by the BIG2015 dataset prove that our proposed system

can effectively identify and classify malware.
6 Conclusions and future work

With the exponential growth of the number of malware and its

variants, the threat to plant protection information systems that store

massive amounts of agricultural data is increasing. As a result, it is

critical to effectively identify and classify malware. Existing malware

classification schemes based on malware visualization and deep

learning mainly identify and classify malware variants by analyzing

the similarity of malware binary images. However, the images

generated by such schemes have the problem of unbalanced image

size and contain irrelevant and redundant features, which affects the

accuracy of malware classification. In addition, the unbalanced data

affects the classification performance of the system. Therefore, we

proposed a malware identification and classification scheme based on

DenseNet121 and Cycle-GAN models. The scheme used bicubic

interpolation technology to enhance malware images, which solved

the problem of image distortion and size imbalance caused by

removing redundant and irrelevant features. Using the Cycle-GAN

model for data augmentation solved the problem of unbalanced

samples of malware families and effectively improves the efficiency

of malware classification. The experimental results show that the

AUC, precision, recall, F1-score, and accuracy of the proposed system

on gray images are 98.75%, 97.62%, 97.72%, 97.47%, and 99.62%. The

system can achieve 98.89%, 98.90%, 97.92%, 98.39%, and 99.76% on

RGB images. Therefore, the system deployed on the plant protection

information terminal can effectively prevent malware attacks,

maintain the safety and integrity of plant protection data, and

protect farmers’ interests and agricultural production efficiency. The

BIG2015 dataset does not contain header information and cannot

generate a complete image of malware. In future research, we will

further collect complete malware samples for visual analysis and

research, consider the problems of system complexity, cost, delay and
Frontiers in Plant Science 11
throughput brought by system operation, balance the accuracy and

time consumption, and further improve the efficiency of malware

classification model.
Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here:https://www.kaggle.com/competitions/microsoft-

malware-prediction/data.
Author contributions

ZC, SX, and XR Efficient Windows Malware Identification and

Classification Scheme for Plant Protection Information Systems With

the exponential growth of the number of malware and its variants, the

threat to plant protection information systems that store massive

amounts of agricultural data is increasing. It is critical to effectively

identify and classify malware. Existing malware classification schemes

based on malware visualization and deep learning mainly identify and

classify malware variants by analyzing the similarity of malware binary

images. However, the images generated by such schemes have the

problem of unbalanced image size and contain irrelevant and

redundant features, which affects the accuracy of malware

classification. In addition, the unbalanced data affects the classification

performance of the system. Therefore, we proposed a malware

identification and classification scheme based on DenseNet121 and

Cycle-GAN models. The scheme used bicubic interpolation technology

to enhance malware images, which solved the problem of image

distortion and size imbalance caused by removing redundant and

irrelevant features. Using the Cycle-GAN model for data augmentation

solved the problem of unbalanced samples of malware families. The

system deployed on the plant protection information terminal can

prevent malware attacks, maintain the safety and integrity of plant

protection data. All authors contributed to the article and approved the

submitted version.
Funding

This work is supported by the National Natural Science

Foundation of China (Grant No. 62102190).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
frontiersin.org

https://www.kaggle.com/competitions/microsoft-malware-prediction/data
https://www.kaggle.com/competitions/microsoft-malware-prediction/data
https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Chen et al. 10.3389/fpls.2023.1123696
References
Acharya, V., Ravi, V., and Mohammad, N. (2021). “EfficientNet-based convolutional
neural networks for malware classification,” in 2021 12th International Conference on
Computing Communication and Networking Technologies (ICCCNT), Vol. 1-6.

Bernstein, R. (1976). Digital image processing of earth observation sensor data. IBM J.
Res. Dev. 20 (1), 40–57. doi: 10.1147/rd.201.0040

Brown, J., Qiao, Y., Clark, C., Lomax, S., Rafifique, K., and Sukkarieh, S. (2022).
Automated aerial animal detection when spatial resolution conditions are varied. Comput.
Electron. Agric. 193, 106689. doi: 10.1016/j.compag.2022.106689

Chen, Y., Gan, H., Chen, H., Zeng, Y., Xu, L., Heidari, A. A., et al. (2023). Accurate iris
segmentation and recognition using an end-to-end unified framework based on MADNet
and DSANet. Neurocomputing 517, 264–278. doi: 10.1016/j.neucom.2022.10.064

Cui, Z., Xue, F., Cai, X., Cao, Y., Wang, G. G., and Chen, J. (2018). Detection of
malicious code variants based on deep learning. IEEE Trans. Ind. Informatics. 14 (7),
3187–3196. doi: 10.1109/TII.2018.2822680

Dai, Y., Li, H., Qian, Y., and Lu, X. (2018). A malware classification method based on
memory dump grayscale image. Digital Invest. 27, 30–37. doi: 10.1016/j.diin.2018.09.006

D’Angelo, G., Ficco, M., and Palmieri, F. (2020). Malware detection in mobile
environments based on autoencoders and API-images. J. Parallel Distributed
Computing. 137, 26–33. doi: 10.1016/j.jpdc.2019.11.001

Galal, H. S., Mahdy, Y. B., and Atiea, M. A. (2016). Behavior-based features model for
malware detection. J. Comput. Virol. Hacking Techniques 12 (2), 59–67. doi: 10.1007/
s11416-015-0244-0

Gandotra,, Ekta,, Divya, B., and Sanjeev, S. (2014). Malware analysis and classification:
A survey. J. Inf. Secur. 5 (2), 56–64. doi: 10.4236/jis.2014.52006

Gao, X., Hu, C., Shan, C., and Han, W. (2022). MaliCage: A packed malware family
classification framework based on DNN and GAN. J. Inf. Secur. Applications. 68, 103267.
doi: 10.1016/j.jisa.2022.103267

Gao, X., Hu, C., Shan, C., Liu, B., Niu, Z., and Xie, H. (2020). Malware classification for
the cloud via semi-supervised transfer learning. J. Inf. Secur. Applications. 55, 102661. doi:
10.1016/j.jisa.2020.102661

Ghiasi, M., Sami, A., and Salehi, Z. (2015). Dynamic VSA: a framework for malware
detection based on register contents. Eng. Appl. Artif. Intell. 44, 111–122. doi: 10.1016/
j.engappai.2015.05.008

Gibert, D., Mateu, C., Planes, J., and Vicens, R. (2018). “Classification of malware by
using structural entropy on convolutional neural networks,” in Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 32.

Gibert, D., Mateu, C., Planes, J., and Vicens, R. (2019). Using convolutional neural
networks for classification of malware represented as images. J. Comput. Virol. Hacking
Techniques. 15, 15–28. doi: 10.1007/s11416-018-0323-0

Hemalatha, J., Roseline, S. A., Geetha, S., Kadry, S., and Damasěvičius, R. (2021). An
efficient densenet-based deep learning model for malware detection. Entropy 23 (3), 344.
doi: 10.3390/e23030344

Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K. Q. (2017). “Densely
connected convolutional networks,” in Proceedings of the IEEE conference on computer
vision and pattern recognition. 4700–4708.

Jamalpur, S., Navya, Y. S., Raja, P., Tagore, G., and Rao, G. R. K. (2018). “Dynamic
malware analysis using cuckoo sandbox,” in 2018 Second international conference on
inventive communication and computational technologies (ICICCT). 1056–1060.

Jang, S., Li, S., and Sung, Y. (2020). Fasttext-based local feature visualization algorithm
for merged image-based malware classification framework for cyber security and cyber
defense. Mathematics 8 (3), 460. doi: 10.3390/math8030460

Kalash, M., Rochan, M., Mohammed, N., Bruce, N. D., Wang, Y., and Iqbal, F. (2018).
“Malware classification with deep convolutional neural networks,” in 2018 9th IFIP
international conference on new technologies, mobility and security (NTMS). 1–5.

Keys, R. (1981). Cubic convolution interpolation for digital image processing. IEEE
Trans. acoustics speech Signal processing. 29 (6), 1153–1160. doi: 10.1109/
TASSP.1981.1163711

Kim, T., Kang, B., Rho, M., Sezer, S., and Im, E. G. (2018). A multimodal deep learning
method for android malware detection using various features. IEEE Trans. Inf. Forensics
Security. 14 (3), 773–788. doi: 10.1109/TIFS.2018.2866319

Kumar, S. (2021). MCFT-CNN: Malware classification with fine-tune convolution
neural networks using traditional and transfer learning in Internet of things. Future
Generation Comput. Syst. 125, 334–351. doi: 10.1016/j.future.2021.06.029

Lad, S. S., and Adamuthe, A. C. (2020). Malware classification with improved
convolutional neural network model. Int. J. Comput. Netw. Inf. Secur. 12, 30–43. doi:
10.48550/arXiv.1906.04593

Liao, Z., Lan, P., Fan, X., Kelly, B., Innes, A., and Liao, Z. (2021). SIRVD-DL: A
COVID-19 deep learning prediction model based on time-dependent SIRVD. Comput.
Biol. Med. 138, 104868. doi: 10.1016/j.compbiomed.2021.104868
Frontiers in Plant Science 12
Li, S., Feng, Z., Yang, B., Li, H., Liao, F., Gao, Y., et al. (2022). An intelligent monitoring
system of diseases and pests on rice canopy. Front. Plant Science. 13, 972286. doi: 10.3389/
fpls.2022.972286

Liu, C., Zhai, Z., Zhang, R., Bai, J., and Zhang, M. (2022). Field pest monitoring and
forecasting system for pest control. Front. Plant Science. 13, 990965. doi: 10.3389/
fpls.2022.990965

Lu, R. (2019). Malware detection with lstm using opcode language. arXiv preprint,
1906.04593. doi: 10.48550/arXiv.1906.04593

Ni, S., Qian, Q., and Zhang, R. (2018). Malware identification using visualization
images and deep learning. Comput. Security. 77, 871–885. doi: 10.1016/j.cose.2018.04.005

Nissim, N., Moskovitch, R., Rokach, L., and Elovici, Y. (2014). Novel active learning
methods for enhanced PC malware detection in windows OS. Expert Syst. Appl. 41 (13),
5843–5857. doi: 10.1016/j.eswa.2014.02.053

Park, M., Tran, D. Q., Jung, D., and Park, S. (2020). Wildfire-detection method using
DenseNet and CycleGAN data augmentation-based remote camera imagery. Remote Sens.
12 (22), 3715. doi: 10.3390/rs12223715

Pinhero, A., Anupama, M. L., Vinod, P., Visaggio, C. A., Aneesh, N., Abhijith, S., et al.
(2021). Malware detection employed by visualization and deep neural network. Comput.
Secur. 105, 102247. doi: 10.1016/j.cose.2021.102247

Pratama, H. Y., and Sidabutar, J. (2022). “Malware classification and visualization using
EfficientNet and B2IMG algorithm,” in 2022 International Conference on Advanced
Computer Science and Information Systems (ICACSIS). 75–80.

Rezaei, T., Manavi, F., and Hamzeh, A. (2021). A PE header-based method for malware
detection using clustering and deep embedding techniques. J. Inf. Secur. Applications. 60,
102876. doi: 10.1016/j.jisa.2021.102876

Rifman, S. S. (1973). “Digital rectification of ERTS multispectral imagery,” in NASA.
Goddard space flight center symp. on significant results obtained from the ERTS-1, vol. 1. , 1973.

Rigaki, M., and Garcia, S. (2018). “Bringing a gan to a knife-fight: Adapting malware
communication to avoid detection,” in Proceedings of the 2018 IEEE security and privacy
workshops (SPW). (San Francisco, CA, USA: IEEE), 70–75.

Ronen, R., Radu, M., Feuerstein, C., Yom-Tov, E., and Ahmadi, M. (2018). Microsoft
Malware classification challenge. arXiv preprint, 1802.10135. doi: 10.48550/
arXiv.1802.10135

Salehi, Z., Sami, A., and Ghiasi, M. (2017). MAAR: Robust features to detect malicious
activity based on API calls, their arguments and return values. Eng. Appl. Artif. Intell. 59,
93–102. doi: 10.1016/j.engappai.2016.12.016

Singh, A., Dutta, D., and Saha, A. (2019). “MIGAN: malware image synthesis using GANs,”
in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 10033–10034.

Sun, F., Wang, X., and Zhang, R. (2019). “A new optimization method application to
agricultural plant protection UAV scheduling,” in Proceedings of the 2019 6th
International Conference on Information Science and Control Engineering (ICISCE).
(Shanghai, China: IEEE), 80–84.

Tekerek, A., and Yapici, M. M. (2022). A novel malware classification and
augmentation model based on convolutional neural network. Comput. Security. 112,
102515. doi: 10.1016/j.cose.2021.102515

Vasan, D., Alazab, M., Wassan, S., Naeem, H., Safaei, B., and Zheng, Q. (2020).
IMCFN: Image-based malware classification using fine-tuned convolutional neural
network architecture. Comput. Networks. 171, 107138. doi: 10.1016/j.comnet.2020.107138

Vasan, D., Alazab, M., Wassan, S., Safaei, B., and Zheng, Q. (2020). Image-based
malware classification using ensemble of CNN architectures (IMCEC). Comput. Secur. 92,
101748. doi: 10.1016/j.cose.2020.101748

Wang, H., Lu, X., and Deng, F. (2022). “Improving CycleGAN for image-to-Image style
transfer by DenseNet,” in 2022 7th International Conference on Computer and
Communication Systems (ICCCS). 326–330.

Wang, C., Zhao, Z., Wang, F., and Li, Q. (2021). A novel malware detection and family
classification scheme for IoT based on DEAM and DenseNet. Secur. Communication
Networks. 2021, 6658842. doi: 10.1155/2021/6658842

Won, D. O., Jang, Y. N., and Lee, S. W. (2022). PlausMal-GAN: Plausible malware
training based on generative adversarial networks for analogous zero-day malware
detection. IEEE Trans. Emerging Topics Computing 1. doi: 10.1109/TETC.2022.3170544

Yongliang, Q., Truman, M., and Sukkarieh, S. (2019). Cattle segmentation and contour
extraction based on mask r-CNN for precision livestock farming. Comput. Electron. Agric.
165, 104958. doi: 10.1016/j.compag.2019.104958

Yuan, B., Wang, J., Liu, D., Guo, W., Wu, P., and Bao, X. (2020). Byte-level malware
classification based on markov images and deep learning. Comput. Secur. 92, 101740. doi:
10.1016/j.cose.2020.101740

Zhu, J. Y., Park, T., Isola, P., and Efros, A. A. (2017). “Unpaired image-to-image
translation using cycle-consistent adversarial networks,” in Proceedings of the IEEE
international conference on computer vision. 2223–2232.
frontiersin.org

https://doi.org/10.1147/rd.201.0040
https://doi.org/10.1016/j.compag.2022.106689
https://doi.org/10.1016/j.neucom.2022.10.064
https://doi.org/10.1109/TII.2018.2822680
https://doi.org/10.1016/j.diin.2018.09.006
https://doi.org/10.1016/j.jpdc.2019.11.001
https://doi.org/10.1007/s11416-015-0244-0
https://doi.org/10.1007/s11416-015-0244-0
https://doi.org/10.4236/jis.2014.52006
https://doi.org/10.1016/j.jisa.2022.103267
https://doi.org/10.1016/j.jisa.2020.102661
https://doi.org/10.1016/j.engappai.2015.05.008
https://doi.org/10.1016/j.engappai.2015.05.008
https://doi.org/10.1007/s11416-018-0323-0
https://doi.org/10.3390/e23030344
https://doi.org/10.3390/math8030460
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/TASSP.1981.1163711
https://doi.org/10.1109/TIFS.2018.2866319
https://doi.org/10.1016/j.future.2021.06.029
https://doi.org/10.48550/arXiv.1906.04593
https://doi.org/10.1016/j.compbiomed.2021.104868
https://doi.org/10.3389/fpls.2022.972286
https://doi.org/10.3389/fpls.2022.972286
https://doi.org/10.3389/fpls.2022.990965
https://doi.org/10.3389/fpls.2022.990965
https://doi.org/10.48550/arXiv.1906.04593
https://doi.org/10.1016/j.cose.2018.04.005
https://doi.org/10.1016/j.eswa.2014.02.053
https://doi.org/10.3390/rs12223715
https://doi.org/10.1016/j.cose.2021.102247
https://doi.org/10.1016/j.jisa.2021.102876
https://doi.org/10.48550/arXiv.1802.10135
https://doi.org/10.48550/arXiv.1802.10135
https://doi.org/10.1016/j.engappai.2016.12.016
https://doi.org/10.1016/j.cose.2021.102515
https://doi.org/10.1016/j.comnet.2020.107138
https://doi.org/10.1016/j.cose.2020.101748
https://doi.org/10.1155/2021/6658842
https://doi.org/10.1109/TETC.2022.3170544
https://doi.org/10.1016/j.compag.2019.104958
https://doi.org/10.1016/j.cose.2020.101740
https://doi.org/10.3389/fpls.2023.1123696
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Efficient Windows malware identification and classification scheme for plant protection information systems
	1 Introduction
	2 Related work
	2.1 Malware identification based on deep learning
	2.2 Malware identification based on visualization technology
	2.3 Malware identification based on GAN networks

	3 Materials and methodology
	3.1 Dataset
	3.2 Bicubic interpolation

	4 Proposed system
	4.1 Image generation and image enhancement
	4.2 Data augmentation
	4.3 Classification model

	5 Experimental results and analysis
	5.1 Experimental setup
	5.2 Experiment with data augmentation
	5.2.1 Experimental results on gray images
	5.2.2 Experimental results on RGB images

	5.3 Comparison and discussion

	6 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

