AUTHOR=Fang Jiangxiong , Jiang Houtao , Zhang Shiqing , Sun Lin , Hu Xudong , Liu Jun , Gong Meng , Liu Huaxiang , Fu Youyao TITLE=BAF-Net: Bidirectional attention fusion network via CNN and transformers for the pepper leaf segmentation JOURNAL=Frontiers in Plant Science VOLUME=14 YEAR=2023 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2023.1123410 DOI=10.3389/fpls.2023.1123410 ISSN=1664-462X ABSTRACT=
The segmentation of pepper leaves from pepper images is of great significance for the accurate control of pepper leaf diseases. To address the issue, we propose a bidirectional attention fusion network combing the convolution neural network (CNN) and Swin Transformer, called BAF-Net, to segment the pepper leaf image. Specially, BAF-Net first uses a multi-scale fusion feature (MSFF) branch to extract the long-range dependencies by constructing the cascaded Swin Transformer-based and CNN-based block, which is based on the U-shape architecture. Then, it uses a full-scale feature fusion (FSFF) branch to enhance the boundary information and attain the detailed information. Finally, an adaptive bidirectional attention module is designed to bridge the relation of the MSFF and FSFF features. The results on four pepper leaf datasets demonstrated that our model obtains F1 scores of 96.75%, 91.10%, 97.34% and 94.42%, and IoU of 95.68%, 86.76%, 96.12% and 91.44%, respectively. Compared to the state-of-the-art models, the proposed model achieves better segmentation performance. The code will be available at the website: