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The segmentation of pepper leaves from pepper images is of great significance

for the accurate control of pepper leaf diseases. To address the issue, we

propose a bidirectional attention fusion network combing the convolution

neural network (CNN) and Swin Transformer, called BAF-Net, to segment the

pepper leaf image. Specially, BAF-Net first uses a multi-scale fusion feature

(MSFF) branch to extract the long-range dependencies by constructing the

cascaded Swin Transformer-based and CNN-based block, which is based on

the U-shape architecture. Then, it uses a full-scale feature fusion (FSFF) branch to

enhance the boundary information and attain the detailed information. Finally, an

adaptive bidirectional attention module is designed to bridge the relation of the

MSFF and FSFF features. The results on four pepper leaf datasets demonstrated

that our model obtains F1 scores of 96.75%, 91.10%, 97.34% and 94.42%, and IoU

of 95.68%, 86.76%, 96.12% and 91.44%, respectively. Compared to the state-of-

the-art models, the proposedmodel achieves better segmentation performance.

The code will be available at the website: https://github.com/fangchj2002/

BAF-Net.

KEYWORDS

convolution neural network, leaf segmentation, attention mechanism, multi-scale
network, Swin Transformer
1 Introduction

Pepper is a common crop in China and has become an important vegetable and

condiment in our daily life. However, pepper is a sensitive plant and pepper crops are

highly exposed to diseases, which easily cause the frontal disease of the pepper leaves. The

plant leaves can reflect plant growth, and pepper leaf diseases directly leads to the decline of
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pepper yield and quality. The visual characteristics of pepper leaf

diseases is very similar, so it is not easy to distinguish them. With

the advance of imaging technology, computer vision technologies

have been widely used in plant leaf extraction to guide the

agricultural expert to analyze the crop growth. By using image

processing technology to analyze two-dimensional leaf image

features, the plant growth stages could be dissected (Slaughter

et al., 2008; Koirala et al., 2019), and monitor the plant diseases

(Singh, 2019; Tian et al., 2019) by the analysis of the image various

plant organs. Therefore, the accurate segmentation of pepper leaves

from pepper images is of great significance for controlling pepper

leaf diseases. However, it is challenging to design a general model

for automatic segmentation of pepper leaves since the pepper leaves

and some crops have similar phenotypic features (Hasan

et al., 2021).

Broadly speaking, the existing literature for the plant leaf

segmentation can be classified into two categories as shown in

Figure 1: conventional and deep learning-based methods. For the

conventional methods, a statistical method with graph-based models

(Kumar andDomnic, 2019) was proposed to segment the plant image

and leaf counting, where the image enhancement techniques and the

transformation from RGB to HSV were used to improve the quality

of the input image. To avoid the problem of leaf over-segmentation,

green channel information (Wang et al., 2018) was used to remove

the background information, and the Sobel operator was improved to

segment cucumber leaves. To detect the occluded plant leaves, leaf

shape (Xia et al., 2013) was fused into the energy function to segment

the leaf images. To deal with the complex background and the strong

illumination, Larese et al. (2014) proposed a leaf vein analysis method

for leguminous leaf segmentation and classification. The automatic

segmentation method for plant leaf images under complex

background was proposed to obtain the segmentation results.

Scharr et al. (2016) uses the supervised classification with a neural

network along with color and watershed transform for plant leaf

segmentation and counting. Kuznichov et al. (2019) proposed a

schema to augment the training dataset and remain the geometrical

structure of the plant leaf by constructing a generation synthetic data.

To segment multiple leaves at the same time and deal with the leaf

over-segmentation, a deep extraction method for plant leaf (Amean

et al., 2021) was proposed by incorporating multiple features, such as

color, shape, and depth information. Lin et al. (Lin et al., 2023)

proposed a self-supervised blade segmentation framework consisting

of a self-supervised semantic segmentation model, a color-based

blade segmentation algorithm, and a self-supervised color

correction model. A self-supervised semantic segmentation model

(Lin et al., 2023) was proposed to deal with the complex lighting

conditions. The model was comprised of the features extracted from

the CNN-based network and the fully connected Conditional

Random Fields (CRFs), thus significantly reducing the impact of

complex backgrounds and variations within the leaf and non-

leaf regions.

In recent years, the deep learning-based method has

outperformed the conventional segmentation methods and shows

great potential in processing plant phenotypic tasks (Bhagat et al.,

2021; Chandra et al., 2020). The SegNet-based model (Aich and

Stavness, 2017) with the encoder-decoder architecture was used to
Frontiers in Plant Science 02
segment plant leaves and leaf counting. Three RGB images and the

segmentation mask of leaf counting were used as four input channels

to build a regression model. Thus, the SegNet-based model can solve

the problem of leaf counting (Ubbens and Stavness, 2017). To

segment multiple objects, the instance segmentation model

(Romera-Paredes and Torr, 2016) was proposed based on an end-

to-end recurrent neural network (RNN). The model designed a

spatial attention module to extract small patches, and then uses a

convolutional long short-term memory (LSTM) network to build the

relation of these patches. By doing so, the model can finish plant leaf

segmentation and leaf counting. To solve the target occlusion

problem, Ren et al. (Ren and Zemel, 2017) used an RNN-based

architecture to generate continuous regions of interest and designed a

human-like counting process based on the attention mechanism, thus

making it a more accurate segmentation for each object in turn. Lin

et al. (Lin et al., 2019) proposed a self-supervised CNN-based

framework for leaf segmentation. The model first used self-

contained information to classify each pixel, and then the

segmentation algorithm for the color leaf images was used to

identify the leaf region. Finally, a self-supervised color-based

correction model was proposed to segment the complex images

taken under complex lighting conditions. As shown in Table 1, we

summarize the work related to plant leaf segmentation.

It is well-known that U-Net (Ronneberger et al., 2015) is one of

the most efficient models and widely used for specific object

extraction in image segmentation. U-Net and its variants (Shen

et al., 2017) have achieved competitive performance in many

computer vision tasks, such as ResU-Net (Zhang et al., 2018), U-

Net++ (Zhou et al., 2019), DenseNet (Huang et al., 2017), 3D U-Net

(Li et al., 2020), V-Net (Milletari et al., 2016). Bhagat et al. (2022)

proposed a modified U-Net architecture for plant leaf segmentation,

where an EffcientNet-B4 module was used as an encoder to extract

the image feature. Meanwhile, a redesigned skip connection and the

residual modules of the decoder were used to reduce computational

cost. However, these methods usually ignored the global context

information. To be exact, these models could not extract the long-

range correlation between pixels, especially for the pixels

surrounding the boundary of the objects. The effective method for

obtaining the precise location and boundary of the segmentation

object was to extract the global context information of the feature

map and the long-range correlation between pixels. Transformer

has been proved to be an efficient self-attention mechanism to

establish long-term dependencies in the field of natural language

processing (NLP). More recently, it was introduced into the visual

classification tasks. Ramachandran et al. (Ramachandran et al.,

2019) explored a novel ResNet-based model by replacing all

spatial convolutional layers with the self-attention layers.

However, the local self-attention might still lose part of the global

structural information. In order to obtain global information of

visual images, Vision Transformer (ViT) (Dosovitskiy et al., 2020)

inspired by Transformer was proposed to solve the natural image

recognition task. ViT first divided the image into several non-

overlapping patches, and then used Transformer with the self-

attention mechanism to calculate the global information between

each token to obtain the global context information. To further

reduce the sequence length and computational complexity, Swin
frontiersin.org

https://doi.org/10.3389/fpls.2023.1123410
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Fang et al. 10.3389/fpls.2023.1123410
Transformer (Liu et al., 2021) used a shifted window to calculate the

local self-attention. By establishing a shifted window, two adjacent

windows could interact with each other, and cross connections were

established between the widows of the upper and lower layers,

which improved the effect of global context.

To address these problems, we built a pepper leaf dataset

focused on the disease detection segmentation, and propose a

bidirectional attention fusion network, named BAF-Net, to obtain

the for pepper leaf segmentation. BAF-Net is comprised of three

parts: multi-scale fusion feature (MSFF) branch, full-scale feature

fusion (FSFF) branch, and bidirectional attention feature fusion

(BAF) modules. The backbone of the MSFF branch is a U-shaped

network architecture. By incorporating the Swin-Transformer block

and the CNN-based module, a cascaded hybrid module (Swin-

Trans-Conv) is constructed, to obtain multi-scale fusion features. In

the FSFF branch, we first fuse the features of the five-layer encoder

from the MSFF branch. Then, the generated features pass through

several convolution blocks to obtain the full-resolution feature. The

BAF module adaptively fuses the output features of the MSFF and

FSFF branches, generating two corresponding features for each

branch. In short, the main contributions of our work are as follows:
Fron
(1) By incorporating the Swin Transformer and CNN-based

modules, we build a cascaded Swin-Trans-Conv block to

replace each convolutional layer of U-Net. The Swin

Transformer-based module can extract the long-range

dependencies while the CNN-based module is used to

obtain the local image information.

(2) An FSFF branch is designed to extract detailed information

and the boundaries. By incorporating the multi-scale

features which are from the outputs of the encoder in the

MSFF branch, the boundary information is retained.

Meanwhile, the multi-layer full-scale convolution block

can extract detailed information.
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(3) We propose a BAF module to adaptive share the multi-

scale and full-scale features, which can adaptively compute

the features of two corresponding branches according to the

output features of the MSFF and FSFF branches.

(4) By verifying on four dataset of pepper leaf images, the

results show that our model is superior to the state-of-the-

art models in terms of the evaluation indices such as IoU

and F1score.
The rest of this paper is arranged as follows. Section 2 first

reviews the materials including the dataset and its labeling process.

Then, the proposed model including the overall architecture, the

formulation of the MSFF and FSFF branches, the BAF module, and

the loss function are discussed. Finally we introduce the evaluation

indices. Section 3 demonstrates the experimental results and

discussion. The conclusions are summarized in Section 4.
2 Materials and methods

2.1 Dataset

In our experiments, the images of pepper leaves were taken

from the farm of Nanchang Academy of Agricultural Sciences in

Jiangxi Province, China. We took photos for multi-view in the real

natural environment from the morning to the afternoon on August

12 and 13, 2021.Pepper leaves were seriously affected by a variety of

diseases during growth. Two common diseases of pepper leaf

destroyed the normal growth of pepper, such as the brown spot

disease and the early blight disease. Meanwhile, we also collect

healthy pepper leaves to expand our dataset. As shown in Table 2,

there are 3921 pepper leaf images in our dataset including the

healthy pepper leaves (HPL) and two different categories of

infection (2606 images): spot disease (SD) and early blight disease
TABLE 1 The related works in plant leaf image.

Categories Author Method

Conventional method

Kumar and Domnic, 2019 A statistical method with graph-based models

Wang et al., 2018 The Sobel-based model with green channel information

Xia et al., 2013 The modified active shape models for plant leaf detection

Larese et al., 2014 Automatic classification modle for legumes image

Kuznichov et al., 2019 Augment dataset and the geometrical structure

Amean et al., 2021 Self-supervised blade segmentation framework

Lin et al., 2023 Self-supervised semantic segmentation model for complex lighting conditions

Deep learning-based method

Aich and Stavness, 2017 The SegNet-based model for leaves and leaf counting

Ubbens and Stavness, 2017 A deep learning platform for complex plant phenotyping

Romera-Paredes and Torr, 2016 Recurrent instance segmentation

Ren and Zemel, 2017 End-to-end instance segmentation with recurrent attention

Lin et al., 2019 A self-supervised CNN-based framework for leaf segmentation
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(EBD), and several examples are shown in Figure 1. As shown in

Table 2, the SD, EBD, and HPL datasets contain 1385, 1221, and

1315 images. The total pepper leaf (TPL) dataset is comprised of the

SD, EBD, and HPL datasets. In our experiment, the images of each

image dataset are split into the training set, the validation set and

the test set, and the image numbers of the training set. Meanwhile,

in order to evaluate the robustness of the BAF-Net, the images were

taken with different complex background as shown in Figure 1.
2.2 Dataset labeling

In the following section, we present a data labeling process, and

the labeled images are used for validating the proposed model. To

accurately annotate the given images, we use the open-source tool

named as LabelMe1, which was developed by the computer science

and artificial intelligence laboratory of MIT university. It allows

users to annotate images manually to build image dataset for image

segmentation. The pixel-by-pixel way carefully delineated the

boundary of each leaf. All these images in the experiment are

marked using this tool. Thereafter, each annotated image generates
1 https://github.com/wkentaro/labelme
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a binary segmentation mask, where the intensity values of the

foreground and background are 1 and 0, respectively. During

annotating the dataset, we retain the same size as the input

image. In view of the computational cost in deep learning, we set

the size of the input image to 512×512.
2.3 Method

2.3.1 Overall architecture
In the field of image segmentation, U-Net has become one of the

most successful network frameworks. It consists of a contracting

path and an expanding path, where the contracting path is used to

capture the image feature while the expanding path can achieve

object localization. In each encoder-decoder layer, a skip

connection layer transforms the low-level and high-level

information. The model uses a convolution layer with fixed

kernel size to extract image features, However, it is difficult to

capture long-range semantic information. Although Transformers

(Dong et al., 2019) can effectively encode the long-range

dependencies, it is difficult to obtain local details and accurate

boundaries of pepper leaves. To solve this problem, we propose a

bidirectional attention fusion network by combining CNN and

Transformer for pepper leaf segmentation, also named as BAF-Net,
TABLE 2 Four datasets for the validating the proposed model on the pepper leaf.

Dataset Test Training Validation Total

Spot Disease (SD) 186 1015 184 1385

Early Blight Disease (EBD) 164 895 162 1221

Healthy Pepper Leaf (HPL) 176 965 174 1315

Total Pepper Leaf (TPL) 526 2875 520 3921
FIGURE 1

The sample dataset with different background.
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where CNN is used to extract the local image information while the

Transformer-based module can capture the long-range

dependencies. As shown in Figure 2, the multi-scale branch is

used to extract the global features while the full-scale feature can

retain the detailed boundary information. The bidirectional fusion

module is designed to concatenate the multi-scale features and the

full scale features.

Specifically, BAF-Net includes three parts: a multi-scale feature

fusion (MSFF) branch, a full-scale fusion feature (FSFF) branch,

and bidirectional attention fusion (BAF) modules. In the MSFF

branch, the network structure is similar to U-Net, composed of an

encoding path and a decoding path. Different from the U-Net

model, the encoder is replaced by a hybrid module by incorporating

the convolutional layer and the Swin Transformer (Liu et al., 2021)

module, and the decoder is composed of convolutional modules. In

the FSFF branch, we first upsample four features: the output

features of the encoder from the 2nd layer to the 4th layer, and the

5th layer of the decoder. Four output features are the same size as the

first layer’s output feature in the MSFF branch. Then, we fuse five

generated features, and the generated feature is passed through four

continuous convolutional modules. Each convolutional module is

activated by the convolution layer, batch normalization, and the

ReLU activation function. In the BAF module, the input features are

from the output feature of the decoder in the MSFF branch and the

output feature of the corresponding convolutional module in the

FSFF branch. By incorporating the MSFF and FSFF branches, the

improved model not only achieves the full resolution feature but

also extracts the comprehensive and multi-scale features.
Frontiers in Plant Science 05
2.3.2 Multi-scale feature fusion branch
The transformer-based model (Dosovitskiy et al., 2020; Cao et al.,

2021) has a more robust representation than the CNN-based model

while building the long-range dependencies. In order to extract the

global features, we explore a hybrid Swin-Trans-Conv block by

combining the Swin-Transformer encoder and the convolutional

layer, which is used to replace the convolutional layer of the encoder

in the MSFF branch. As shown in Figure 3A, the backbone network

including an encoder network and a decoder network is similar to U-

Net. In the encoder network, we use a hybridmodule by combining the

convolutional layer and the Swin Transformer block, also called as

Swin-Trans-Conv block, to replace each convolutional layer of U-Net,

where an average pooling operator perform the downsampling process

and the size of the feature maps are changed into half of the original.

The decoder network is comprised of four convolutional layers and

four upsampling operators. The upsampling operation is achieved by

performing a deconvolutional operator with the stride of 2. The

convolutional layer consists of a convolutional operator, batch

normalization, and a ReLU activation layer. The number of channels

in five layers corresponding to the 1st layer to the 5th layer is 32, 64, 128,

256 and 512, respectively.

Assuming that the input feature is X∈RB×H×W×C, where B, C, H

and W represent the batch size, the channel number, and the image

height and width of the input feature, respectively. In the Swin-Trans-

Conv block as shown in Figure 3A, we first transforms the input

feature X into X’∈RB×H×W×C. Then, we perform a 1×1 convolution

operator on the generated feature, and split the generated feature Y

into two groups FTrans and Fconv, which can be expressed as:
FIGURE 2

The overall framework of the proposed BAF-Net, which includes three main modules such as the multiscale feature fusion branch, GAM and
decoders, where the decoder includes the global context module (GAM) and FAM with LAM.
frontiersin.org
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Y = Conv1�1( Re shape(X))                                           X, Y

∈ RB�C�H;�W (1)

Ftrans,  Fconv = Split(Y)                                                   FTrans,Fconv

∈ RB�C=2�H�W (2)

where Re shape( · ) is a reshape operator on two feature matrix

Ftrans and Fconv, Conv1�1( · ) denotes a 1×1 convolutional operator,

and Split( · ) represents a split operation on the multidimensional

matrix. Finally, the feature FTrans is passed through a module based

on Swin Transformer (Swin-Trans) encoder, and the generated

feature map F
0
trans is written as:

F
0
trans = SwinTrans(Ftrans) (3)

Similarly, the feature map Fconv passes through a residual

convolution module, and the generated feature F
0
conv is defined as:

F
0
conv = RConv(Fconv) (4)

where RConv( · ) is the residual convolution module, which is

comprised of a 3×3 convolution filter, a ReLU activation layer, and a

3×3 convolution filter by a residual path, which is rewritten as:

F3 = Conv3�3(Fconv) (5)

F
0
conv = Conv3�3( Re lu(F

3)) + F3 (6)

where F3 is the feature map performed a 3×3 convolution

operation on the feature map Fconv , Conv3×3 is a 3×3

convolutional layer, and Re lu( · ) is a ReLU activation layer.
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Finally, we concatenate two features F
0
trans and F

0
conv , and then

perform a 1×1 convolution filter by a residual path, which is

represented as:

Xout = Conv1�1(F
0
trans ⊙ F

0
conv) + X (7)

where ⊙ denotes the concatenation operation.

Meanwhile, to construct the Swin-Trans module as shown in

Figure 3B, the input feature FTrans is split into small patches, and

each patch size is set to P × P × P, where P is a positive integer and

the number of the patches is S=[H/P]×[W/P]×[C/P]. For the feature

FiTrans of the i-th layer with the 3D patches, we first compute the

multi-head self-attention in a small window (W-MSA), which can

be formulated as:

F̂ i
out = W-MSA(LN(FiTrans)) + FiTrans (8)

F̂ i
mlp = MLP(LN(F̂ i

Out)) + F̂ i
Out (9)

where W-MSA( · ) denotes the window multi-head self-

attention, LN( · ) is the layer normalization operator, and MLP( · )

denotes a multilayer perceptron module with two fully-connected

layers and the GELU activation function. Then, the generated

feature F̂ i
mlp is passed through the multi-head self-attention in the

shifted window (SW-MSA), which is represented as:

F̂ i
sw = SW-MSA(LN(F̂ i

mlp)) + F̂ i
mlp (10)

Fiout = MLP(LN(F̂ i
sw)) + F̂ i

sw (11)

where SW-MSA( · ) denotes the shifted window multi-head

self-attention, and Fiout is the output feature of the i-th layer.
A

B

FIGURE 3

The network structure of the Swin-Trans-Conv block. In each block, the input feature is first passed through a 1×1 convolution, and subsequently is
split evenly into two feature map groups, each of which is then fed into a Swin transformer block and a residual 3×3 convolutional (RConv) block,
respectively. Afterwards, the output features of the Swin-Trans-Conv block and the RConv block are concatenated and then passed through a 1×1
convolution to generate a novel feature via a residual path.
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Finally, the output feature Fiout is reshaped into the same size of the

input feature in the Swin-Trans module.

It is worth noting that the Swin-Trans-Conv block has several

advantages. First, it integrates the local modeling capability of the

convolution module and the global modeling capability of the Swin-

Trans module. Secondly, the split and concatenation operations are

used for two branches to extract different features, reducing the

computational complexity and the number of parameters.

2.3.3 Full-scale feature fusion branch
The edge and detailed image information may be lost in the U-

shape network framework due to the continuous downsampling

operators. To solve this problem, we design an MSFF branch to

retain the detailed information, and the network structure is shown

in Figure 2B. We fuse the output features of the first 1st to 4th layer

in the encoder of the MSFF branch and the output feature of the

decoder of the 5th layer in the decoder since the multi-scale features

can enhance the edge information (Liu et al., 2023). For four output

features from the MSFF branch, we first carry out a 1×1 convolution

filter to reduce the channel number. Then, we perform the

upsampling operator on the four features, and the four generated

features have the same size with the first channel feature. Then, we

integrate four generated features into the input feature by a residual

path, which can be expressed as:

Xup
i = Conv1�1 up (⋯ up(Xi))|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

i−1

0
@

1
A                         i = 2,⋯, 5 (12)

Xfuse =o5
i=2X

up
i + X (13)

where Conv3×3 denotes a 3×3 convolutional filter.
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Finally, the novel feature passes through four continuous

convolutional modules. Each convolutional module includes a 3×3

convolution layer, batch normalization, and a ReLU activation layer.

To reduce the computational cost and the parameters, we keep each

channel number of four features equal to that of the first layer in the

MSFF branch. In this paper, the channel number is set at 32. The

operations for each convolution block are presented as follows:

X4
f = Re lu(BN(Conv3�3(ffuse) ) )                                                         i =

Xi−1
f = Re lu(BN(Conv3�3(X

i
f )))                                    i = 2,   ⋯,   4

(

(14)
2.3.4 Bidirectional attention fusion module
In order to achieve the multi-scale and full-scale features, we

designed a BAF module to generate the corresponding output

features for the MSFF and FSFF branches. As shown in Figure 4,

the BAF module includes multi-scale feature guidance (MSFG)

module and full-scale feature guidance (FSGM) module. For the

MSGM module, we first conduct the downsampling operation on

the input feature of the FSGM module, and the novel feature maps

have the same spatial dimensions with the same with that of the

MSGF map, which can be expressed as:

Fdnfg = DN(Ffg) (15)

where DN( · ) denotes the downsampling operation. Then, we

concatenate the output feature of the MSFF branch Fms and the feature

Fdnfg , and perform a 1×1 convolution module on the novel feature map

to compress the number of channels, we can obtain the feature map:

Fcms = Conv1�1(Fms e F
dn
fg ) (16)
FIGURE 4

The network structure of the BAF module. Two input features Fms and Ffg are from the output features of the MSFF and FSFF branches, respectively.
The BAF module contains a multi-scale feature guided (MSFG) module and a full resolution feature guided (FRFG) module. The MSFG module is used
to generate the multi-scale feature while the FRFG module is used to generate the full-scale feature.
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At the same time, we project the feature Fcms to compress the

feature map into a channel along the channel direction, and use the

Sigmoid activation function to obtain the global attention map,

which is defined as:

ams = ssig( Pr oj(F
c
ms)) (17)

where Pr oj( · ) denotes the linear projection function, ssig( · )

denotes the Sigmoid function, and ams∈[0,1] is the spatial attention
map of the feature Fcms. It is obvious that the spatial attention map

ams calculates the spatial weight of each pixel, and the calibrated

feature map is expressed as:

Foutms = ams ⊗ Fcms (18)

Finally, the feature Foutms is transformed to the next

convolution layer.

In the FSFG module, we first perform a 1×1 convolutional filter

on the multi-scale feature map Fms to compress the number of

channels. The expression is as follows:

F
0
ms = Conv1�1(Fms) (19)

Then, we upsample the multi-scale feature map to make the

generated features have the same spatial dimension as that of the

full-scale feature. The expression is as follows:

Fupms = up(F
0
ms) (20)

where up( · ) denotes the upsampling operator. Afterwards, two

features Fupms and Ffg are fed into the convolutional layer to generate a

new feature Fcfg , which is written as:

Fcfg = Conv3�3(F
up
ms ⊕ Ffg) (21)

where ⊕ represents the pixel-wise addition operation.

Meanwhile, we use linear projection to compress the feature into

a channel along the channel direction, and then use the sigmoid

activation function to obtain the global attention map:

afg = ssig( Pr oj(F
c
fg)) (22)

where afg∈[0, 1] is the spatial attention map of Fcfg , which is

used to calculate the spatial position weight of each pixel. The

calibrated feature map can be represented as:

Foutfg = afg ⊗ Fcfg (23)

Finally, it is input to the convolution layer of the next

FSFG module.
2.3.5 Training loss
The network should be trained to obtain the best training

parameters. It is known that the loss function is essential to the

predicted performance of the segmentation model. The loss

function is used to measure the deviation between the model

prediction and the ground truth. The binary cross entropy (BCE)

is a loss function widely used in binary image segmentation tasks.

Assuming that the input predicted result is p, and the corresponding

ground truth label is g, the BCE loss function is defined as:
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Lbce(p,     g) = −oN
i=1½gx log (px) + (1� gx) log (1 − px)� (24)

The intersection over union (IoU) loss is defined as:

LIoU (p,     g) = − log oN
i=1 gx · pxj j

oN
i=1(gx + px − gx · pxj j)

 !
(25)

Therefore, our final loss includes Lbce and LIoU, which can be

expressed as:

Ltotal(p,     g) = aLbec(p, g) + (1 − a)LIoU (p, g) (26)

The weight a is a coefficient to balance the importance of two

loss functions, and we set a=0.5.
2.4 Performance evaluation

In order to verify the segmentation performance, we use six

evaluation indices to evaluate the accuracy of the model on the

pepper leaf datasets. Six evaluation indices include: pixel accuracy

(PA), pixel recall (PR), pixel precision (PP), pixel specificity (PS),

intersection over union (IoU) and F1 score. We assume that TP

(True Positive) represents the number of pixels that are both 1 in

the predicted value and the label value, TN (True Negative)

represents the number of pixels that are both 0 in the predicted

value and the label value, FP (False Positive) represents the number

of pixels that are 1 in the predicted value and 0 in the label value,

and FN (False Negative) represents the number of pixels that are 0

in the predicted value and 1 in the label value. The expression of the

pixel accuracy is written as follows:

PA =
TP + TN

TP + TN + FP + FN
(27)

PR is defined as follows:

PR =
TP

TP + FN
(28)

PP is defined as follows:

PP =
TP

TP + FP
(29)

F1 score is defined as:

F1 =
2� PR · PP
PR + PP

(30)

PS is defined as follows:

PS =
TN

TN + FP
(31)

From Equations (27)-(31) and the IoU as defined in Equation

(25), it can be seen that six evaluation indices range from 0 to 1. The

higher the index values are, the best segmentation performance is

obtained. Generally speaking, the mean IoU (mIoU) is used to

evaluate the segmentation performance on a given dataset.
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3 Experiments

In this section, we present the experimental results including

the experimental settings, the comparison with the state-of-the-arts

models, the ablation study and the discussion.
3.1 Experimental settings

All models in the experiment are carried out on Intel (R) Core

(R) i7-8700K CPU 3.70GHz CPU and Nvidia GeForce TITAN XP

12 GB GPU with 48G RAM. The programs are conducted on the

Ubuntu 16.04 with the Conda environment. In the BAF-Net,

the parameter settings are as follows: the batch size is set to 4, the

number of iterations (epoch) is set to 60, and each epoch contains

350 batches. During the training process, the network is optimized

using stochastic gradient descent (SGD), the initial learning rate is

set to 0.01.
3.2 Comparison with the state-of-the-arts
models

We compared BAF-Net with the state-of-the-art methods on four

pepper leaf datasets, such as the SD, EBD, HPL, and TPL datasets. For

fairness, these models are running on the same training dataset, the

validation dataset, and the test dataset. The comparative models on

the pepper leaf dataset involve U-Net (Ronneberger et al., 2015),

AttU-Net (Oktay et al., 2018), Swin-UNet (Cao et al., 2021), SCUNet

(Zhang et al., 2022) and the proposed BAF-Net. We set the training

epochs to 60 for each trained model.

Table 3 shows the test results on the SD dataset using five

different state-of-the-art models. Compared with U-Net, the

proposed model has a precision increase of 7.48%, IoU increase

of 3.88%, and F1 score increase of 5.0%. It also shows that PA score

has the relative improvement of 0.5% on the SD dataset. For the

attention U-Net model, the segmentation results on five indices are

close to that of the U-Net. In addition, Swin-UNet and SCUNet

have the similar segmentation performance. However, the

segmentation performance of U-Net exceeds two models in terms

of six evaluation indices. The reason is that Swin-UNet and SCUNet

containing the transformer-based modules attain better

segmentation results only if more efficient pre-trained model is

provided. From Table 3, where the highest score for each indicator

is shown in bold, our model can obtain the best segmentation
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performance in terms of five evaluation indices including PA, PP,

PS, IoU, and F1 scores compared with other models. By evaluating

the segmentation performance of five models, we also give several

examples of the segmentation results using these compared

methods as shown in Figure 5.

Table 4 presents the segmentation results of five segmentation

models on EBD pepper leaf dataset, in which the highest score of

each index is shown in bold. From the experimental results, the

proposed model has the highest scores among the six indices

including PA, PR, PP, PS, IoU and F1 scores. Specifically,

compared with U-Net, BAF-Net increased PA by 0.62%, PR by

0.06%, PP by 3.44%, PS by 1.7%, IoU by 5%, and F1 score by 7.04%.

Attention U-Net is only lower than BAF-Net in terms of the indices

IoU and F1-score, with a decrease of 4.92% and 6.59%, respectively.

Compared with Swin-Unet and SCUNet, the proposed model has

significant improvement in terms of six indices. The proposed BAF-

Net have significant improvement in terms of PP, reaching the

increase by 7.25% and 14.29%, respectively. By evaluating the

segmentation performance of five deep learning-based models, we

find these models can obtain better segmentation results than the

traditional methods. Meanwhile, we also give the examples of the

segmentation results using these compared methods as shown

in Figure 6.

Table 5 shows the validation results of five different models on

the HPL data set, with the highest score for each indicator shown in

bold. From the experimental results, the proposed model can obtain

the best segmentation accuracy in terms of PA, PP, PS, mIoU and

F1 score. Compared with U-Net, the proposed model has increased

PA by 0.21%, PP by 1.51%, PS by 1.52%, IoU by 0.01%, and F1 score

by 0.27%. The attention U-Net has the similar segmentation results

with U-Net. Our model has significant improvement than Swin-

UNet and SCUNet in terms of the PP, mIoU and F1 score.

Compared with the Swin-UNet, the PP, mIoU and F1 scores have

increased by 4.95%, 3.60% and 2.43%, respectively. Compared with

the SCUNet, the PP, mIoU and F1 score has increased by 2.51%,

2.22% and 1.58%, respectively. Meanwhile, we also give the example

of the segmentation results for qualitative comparison, and the

representative examples are shown in Figure 7.

The experimental results on the TPL dataset are shown in

Table 6, with the highest score in each indicator represented in bold.

It can be seen that our model obtains the best segmentation results

in terms of the six indices among five models. Compared with U-

Net, the proposed model has IoU increased by 0.01%, PA increased

by 0.13%, PR increased by 0.03%, and PP increased by 0.87%. The

PS score is 0.01% higher than that of U-Net, and F1 score is 0.48%
TABLE 3 The segmentation results on the SD dataset using five different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1(%)

UNet 98.70 99.09 91.10 98.65 91.80 94.93

Attention U-Net 98.24 98.11 88.72 98.26 90.09 93.18

Swin-UNet 97.68 97.90 85.36 97.65 86.76 91.20

SCUNet 97.42 98.14 83.68 97.32 87.34 90.33

Ours 99.20 98.74 98.58 99.80 95.68 96.75
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higher than that of U-Net. Compared with attention U-Net, the

proposed model has significant improvement in terms of six

indices. However, Swin-UNet and SCUNet do not improve the

segmentation results compared with the U-Net. In summary, BAF-

Net has obvious advantages in segmenting the pepper leaf from the

natural images.
3.3 Ablation study

In this section, we perform an ablation study to validate the

effectiveness of each module. Especially, we consider the basic U-

Net architecture as the baseline, namely the simple U-Net (SU-Net),

which is similar to U-Net with half of the channel number of U-Net.
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In the ablation experiments, we take SU-Net, MFF, MRF, and BAF

as four basic modules. Our experimental strategy is to add a module

each time, and it is proven to be effective. We approve that it is

effective in subsequent studies. Strictly speaking, we selected four

unique models, such as SU-Net, SU-Net-MFF, SU-Net- MFF-MRF,

and BAF-Net, to verify that different modules are still valid when

each model is added to SU-Net each time.

As shown in Table 7, we first experiment SU-Net-MSFF by

replacing the convolution layer of the encoder in the SU-Net model

with the Swin-Trans-Conv block, which is formulated by adding the

MSFF module into SU-Net. Experiments show that PA, PR, PP, PS,

mIoU and F1 score of the SU-Net-MSFF model are 98.94%, 96.87%,

96.90%, 99.36%, 95.63% and 96.88, respectively. Then, by adding

the FSFF module to SU-Net-MSFF, the results show that the PA,
TABLE 4 The segmentation results on the EBD dataset using different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1 (%)

UNet 96.98 98.11 81.54 95.82 81.76 84.06

Attention U-Net 95.57 96.63 75.08 95.41 81.84 84.51

Swin-Unet 96.02 95.55 77.73 96.08 80.63 85.72

SCUNet 94.49 95.70 70.69 94.32 77.33 81.31

BAF-Net(ours) 97.60 98.17 84.98 97.52 86.76 91.10
FIGURE 5

Examples of the predicted results using five different models on the SD dataset. From the 1st column to 7th column: the original images, the
predicted results using the U-Net, attention U-Net, Swin-UNet, SCUNet, the proposed model and ground truth (GT), respectively.
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PA, PP, PS, IoU and F1 scores of the SU-Net-MSFF-FSFF are

98.94%, 96.62%, 97.14%, 99.42%, 95.68% and 96.98%, respectively.

Compared with the SU-Net-MSFF, PR, PS, IoU and F1 score of the

SU-Net-MSFF-FSFF model are increased by 0.24%, 0.06%, 0.05%

and 0.10%, respectively. Finally, we experiment BAF-Net by fusing

the output features of the decoder in the MSFF and FSFF branches

to the BAF modules. The results show that PA, PR, PP, PS, IoU and

F1 score of BAF-Net are 98.98%, 6.82%, 97.20%, 99.43%, 95.86%

and 97.01%, respectively, which are increased by 0.04%, 0.2%,

0.06%, 0.01%, 0.18% and 0.03%, respectively. From the

segmentation results, we can see that the addition of the Swin-

Trans-Conv block expands the receptive field and enhances the

feature extraction ability of SU-Net, enabling it to obtain different

levels of information at the same time. The full-resolution features
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enable the proposed model to retain image local details. By

combining multi-scale information and full scale information, it

can extract deeper structural information. Therefore, the

combination of the three modules can obtain the best performance.
3.4 Discussion

The above analysis shows that the segmentation results of these

deep learning-based segmentation models are suitable. Compared with

the classical methods based on the variational statistics theory (Costa et

al., 2019; Fang et al., 2019a; Fang et al., 2019b; Gao and Lin, 2019; Liu

et al., 2020; Fang et al., 2021a; Fang et al., 2021b; Liu et al., 2021; Ward

et al., 2021), the deep-learning-based models can obviously obtain
TABLE 5 The segmentation results on the HPL dataset using different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1 (%)

U-Net 99.09 98.51 95.84 99.02 96.11 97.07

Attention U-Net 99.21 97.69 96.34 99.44 95.53 97.01

Swin-UNet 98.63 97.57 92.40 98.79 92.52 94.91

SCUNet 98.88 96.69 94.84 99.21 93.90 95.76

BAF-Net(ours) 99.30 97.32 97.35 99.60 96.12 97.34
FIGURE 6

Examples of the predicted results using five different model on the EBD dataset. From the 1st column to 7th column: the original image, the
predicted results using the U-Net, attention U-Net, Swin-UNet, SCUNet, and our model, respectively.
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better classification results. In our work, to capture the long-range

dependencies between different pixels, we propose a bidirectional

adaptive attention fusion network called BAF-Net by exploring an

adaptive attention mechanism to extract multi-scale and full-scale

features simultaneously. Specifically, we first design an MSFF branch

based on the encoder-decoder structure, which can not only extract

local information of the target, but also learn the spatial attention to

increase the receptive field. To further retain the boundary information

of the segmented object, we propose a FSFF branch, and design

adaptive bidirectional attention modules to achieve the bidirectional

connection between the MSFF module and the FSFF module.

The results of the ablation experiment in Table 7 shows that

progressive network such as SU-Net, SU-Net-MSFF, SU-Net-
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MSFF-FSFF and BAF-Net can improve the predicted performance

of the baseline (SU-Net). Compared with the baseline, three models

by progressively adding the MSFF, FSFF and BAF modules increase

mIoU by 0.28%, 0.33% and 0.51%, respectively, and F1 score

increased by 0.02%, 0.02% and 0.36%, respectively. From the

segmentation results, it can be seen that BAF-Net has achieved

the best performance. Compared with the baseline, the mIoU and

F1 score of BAF-Net reaches 95.86% and 97.01%, respectively.

Although the proposed BAF-Net can obtain better performance

on the four pepper leaf datasets, there are disadvantages in this

work. (1) In the training process, the epoch number in our model is

set to 60. Therefore, we need explore a schema to stop the training

process for the deep learning-based model automatically. (2) Our
TABLE 6 The segmentation results on the pepper leaf dataset using different models.

Model PA(%) PR(%) PP(%) PS(%) mIoU(%) F1 (%)

U-Net 98.40 98.59 89.70 98.37 91.43 93.94

Attention U-Net 97.73 97.51 86.28 97.76 89.31 91.55

Swin-UNet 97.48 97.06 85.07 97.54 86.87 90.67

SCUNet 97.00 96.88 82.40 97.01 86.32 89.06

BAF-Net(ours) 98.53 98.62 90.57 98.52 91.44 94.42
FIGURE 7

Examples of the predicted results using five different model on the HPL dataset. From the 1st column to 7th column: the original image, the predicted
results using the U-Net, attention U-Net, Swin-UNet, SCUNet, and our model, respectively.
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model is supervised learning, which requires many training

samples. Accordingly, in our future work, we will focus on the

semi-supervised or self-supervised segmentation methods to reduce

the requirements for training samples.
4 Conclusion

In our work, we propose a bidirectional adaptive attention

fusion network for automatic segmentation of pepper leaves. The

proposed model consists of the MSFF branch with the like-U-Net

network structure, the FSFF branch, and the BAF modules with an

adaptive attention mechanism. This MSFF branch fuses the Swin-

Transformer-based and CNN-based modules to construct the Swin-

Trans-Conv block, which replaces the convolution layer of the

encoder of U-Net to expand the receptive field. In the MSFF branch,

the CNN-based layer can extract the local image features while the

Swin-Transformer-based module is used to extract the long-range

dependencies of the channel and spatial information to expand

receptive field. The FSFF branch performs multiple convolution

layers keeping the same size with the original image, which is used

to retain the boundary information and detail information of the

segmented object. In addition, the BAF modules are used to fuse

the output features of the MSFF and FSFF branch, which output the

corresponding features for each branch. Compared with the existing

model, our model obtain the highest evaluation indices on four

pepper leaf datasets. In addition, the ablation experiment shows that

the proposed three modules including MSFF, FSFF and BAF are

effective. In the future, we will explore a weak-supervised model for

pepper leaf segmentation since the small dataset may cause over-

segmentation. Meanwhile, we study the construction of loss

function and the method for augmentation dataset.
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TABLE 7 Comparison of pepper segmentation results of four models on the dataset.

Model MSFF FSFF BAF PA% PR% PP% PS% IoU% F1%

SU-Net 98.86 96.52 96.80 99.35 95.35 96.66

SU-Net-MSFF √ 98.94 96.87 96.90 99.36 95.63 96.88

SU-Net_MSFF-FSFF √ √ 98.94 96.62 97.14 99.42 95.68 96.98

BAF-Net √ √ √ 98.98 96.82 97.20 99.43 95.86 97.01
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