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quality traits in guava (Psidium
guajava L.)
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Guriqbal Singh Dhillon2, Navdeep Singh4 and Sujata Thakur2

1Department of Fruit Science, Punjab Agricultural University, Ludhiana, India, 2School of Agricultural
Biotechnology, Punjab Agricultural University, Ludhiana, India, 3Krishi Vigyan Kendra, Guru Angad Dev
Veterinary and Animal Sciences University, Barnala, India, 4Department of Plant Breeding and
Genetics, Punjab Agricultural University, Ludhiana, India
Guava (Psidium guajava L.) is an important fruit crop of the Indian sub-continent,

with potential for improvements in quality and yield. The goal of the present

study was to construct a genetic linkage map in an intraspecific cross between

the elite cultivar ‘Allahabad Safeda’ and the Purple Guava landrace to identify the

genomic regions responsible for important fruit quality traits, viz., total soluble

solids, titratable acidity, vitamin C, and sugars. This population was phenotyped in

field trials (as a winter crop) for three consecutive years, and showed moderate-

to-high values of heterogeneity coefficients along with higher heritability

(60.0%–97.0%) and genetic-advance-over-mean values (13.23%–31.17%),

suggesting minimal environmental influence on the expression of fruit-quality

traits and indicating that these traits can be improved by phenotypic selection

methods. Significant correlations and strong associations were also detected

among fruit physico-chemical traits in segregating progeny. The constructed

linkage map consisted of 195 markers distributed across 11 chromosomes,

spanning a length of 1,604.47 cM (average inter-loci distance of 8.80 markers)

and with 88.00% coverage of the guava genome. Fifty-eight quantitative trait loci

(QTLs) were detected in three environments with best linear unbiased prediction

(BLUP) values using the composite interval mapping algorithm of the BIP

(biparental populations) module. The QTLs were distributed on seven different

chromosomes, explaining 10.95%–17.77% of phenotypic variance, with the

highest LOD score being 5.96 for qTSS.AS.pau-6.2. Thirteen QTLs detected

across multiple environments with BLUPs indicate stability and utility in a future

breeding program for guava. Furthermore, seven QTL clusters with stable or

common individual QTLs affecting two or more different traits were located on

six linkage groups (LGs), explaining the correlation among fruit-quality traits.
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Thus, themultiple environmental evaluations conducted here have increased our

understanding of the molecular basis of phenotypic variation, providing the basis

for future high-resolution fine-mapping and paving the way for marker-assisted

breeding of fruit-quality traits.
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Introduction

Guava (Psidium guajava L.) is a commercially cultivated

member of the Myrtaceae family (Grattapaglia et al., 2012).

Guava is indigenous to tropical America and is now flourishing

in the Indian sub-continent (Nimisha et al., 2013). India enjoys a

prime location for guava production. Guava fruit is popularly

known as the “apple of the tropics” and is sometimes referred to

as a “poor man’s apple” due to its availability, high nutritive value,

and affordable prices (Sanda et al., 2011). It is the one of the most

popular fruits among consumers due to its high palatability and

sweet–acidic taste (Pedapati et al., 2014). The ascorbic acid content

of guava fruit is five times higher than that of citrus fruits

(Hassimotto et al., 2005). Owing to its high nutraceutical value,

guava fruit is the best option for providing nutritional security for

people in developing countries (Kumar et al., 2020). In addition,

guava is very profitable, produces large yields, and can also be

grown satisfactorily even in adverse soil and climatic conditions

(Pommer and Murkami, 2009).

Fruit quality is a key factor for guava consumption and

consumer acceptance. Fruit quality is itself not a trait; it is a

phenomenon comprising the complex interactions of many

physio-chemical fruit traits such as total soluble solids, titratable

acidity, vitamin C, and sugars. The priority for future guava
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breeding programs is therefore to develop cultivars with good

fruit quality, including high levels of TSS, good sugar–acid blend,

high vitamin-C content, higher lycopene content, good pectin

content, and good flavor (Negi and Rajan, 2007). By contrast,

there is a little merit in improving yield (Dinesh and Vasugi,

2010). For the continual genetic improvement of guava, diversity

at the genomic level is required (Ritter, 2012; Singh et al., 2018).

Hybridization breeding enables the exploitation and transference of

alleles from different genetic backgrounds for the development of

better recombinants (Sohi et al., 2022). The traditional breeding of

fruit crops is expensive, time consuming, and constrained by a long

juvenile phase (Longhi et al., 2013). Marker-assisted breeding

(MAB), or genomics-assisted breeding (GAB), offers an

alternative approach to the traditional breeding of fruit crops with

a long juvenile phase, allowing breeders to select fruit-quality-

related traits at the seedling phase (Varshney et al., 2005; Kole

et al., 2015; Baumgartner et al., 2016).

A comprehensive understanding of the genetic determinism of

fruit quality is necessary to facilitate the breeding of new varieties of

fruit crops (Gmitter et al., 2007; Mohsenipoor et al., 2010).

Molecular marker technology combined with genetic-linkage

mapping and quantitative trait locus (QTL) mining has led to the

understanding of the genetic architecture and inheritance of

underlying genes affecting quantitative traits (Yin et al., 2003;

Hasan et al., 2021). This strategy enhances the possibilities of

locating desirable alleles affecting economically important traits in

fruit crops (Soto-Cerda and Cloutier, 2012). Trait mapping helps

with the efficient and rapid selection of elite breeding lines and

speeds up the development of novel cultivars compared with

conventional breeding by uncovering masked interesting alleles

from related and unrelated species to facilitate targeted

introgression (Singh et al., 2014; Hasan et al., 2021). There are

only a few reports of QTLs (quantitative trait loci) controlling bio-

chemical traits in guava (Valdés-Infante et al., 2003; Rodrıǵuez

et al., 2007; Ritter et al., 2010; Padmakar et al., 2016). In recent

years, simple sequence repeats (SSR) markers in combination with

random amplified polymorphic DNA (RAPD), amplified fragment

length polymorphism (AFLP), and sequence-related amplified

polymorphism (SRAP) markers have been utilized for the genetic

mapping of guava (Lepitre et al., 2010; Ritter et al., 2010; Padmakar

et al., 2015). Due to the abundance of microsatellites throughout all

the genomic components of eukaryotic organisms (Kalia et al.,

2011), and features such as their multiallelic nature, automation,
frontiersin.org
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ease of detection, reproducibility, co-dominance, and capability for

high-throughput genotyping (Liu S et al., 2013; Kumar et al., 2020),

SSRs are still the chosen markers in most of the marker-assisted

breeding programs in horticultural crops (Ritter, 2012; Nimisha

et al., 2013).

Guava is still considered an orphan crop with reference to its

genomic and /or genetic information (Mittal et al., 2020; Sohi et al.,

2022). Recent advancements in next-generation sequencing (NGS)

have considerably accelerated the discovery of SSRs, short insertions

and deletions (InDels), and single-nucleotide polymorphism (SNP) as

PCR-ready genome-wide markers through comparative

transcriptomics in guava (Thakur et al., 2021). Thakur et al. (2021)

identified abundant structural variations such as SSRs, SNPs, and

InDels spread across the whole genome, which will be highly useful

in developing functional markers for guava breeding. InDels were

found to bemore polymorphic thanmicrosatellite markers (Liu B et al.,

2013; Wu K et al., 2014) and received more attention because of their

co-dominant inheritance, reproducibility, and easy-to-use nature (Jain

et al., 2019). Kompetitive allele-specific PCR (KASP) is a fluorescence-

based SNP genotyping platform efficient enough that the need for

sequencing-based mapping is avoided. It utilizes the abundance of

polymorphic sites to generate high-density linkage maps. (Semagn

et al., 2014; Kaur et al., 2020). Thus, it has potential to increase the

precision of gene tagging for the traits controlling fruit quality.

The availability of transcriptomics-based genome-wide markers

lays the groundwork for the improvement of quality and agronomic

traits in fruit by gene mapping in biparental populations, thus

making genomic selection possible for guava. Accordingly, in this

study, genome-wide InDels, KASP, and SSR markers were utilized

to construct a linkage map in ‘Allahabad Safeda’ × Purple Guava

and identify QTLs associated with fruit-quality traits.
Materials and methods

Plant material

A total of 125 F1 (first filial generation) plants derived from

‘Allahabad Safeda’ × Purple Guava (Singh, 2017), maintained at the

college orchard of the Department of Fruit Science, Punjab
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Agricultural University, Ludhiana, were phenotyped for the

computation of fruit–trait segregation and genotyped for the

establishment of marker–trait association.
Development of mapping population

Guava cultivars showing contrasting fruit-quality traits were

selected as parents for hybridization (Figure 1). Six female trees

aged 8–10 years were pollinated with the pollen of three male trees

(aged 10 years) grown in the same orchard to develop the hybrid

population (Sohi et al., 2022). The female flowers were emasculated

at the balloon flower stage after removing the petals in the evening

and bagging them to avoid visits by pollinators. The next morning,

the emasculated female flowers were pollinated by hand between

08:00 and 10:00 using pollen from the male parent. Extracted seeds

from fruits harvested at the fully-ripe stage were sown in polythene

bags. Three-month-old seedlings were transplanted at a spacing of

6 m (row-to-row) × 3 m (plant-to-plant) during 2015. Trees were

irrigated using the furrow irrigation method and weeding was

performed at regular intervals. Fertigation dosages and other

agricultural practices were followed as recommended for

this region.
Evaluation of fruit physio-chemical traits

Fruits free from visual blemishes were randomly harvested at

the color-break stage from each F1 hybrid along with their parents

for three consecutive years. Winter fruits, picked from November to

January, are free from fruit fly maggots. To improve the precision of

the phenotypic evaluation, fruit were sampled only from winter

crops and taken immediately to the lab for biochemical analysis.

Between 5 and 15 fruits were sampled (using muslin cloth) from

each tagged plant for analysis of the following biochemical

characteristics) in order to identify the relevant QTLs: total

soluble solids (TSS), titratable acidity (TA), vitamin C (VC), total

sugar content (TS), reducing sugars (RS), and non-reducing sugars

(NRS). The juice of fully mature fruits was strained through muslin

cloth and thoroughly stirred for the measurement of TSS is in
FIGURE 1

Phenotypic appearance of ‘Allahabad Safeda’ and Purple Guava.
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degrees Brix (°B) with the help of a digital hand refractometer (at

20°C with correction chart). TA (%) was measured by titration of

2 mL fruit juice against a standardized N/10 Sodium Hydroxide

(NaOH) solution, using phenolphthalein dye (two drops) as an

indicator to obtain an end point (persistence of light pink color for

at least 2 seconds), and expressed as a percentage of citric acid.

Ascorbic acid content (vitamin C) was estimated from guava pulp

using 2,6-dichlorophenol indophenols dye (DCPIP) visual titration

assay involving a reduction reaction. Briefly, 5 g of the fruit sample

was ground with about 25 mL of 4% oxalic acid. The filtrate solution

was passed through Whatman No. 4 filter paper, and was collected

in a 50 mL volumetric flask. The resulting solution was titrated

against a standard dye until a rose pink color persisted for 5

seconds. The amount of ascorbic acid was expressed as μg/kg of

fresh mass (AOAC, 2000).
Sugars (%)

For the measurement of sugars, 5 mL of juice extract was placed

in a 100 mL beaker, and 2 mL of lead acetate (45%) was added. The

resulting solution was kept at room temperature for 10 minutes.

After the incubation, 5 mL of potassium oxalate (22%) along with

distilled water was added to make a volume of 100 mL. It was then

filtered through Whatman’s filter paper No. 1. The percentage of

total sugar and reducing sugars was estimated using Lane-Eynon’s

titration methodology (Patel et al., 2013).
Reducing sugar (%)

For the measurement of reducing sugar, 25 mL filtrate out of a

100 mL solution was kept overnight after adding 5 mL hydrochloric

acid solution (60%), for complete hydrolysis. Samples were kept at

68°C in a water bath for 10 minutes. Thereafter, NaOH (10% and

0.1%) solution was used for neutralization, using phenol phthalein

drops as an indicator of the neutralization point. Total solution used

for titration was considered for calculating the percentage of

reducing sugars, employing the formula

RS   =   ((0:05=V1)� (V2=V3)� 100)
Total sugars (%)

The remaining filtrate was added to a burette for titration using

5 mL of heated Fehling solutions (A and B) then placed in a flask

and heated on a hot plate, using methylene blue dye as an indicator

with a brick red color as an end point. The values noted for titration

were used for calculating the percentage of total sugars with the

formula

TS   =   ((0:05=V1) �  (V2=V3) �  (V4=V1) �  100)

where V1 is the volume of filtrate used, V2 is the dilution made,

V3 is the volume of juice taken, and V4 is the final volume made.
Frontiers in Plant Science 04
Statistical analysis

The field experiment followed a completely randomized design

and the analysis of variance (ANOVA) was performed using the

‘stats’ package of R (version 3.1.3, https://www.r-project.org/) in R

v4.0.3 with p ≤0.05 and means separated using the least significant

difference (LSD) test. Adjusted values on the basis of ANOVA were

calculated by fitting linear mixed effects models in lme4 package v

1.1–26 (Bates et al., 2015) in R v4.0.3 (R Core Team, 2019) using

Yik = m + Yeari + Linek + ϵik

where Yik is the trait of interest, μ is the mean effect, Yeari is

the effect of the ith year, Linek is the effect of the kth line, and Ɛik is
the error associated with the ith year and the kth line, which is

assumed to be normally and independently distributed, with a

mean of zero and homoscedastic variance (s2). For the best linear

unbiased predictions (BLUPs) model, all the effects were

considered as random effects. The genotypic, phenotypic, and

environmental coefficient of variation was categorized according

to (Deshmukh et al., 1986) and was considered as low at<10%,

moderate at 10–20%, and high at ≥20%. Heritability percentage

was categorized as suggested by Singh (2001) and was considered

as low at< 40%, medium at 40–59%, moderately high at 60–79%,

and very high at ≥ 80% (Allard, 1960). Genetic advance over mean

(GAM) was categorized as high when at<20%, moderate at 10–

20%, and low at< 10% (Johnson et al., 1955). The correlation of

different traits was studied with simple pairwise Pearson’s

correlations among traits.
Principal component analysis and
structural equation modeling

The association among different traits was identified by

principal component analysis (PCA) using FactoMineR v2.4 (Lê

et al., 2008) and factoextra v1.0.7 (Kassambara and Mundt, 2020) in

R v4.0.3. The principal components were plotted as biplots to study

the relationship among physico-chemical traits of the three

environments and BLUPs for the identification of reduction in

environmental effects in fitted values. Structural equation modeling

(SEM) in the package lavaan v 0.6–7 (Rosseel, 2012) was calculated

and visualized using the package semPlot v1.1.2 (Epskamp, 2019) to

identify the direct and indirect contributors to TSS. Cluster analysis

was performed using the K-means cluster analysis method with R

software (Idlette-Wilson, 2018).
Genotyping

Genomic DNA extraction
High-quality genomic DNA of 125 F1 individuals and their

parents was extracted through the procedure described by Doyle

and Doyle (1990) with the addition of 2% polyvinyl pyrrolidone

(PVP) in cetyltrimethylammonium bromide (CTAB) buffer to

account for polyphenolic compounds from the DNA samples.
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SSR/EST-InDels assay

A total of 106 SSR primer pairs, six fruit-color specific markers

from the published literature (Sohi et al., 2022), and 108 primer pairs

(15 genomic SSR primer pairs and 93 comparative RNA-sequencing

InDel-based primers) designed from transcriptome data (Thakur et al.,

2021) were used for the present study. PCR reaction mixture for EST-

InDel assay comprised of 11 μL reaction with 2 μLDNA template (5ng/

μL), 5 mM forward primer, 5 μM reverse primer, 0.5 μl BSA (100 mg/

ml), 0.5 μl PVP (100 mg/ml), and 2 μL H2O (nuclease free). The

reaction was performed in 384- well thermal cycler. DNA amplification

was performed as follows: denaturation at 95°C for 3 min; 5 cycles of

95°C for 30 s, 55°C for 1 min, and 72°C for 1 min; 30 cycles of 95°C for

20 s, 55°C for 30 s, and 72°C for 30 s; and a final extension cycle of 72°C

for 5 min and 16°C indefinitely. The amplified DNA fragments were

resolved on ethidium bromide (10 mg/mL), stained with 6% non-

denaturing polyacrylamide gel electrophoresis (PAGE; CBS, Scientific)

for a high resolution, and visualized under a UV-transilluminator

based gel documentation system after initial running at 300 V for 2 h.

The molecular weight of amplicons from SSR/EST-InDels was

determined based on their migration relative to a 50 bp DNA ladder.

Polymorphic markers were scored as A (heterozygous in the female

parent), B (heterozygous in the male parent), H (heterozygous in both

parents), and X (for missing/non-amplified alleles).
EST-SNP/KASP assay

KASP assay was performed in a reaction mixture of 4.2 μL [2.2

μL DNA (5ng/μL), 1.944 μL of 2X KASP mix, and 0.054 μL primer

mix] in a 384-well format thermal cycler (Applied Biosystems)

following PCR conditions: hot-start activation at 95°C for 15 min,

followed by 10 touchdown cycles (95°C for 20 s then touchdown at

64°C initially and decreasing by 0.8°C per cycle from cycle 2), and

then 30 additional cycles of annealing (95°C for 20 s then 57°C for

60 s). If necessary, 5 to 10 additional annealing cycles were followed

for better amplification and cluster formation. Fluorescence from

amplicons was visualized using a 384-well plated TECAN infinite

F200 PRO plate reader at room temperature. The graphical output

(s) was generated and scored using Klustercaller software (version

2.22.0.5). Based on the fluorescence signal [FAM (Fluorescein

amidites) and HEX (Hexachloro-fluorescein)], homozygous alleles

on the X-axis (FAM) were scored as A, homozygous alleles on the

Y-axis (HEX) scored as B, whereas heterozygotes alleles (FAM/

HEX) on the X–Y plot were scored as H. ROX (6-carboxyl-X-

Rhodamine) was used as passive dye for signal normalization.
Statistical analysis

Linkage map construction
A genetic linkage map was constructed for 125 F1 progenies of

‘Allahabad Safeda’ and Purple Guava with the help of QTLIci mapping
Frontiers in Plant Science 05
software version 4.1 (Meng et al., 2015). The genotypic scores from

different marker systems were used for calculating the genetic distances

in cM. The allocation of markers to different linkage groups was

performed via pairwise analysis with a specifiedminimum logarithm of

odds (LOD) score of 3.0 and maximum recombination frequency of

0.3 (regression mapping algorithm and Kosambi’s mapping function).

Markers were first partitioned into linkage groups based on the

information in the published literature (Thakur et al., 2021; Sohi

et al., 2022). Pearson’s chi-squared test was performed to evaluate

the goodness of fit to the expected 1:1 segregation ratio for each locus

(p-value threshold of 0.05). Markers showing distortion

inconsistencies, or conflicted recombination frequencies within

linkage group and/or with adjacent linkage groups, were discarded.

The linkage map was graphically displayed using the MapChart

program, v. 2.32 (Voorrips, 2002), according to the user’s manual.

The genome coverage (GC) of linkage groups was estimated using the

method of Fishman et al. (2001) and method 4 of Chakravarti

et al. (1991).
QTL analysis (establishment of marker–
trait association)

QTL mapping was conducted with multiple regression analysis

for composite interval mapping (CIM) using the (chromosome

segment substitution lines) with chromosome segment substitution

lines (CSL) functionality of QTL IciMapping version 4.1 software

(Meng et al., 2015). Furthermore, the allelic effects were investigated

to identify significantly associated markers with phenotypic data via

a non-parametric Kruskal–Wallis test (with a stringent significance

level of 0.005) for studying the importance of individual alleles.

Stepwise regression was used to determine the percentages of

phenotypic variance explained (PVE) (R2) by individual QTL and

their respective additive effects at the likelihood of odds ratio peaks.

A threshold LOD score (3) was calculated using permutation tests

(1,000 permutations in each case) with a 5% significance level.

Negative additive effects indicated that Purple Guava alleles

increased the phenotypic trait values, whereas positive additive

effects meant that ‘Allahabad Safeda’ alleles increased the

phenotypic trait values. QTLs detected in more than one

environment were considered as stable and significant. If a

chromosomal and/or overlapping interval contained more QTLs

for multiple traits, then these QTLs were considered to form a QTL

cluster. The overlapping confidence intervals of these QTLs were

regarded as the confidence intervals of the QTL clusters. In

addition, QTLs detected at phenotypic variation explained (PVE)

> 10% and LOD > 3.0 were considered as major QTLs and others as

minor QTLs. QTLs were assigned names beginning with an initial

letter “q” followed by the trait name (in capital letters), parentage of

the alleles, location of experiment, and linkage group. A number

was added if two or more QTLs were identified in the same linkage

group. For example, if two QTLs for TSS were detected on LG6, they

were named qTSS.PG.pau-6.1 and qTSS.AS.pau-6.2.
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Differential expression analysis of genes
associated with QTLs for TSS, TS, TA, VC,
RS, and NRS

RNA-sequencing reads for ‘Allahabad Safeda’ and Purple Guava

mixed fruit tissue and 3 days’ ripe fruit tissue were mapped to the draft

genome assembly of guava using bowtie2 (Thakur et al., 2021). Several

of the 58 QTLs identified for TSS, TS, RS, NRS, TA, and VC were

found in the vicinity of annotated genes. The number of reads mapping

to expressed genes in ‘Allahabad Safeda’ and Purple Guava were

converted into log scale and are presented in the form of heat map.
Results

Evaluation of the fruit physio-chemical traits of parents

‘Allahabad Safeda’ (AS) and Purple Guava (PG) differed markedly
Frontiers in Plant Science 06
for fruit bio-chemical traits, and showed stability for these traits

across the different environments (Table 1). To enhance the accuracy

and mapping of stable QTLs across the different environments, linear

mixed effects models were used to obtain BLUPs (genotypes as

random effects) of fruit quality traits, accounting for genotype by

environment interaction (G × E) effect. Among 125 F1 seedlings, 114

seedlings produced sufficient fruits for evaluation. The F1 population

shows significant variation for fruit-quality traits across the different

environments [BLUPs, 2016–17 (E1), 2017–18 (E2), and 2018–19

(E3)]. Although the mean values of TSS, TA, VC, TS, RS, and NRS

content in F1 seedlings varied to some extent from year to year,

normal distributions were observed in the studied period. Across the

different environments, overall mean values of TSS, TA, and VC were

highest in E3. Each phenotypic trait showed a little deviation from

their normal data distribution across the studied environments

(Figure 2), showing minute G × E effects suggestive of their

polygenic nature and quantitative inheritance.
TABLE 1 Descriptive statistics of the physio-chemical traits of parents and the F1 population.

Trait ENV AS PG F1 population

Population Mean SD CV Skewness Kurtosis

TSS (°B) BLUPs 11.39 09.21 7.97–12.63 10.61 1.14 0.11 –0.22 –0.93

E1 11.39 09.13 7.73–13.62 10.53 1.31 0.12 –0.08 –0.80

E2 11.40 09.18 7.87–13.06 10.65 1.18 0.11 –0.17 –0.88

E3 11.43 09.21 8.08–12.60 10.67 1.14 0.11 –0.29 –0.90

TA (%) BLUPs 00.66 00.61 0.49–0.79 0.62 0.08 0.13 –0.10 –0.97

E1 00.63 00.61 0.45–0.95 0.63 0.11 0.17 0.69 0.69

E2 00.66 00.60 0.45–0.81 0.61 0.09 0.15 0.11 –0.76

E3 00.70 00.60 0.45–0.88 0.63 0.10 0.16 0.17 –0.63

VC (mg/100 g) BLUPs 224.94 191.01 183.69–239.99 206.21 13.22 0.06 0.66 –0.46

E1 220.45 190.07 181.46–241.57 206.17 13.64 0.07 0.51 –0.53

E2 223.81 188.76 181.32–242.20 206.31 14.21 0.07 0.64 –0.28

E3 231.86 193.17 182.86–239.31 206.61 13.99 0.07 0.77 –0.21

TS (%) BLUPs 10.32 09.33 8.34–10.76 9.69 0.62 0.06 –0.11 –1.01

E1 10.26 09.19 6.85–11.67 9.62 1.00 0.10 –0.18 –0.61

E2 10.43 09.21 7.02–12.41 9.80 0.93 0.10 –0.07 –0.13

E3 10.91 09.22 7.09–12.20 9.67 1.12 0.12 –0.26 –0.73

RS (%) BLUPs 06.46 02.82 2.82–7.28 6.03 0.62 0.10 –1.41 5.01

E1 06.37 02.43 2.43–7.81 6.06 0.74 0.12 –1.00 3.91

E2 06.54 02.28 2.28–8.20 6.03 0.87 0.14 –0.81 2.52

E3 06.66 02.21 2.21–7.90 5.97 0.82 0.14 –0.95 2.85

NRS (%) BLUPs 03.87 05.59 2.98–5.59 3.67 0.43 0.12 0.79 2.06

E1 03.89 06.77 1.36–6.94 3.56 0.96 0.27 0.76 1.26

E2 03.89 06.94 2.31–6.94 3.76 0.87 0.23 0.73 0.83

E3 04.25 07.01 1.10–7.25 3.72 1.08 0.29 0.57 0.90
fro
TSS, total reducing sugars; TA, Titratable acidity; VC, vitamin C; TS, total sugars; RS, Reducing sugars; NRS, Non-reducing sugars; ENV, Environments; E1 , 2016–17; E2 , 2017–18; E3 , 2018–19;
BLUP, best linear unbiased prediction; SD, standard deviation; CV, coefficient of variation significant at a< 0.05.
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Estimates of coefficients of variation,
heritability, and genetic advance

The genetic variability parameters genotypic coefficient of

variance (GCV) and phenotypic coefficient of variance (PCV) are

characterized as high at >20%, moderate at 10%–20%, and low at

0%–10%. Moderate GCV (16.13%) and PCV (19.59%) values were

recorded for TA and NRS, respectively (Table 2), whereas lower

GCV and PCV values were recorded for VC and TS. Environmental

coefficient of variance (ECV) for all the traits was less than 10%,

except for a higher value observed for NRS (21.63%). High

heritability was observed for TSS (97.00%), TA (88.00%), VC

(98.00%), and RS (86.00%), whereas moderate-to-high heritability
Frontiers in Plant Science 07
was observed for TS (75.00%) and NRS (60.00%). Interestingly, TA

(31.17%), TSS (22.22%), RS (21.25%), and NRS (24.21%) exhibited

high GAM values, whereas VC (13.23%) and TS (13.28%) exhibited

moderate GAM values.
Pairwise correlation and regression analysis

Pearson’s pairwise correlation was studied to identify the degree

of correlation among fruit quality traits (Figure 2). There was a

highly significant negative correlation between TSS and TA for

BLUPs (–0.290), E1 (–0.216), E2 (–0.278), and E3 (–0.264), whereas

a significant positive correlation was obtained between TSS and VC
FIGURE 2

Evaluation of F1 hybrids of guava across three environments along with best linear unbiased predictions (BLUPs) for fruit physio-chemical traits.ENV,
environment; E1 , 2016–17; E2 , 2017–18; E3 , 2018–19; BLUP, best linear unbiased prediction; TSS, total reducing sugars; TA, titratable acidity; VC,
vitamin C content; TS, total sugars; RS, reducing sugars; NRS, non-reducing sugars.
TABLE 2 Descriptive statistics and estimates of genetic variability parameters of fruit physio-chemical traits among F1 hybrids of guava across
different environments.

Trait AS PG Variation in the F1 population

Mean Mean Mean LSD (%) CV (%) GCV (%) PCV (%) ECV (%) h2 (%) GAM (%)

TSS (°B) 11.40 9.18 10.61 0.54 3.11 10.95 11.12 3.13 97.00 22.22

TA (%) 0.66 0.61 0.62 0.08 8.77 16.13 17.19 0.00 88.00 31.17

VC (mg/g) 225.26 190.75 206.21 5.72 1.70 6.49 6.56 1.70 98.00 13.23

TS (%) 10.48 9.24 9.69 1.02 7.49 7.44 8.59 7.51 75.00 13.28

RS (%) 6.51 2.43 6.03 0.70 7.65 11.12 12.00 7.60 86.00 21.25

NRS (%) 3.98 6.58 3.67 1.00 21.70 15.17 19.59 21.63 60.00 24.21
fr
TSS, total reducing sugars; TA, Titratable acidity; VC, vitamin C; TS, total sugars; RS, Reducing sugars; NRS, Non-reducing sugars; GCV, genotypic coefficient of variance; PCV , phenotypic
coefficient of variance; ECV , residual/environmental coefficient of variance; h2 , heritability broad sense; GAM , genetic advance as percent of mean; CV , coefficient of variation significant at
a< 0.05 (CV); LSD, least significant difference significant at a< 0.05.
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across the studied environments, viz., E1 (0.406), E2 (0.382), E3

(0.393), and BLUPs (0.393). The sugar components, i.e., TS and RS,

showed a significant positive correlation with TSS. There was a

highly significant negative correlation between RS and NRS but a

positive correlation between TS and RS. TA showed significant

correlation with TS for BLUPs (0.189) and E3 (0.194). Box-plots of

the adjusted means of the fruit bio-chemical traits across the

different environments are presented in Figure 2. Most of the

traits appear to be normally distributed; however, some trait–

environment combinations show skewed distributions, as

demonstrated by the lopsided boxplots. Prominent data skewness

was observed for TS and NRS in the first studied environment (E1).

The estimated distribution with BLUPs was in agreement with

observed distributions in different environments for most of the

traits. Sugar components, i.e., RS and NRS, showed completely

normal distribution, whereas the rest of the traits showed bimodal

data distribution across the different environments. TSS in different

environments, including BLUPs, shows a slight highest peak

between 10% to 12% and lowest peak between 8% to 10%.

Furthermore, the regression analysis shows that the TSS has

negative association with TA and positive association with VC,

TS, and RS. TSS has a somewhat linear relationship with NRS, as is

also evident from the correlation analysis (Figure 2). There was a

strong association among sugars (i.e., TS, RS, and NRS). Although

RS has a strong negative relationship with NRS, a similar type of

correlation between TSS and TA and between TSS and VC

was observed.
Principal component analysis, structural
equation modeling for multivariate
analysis, and clustering

The PCA offers details about traits by elucidating the

population’s maximum variability across environments. The eigen

vectors in the first two principal components (from PC1 to PC2)

explained 57.9% of the total variability across the environments,

showing a significant genotype by environment interaction (G × E).
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Overall, the first two dimensions of PCAs showed that TS was

highly dependent on TA and NRS and least dependent on VC and

RS (Figure 3A). Similarly, VC was highly dependent on RS.

However, TSS was dependent on all the studied traits, with the

most dependent variables being VC and RS. The principal

component analysis reveals that the TSS was dependent on all the

studied traits to different extents. SEM was performed to elucidate

the direct or indirect variables that determined the TSS. TA, RS, and

NRS had a small contribution toward TSS, while VC and TS were

the major direct contributors to TSS, with a positive effect on TSS.

Conversely, TA, RS, and NRS had negative effects on

TSS (Figure 3B).

A total of 114 hybrids were grouped into four clusters based on

fruit physico-chemical traits. A highly significant difference

(p<0.001) was observed among inter-clusters of F1 individuals.

We observed noticeable variability in the progeny for fruit quality

traits. In total, 26.31% of descendants were found in Cluster-1

(female parent with superior fruit quality) and 38.60% in Cluster-2

(male parent) (Table 3). Interestingly, Cluster-4 was characterized

by 18 descendants that had transgressive values compared to better

parent for TSS and TS. Also, Cluster-1 exhibited higher VC and

Cluster-2 had higher TA.
Construction of linkage map

We screened 328 SSR, SSR/InDels, and EST-SNP/KASP

markers for a parental polymorphism survey of ‘AS’ and ‘PG’,

revealing a polymorphism rate of 64.02% (i.e., in 210 out of 328

primer pairs). A linkage map consisting of 11 linkage groups (LGs)

was constructed using 195 polymorphic markers (76 EST-KASP, 77

SSRs, and 42 EST-InDeLs), spanning a total length of 1,604.47

centimorgan (cM) and with an average distance of 8.80 cM between

two adjacent markers (Table 4). LG4 was found to be the shortest

linkage group at 95.74 cM (Figure 4), whereas LG6 was found to be

the longest at 202.44 cM (Figure 4). The highest number of markers

mapped (40) was on LG6 and the lowest number (11) was on LG5.

The average length of LGs was 145.86 cM and the average interval
FIGURE 3

(A) Principal component analysis, and (B) multivariate analysis by structural equation modeling For (A), red, green, blue, and purple represent eigen
vectors for BLUPs, 2016–17 (E1), 2017–18 (E2), and 2018–19 (E3), respectively. For (B), red and blue color represent negative and positive
contribution, respectively.
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distance ranged from 5.19 cM (LG6) to 14.37 cM (LG10). Fifteen

SSR markers (4.57% of the total markers) showed a distorted

segregation at p = 0.01. The genetic map covered 88.00% of the

guava genome, with LG6 having the highest coverage at 95.00% and

LG5 having the lowest coverage at 83.00% (Table 4). Genotyping

followed by Graphical GenoTypes (GGT) analysis of 114 F1
individuals showed the highest proportion of PG introgressions

(69.23%) on Chr6 and the lowest (7.50%) on Chr1. However, no

introgression of the PG genome was observed on chromosomes 2, 7,

and 9. The proportion of introgressed Purple Guava segments

ranged from 15.2% to 49.7% in the F1 individuals. Our results

showed that the average rate of genome background recovery was

26.5% for ‘Allahabad Safeda’ and 32.83% for Purple Guava. The F1
progeny exhibited 39.19% heterozygosity (Figure 5).
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QTL mapping analysis of phenotypic data
in individual environments and BLUP-
values

Using the BIP (biparental populations) module of the ICIM-

ADD algorithm, the phenotypic values of the three different

environments and the BLUP values were used for QTL mapping.

A total of 58 QTLs (16 in BLUP, 14 in E1, 12 in E2, and 16 in E3)

associated with fruit-quality traits were identified, including 15 for

TSS, 7 for TA, 12 for VC, 7 for TS, 8 for RS, and 9 for NRS (Table 5).

These QTLs were mainly distributed on eight chromosomes with

the most QTLs (i.e., 44) having beneficial alleles derived from the

female parent ‘Allahabad Safeda’ (additive effect > 0), while the

other 14 QTLs possessed alleles derived from the male parent
TABLE 4 Overview of genetic linkage map of ‘Allahabad Safeda’ (AS) and Purple Guava (PG).

LG Total
markers (n)

LG
length
(cM)a

cM/
marker

Intervals
(n)

Minimum
intervals
(cM)

Maximum
intervals
(cM)

Average
intervals
(cM)

Average
Genome per

LG b

Genome
coverage/

LG c

1 13 125.86 9.68 12 4.07 20.67 10.48 146.82 0.86

2 17 125.44 7.38 16 1.75 23.27 7.84 141.12 0.89

3 19 147.02 7.74 18 0.95 18.12 8.17 163.36 0.90

4 14 95.74 6.83 13 1.71 14.57 7.36 110.46 0.87

5 11 102.66 9.33 10 6.37 13.93 10.27 123.2 0.83

6 40 202.44 5.06 37 0.00 21.62 5.19 212.82 0.95

7 16 127.97 7.99 15 2.18 23.69 8.51 144.99 0.88

8 13 153.45 11.80 12 5.79 23.49 12.79 179.03 0.86

9 20 151.35 7.57 19 2.18 14.39 7.96 167.27 0.90

10 15 201.19 13.41 14 1.78 21.39 14.37 229.93 0.88

11 17 171.35 10.08 16 2.55 18.71 10.70 192.75 0.89

Total 195 1,604.47 – 29.33 – – – – 0.88

Minimum 11 95.74 5.06 10 0 13.93 5.19 – –

Average 17.72 145.86 8.80 16.54 2.66 19.44 9.42 – –

Maximum 40 202.44 13.41 37 6.37 23.69 14.37 – –
aLength of LG constructed through QTLIci mapping.
bLength of LG estimated by the method of Fishman et al. (2001) and method 4 of Chakravarti et al. (1991).
cCalculated by dividing the observed LG length by the estimated genome length of the corresponding LG.
LG, linkage group.
TABLE 3 Phenotypic clustering of 114 F1 individuals along with their respective parents for fruit physio-chemical traits.

Cluster N TSS (°B) TA (%) VC (mg/g) TS (%) RS (%) NRS (%)

1* 30 10.62 ± 1.26b 0.59 ± 0.23d 208.61 ± 2.56a 9.69 ± 1.09b 5.84 ± 1.21d 3.83 ± 0.28a

2** 44 9.36 ± 1.46d 0.65 ± 0.21a 205.31 ± 3.25d 9.44 ± 2.01d 6.21 ± 1.33b 3.26 ± 0.58c

3 24 10.02 ± 1.35c 0.63 ± 0.05b 205.68 ± 1.69c 9.62 ± 1.33c 6.51 ± 0.89a 3.17 ± 1.23d

4*** 18 11.08 ± 1.21a 0.60 ± 0.14c 206.62 ± 4.21b 9.78 ± 1.01a 5.99 ± 0.99c 3.79 ± 0.98b

p 0.001 0.001 0.001 0.001 0.001 0.001
fr
*Allahabad Safeda, **Purple Guava, *** Transgressive segregants.
TSS, total reducing sugars; TA, titratable acidity; VC, vitamin C; TS, total sugars; RS, reducing sugars; NRS, non-reducing sugars. Superscripted alphabets (a-d) denotes the statistical significance
between clusters (at p <0.001).
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Purple Guava. A maximum of 22 QTLs were detected on

chromosome 6 and a minimum of two QTLs mapped on

chromosome 5. These QTLs explained approximately 10.58%–

17.85% of the phenotypic variation, with the LOD score ranging

from 3.01 to 5.96. The highest absolute additive effect value was 1.34

and was observed for the TSS trait (qTSS.AS.pau-6.2).
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Stability of QTLs over multiple
environments

The BLUP values effectively reduced the impact of

environmental differences. Considering QTLs detected using

BLUP datasets, 13 out of 16 were repeatedly detected in multiple
FIGURE 4

Genetic linkage groups (LGs) LG1 to LG5 of ‘Allahabad Safeda’ (AS) and Purple Guava (PG), and significant quantitative trait loci (QTLs) identified
through the BIP (biparental populations) module of the composite interval mapping (CIM) algorithm. Blue color indicates QTLs, while blue boxes (bar
graph) indicate the QTL clusters.
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environments or across different environments, while the others

could be regarded as environment specific. Five QTLs for TSS were

identified using BLUP data located on LG2, LG5, LG6, and LG11

(Table 5). qTSS.PG.pau-6.1 flanked by Pg_PC06_KASP66 and

Pg_PC06_KASP65 was detected in two individual environments,

E1 and E2, with 12.58%–15.23% of the total PVE. In addition,

qTSS.AS.pau-6.2 flanked by mPgCIR404 and mPgCIR392 was

detected in E1 and E2 with LOD scores of 4.12 and 3.25,
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respectively. Similarly, QTL qTSS.AS.pau-2, located on

chromosome 2 and flanked by Pg_PC02_KASP31 and

Pg_PC02_KASP32, was detected in environment E3 with a LOD

score of 3.69 and 13.33% PVE. Moreover, two QTLs associated with

TSS, qTSS.PG.pau-5 and qTSS.AS.pau-11, could be detected in E3,

and its position was localized within 14.01–21.41 cM and 15.99–

20.10 cM marker intervals, respectively. The QTL analysis revealed

that TA was controlled by seven QTLs. Among them, two loci were
TABLE 5 Summary of the significant quantitative trait loci (QTLs) detected through a composite interval mapping (CIM) algorithm in the mapping
population derived from the cross of guava cv. 'Allahabad Safeda' and 'Purple Guava'.

Trait ENV Chr QTLa Position Marker interval Interval
(cM) LODb PVEc ADD

Kruskal–
Wallis

analysisd

TSS

B 2 qTSS.AS.pau-2 # 17.28
Pg_PC02_KASP31–
Pg_PC02_KASP32

16.08–18.48 3.13 11.25 1.20 ****

B 5 qTSS.PG.pau-5 # 18.27
Pg_PC05_KASP56–
Pg_PC05_KASP57

16.28–20.25 3.07 13.64 –0.07 ****

B 6 qTSS.PG.pau-6.1 # 11.56
Pg_PC06_KASP66–
Pg_PC06_KASP65

10.99–22.12 3.01 13.64 –0.17 ***

B 6 qTSS.AS.pau-6.2 # 149.18 mPgCIR404–mPgCIR392 148.15–150.21 5.96 13.91 1.34 ****

B 11 qTSS.AS.pau-11 # 18.05
Pg_PC11_KASP111–
Pg_PC11_KASP112

15.99–20.10 3.56 12.01 0.06 ***

E1 3 qTSS.AS.pau-3 39.79
Pg_PC03_KASP38–
Pg_PC03_KASP35

37.02–42.56 3.13 13.77 1.11 ****

E1 6 qTSS.PG.pau-6.1 # 11.49
Pg_PC06_KASP66–
Pg_PC06_KASP65

10.96–12.01 3.02 12.58 –0.12 ****

E1 6 qTSS.AS.pau-6.2 # 149.14 mPgCIR404 –mPgCIR392 148.19–150.09 4.12 14.15 1.33 **

E2 6 qTSS.AS.pau-6.1 # 11.56
Pg_PC06_KASP66–
Pg_PC06_KASP65

10.86–12.26 3.25 15.23 1.26 **

E2 6 qTSS.AS.pau-6.2 # 149.13 mPgCIR404 –mPgCIR392 148.25–150.01 3.11 10.58 1.16 ***

(Continued)
FIGURE 5

Genotypic data of 195 polymorphic markers used to generate (A) a graphical genotype pattern for the 18 transgressive guava hybrids lines, (B) the
genetic background recovery rate of the female parent ‘Allahabad Safeda’ (AS), (C) the genetic background recovery rate of male parent Purple
Guava (PG), and (D) residual heterozygosity (%) Red indicates presence of the female-specific allele (A: recipient parent), blue indicates the presence
of the male-specific allele (B: Donor parent), gray indicates heterogeneous introgressions, and green indicates missing data.
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TABLE 5 Continued

Trait ENV Chr QTLa Position Marker interval Interval
(cM) LODb PVEc ADD

Kruskal–
Wallis

analysisd

E2 9 qTSS.AS.pau-9 67.14
Pg_PC09_KASP92–
Pg_PC09_KASP97

65.03–69.25 3.28 12.98 1.01 ***

E3 2 qTSS.AS.pau-2 # 17.15
Pg_PC02_KASP31–
Pg_PC02_KASP32

16.00–18.30 3.69 13.33 0.99 **

E3 1 qTSS.PG.pau-1 69.39 mPgCIR361–mPgCIR188 68.32–70.45 4.01 14.15 –0.29 ****

E3 5 qTSS.AS.pau-5 # 18.21
Pg_PC05_KASP56–
Pg_PC05_KASP57

15.26–21.16 3.03 13.74 1.25 ****

E3 11 qTSS.AS.pau-11 # 17.71
Pg_PC11_KASP111–
Pg_PC11_KASP112

16.02–19.40 4.33 13.62 1.08 ***

TA

B 2 qTA.AS.pau-2 # 77.55 mPgCIR157 - mPgCIR237 75.53–79.56 5.91 13.91 1.10 ****

B 6 qTA.AS.pau-6 # 108.97 AS/SG_InDel-16–AS/G5_InDel-3 107.98–109.96 3.20 13.27 1.32 ***

E1 1 qTA.AS.pau-1 61.10 mPgCIR8–mPgCIR361 59.16–63.03 3.39 13.25 1.15 ***

E1 3 qTA.AS.pau-3 143.66 AS/PL_InDel-10–AS/PL_InDel-18 142.56–144.75 3.05 13.19 0.87 **

E2 2 qTA.AS.pau-2 # 78.07 mPgCIR157 –mPgCIR237 75.98–80.15 3.01 12.56 0.52 ****

E3 1 qTA.AS.pau-1 68.67 mPgCIR361- mPgCIR188 66.31–71.03 3.18 12.78 0.19 ***

E3 6 qTA.AS.pau-6 # 109.39 AS/SG_InDel-16–AS/G5_InDel-3 108.54–110.24 3.69 14.05 –0.22 ****

VC

B 6 qVC.AS.pau-6.1 # 77.79 AS/PL_InDel-32–AS/PL_InDel-35 75.42–80.16 4.01 12.69 1.00 ***

B 6 qVC.PG.pau-6.2 # 176.34 mPgCIR285–mPgCIR418 171.15–181.52 3.81 12.88 –0.27 ****

B 11 qVC.AS.pau-11 93.55 mPgCIR10–mPgCIR19 92.09–95.01 4.02 13.35 1.10 *****

E1 1 qVC.PG.pau-1 123.00 mPgCIR246–mPgCIR243 121.02–124.98 3.32 13.47 –0.11 ***

E1 3 qVC.AS.pau-3 141.11 AS/PL_InDel-10–AS/PL_InDel-18 139.63–142.58 3.25 12.24 1.16 ***

E1 9 qVC.AS.pau-9 67.14
Pg_PC09_KASP92–
Pg_PC09_KASP97

66.25–68.03 3.41 12.98 0.87 ****

E2 1 qVC.AS.pau-1 # 18.62
Pg_PC01_KASP19–
Pg_PC01_KASP26

16.08–21.15 3.78 13.33 0.96 ****

E2 6 qVC.AS.pau-6.1 # 79.35 AS/PL_InDel-32–AS/PL_InDel-35 76.54–82.15 4.13 12.05 1.10 ****

E2 6 qVC.AS.pau-6.2 # 173.25 mPgCIR285 –mPgCIR418 165.24–181.26 3.08 13.54 0.58 **

E3 1 qVC.AS.pau-1 # 19.17
Pg_PC01_KASP19–
Pg_PC01_KASP26

16.32–22.02 3.69 14.42 1.00 ***

E3 6 qVC.AS.pau-6.1 # 77.77 AS/PL_InDel-32–AS/PL_InDel-35 74.12–81.42 4.12 13.54 –0.31 ****

E3 6 qVC.AS.pau-6.2 # 169.57 mPgCIR285 –mPgCIR418 162.89–176.24 3.89 14.21 0.11 ****

TS

B 6 qTS.AS.pau-6 # 48.80 AS/PL_InDel-30–AS/PL_InDel-3 46.85–50.74 4.11 13.18 0.78 ****

B 9 qTS.AS.pau-9 # 67.19
Pg_PC09_KASP92–
Pg_PC09_KASP97

64.25–70.12 4.15 13.09 0.65 ****

E1 1 qTS.PG.pau-1 19.78
Pg_PC01_KASP19–
Pg_PC01_KASP26

16.45–23.10 4.47 12.41 –0.21 ***

E1 2 qTS.AS.pau-2 118.25 AS/SG_InDel-12–AS/PL_InDel-34 115.37–121.12 4.31 11.02 0.39 ***

E2 6 qTS.AS.pau-6 # 48.58 AS/PL_InDel-30–AS/PL_InDel-3 46.12–51.03 3.65 11.48 0.87 ****

E3 6 qTS.AS.pau-6 # 49.62 AS/PL_InDel-30–AS/PL_InDel-3 48.12–51.12 3.41 12.29 1.21 ***

E3 9 qTS.AS.pau-9 # 68.58
Pg_PC09_KASP92–
Pg_PC09_KASP97

66.01–71.15 3.27 12.88 0.49 ****

RS B 2 qRS.PG.pau-2 # 115.85 AS/SG_InDel-12–AS/PL_InDel-34 113.25–118.45 3.02 12.20 –0.13

(Continued)
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repeatedly detected in multiple environments. qTA.AS.pau-2,

located on chromosome 2, was co-detected in the E2 and BLUP

datasets, explaining 12.56% and 13.91% of the phenotypic variation,

respectively. QTL qTA.AS.pau-6 was identified using the BLUP

dataset and was co-detected in E3 with a relatively high PVE

(14.05%). From the 12 QTLs identified for vitamin-C content, we

found two QTLs, qVC.AS.pau-6.1 and qVC.PG.pau-6.2, on LG6

using BLUP datasets, which were simultaneously co-detected in E2

and E3, explaining 12.05–13.54% and 13.54–14.21% of phenotypic

variation, respectively. q.TS.AS.pau-6 and qTS.AS.pau-9 were

repeatedly identified in at least two datasets within the marker

i n t e r v a l s o f A S / PL_ I nDe l - 3 0 -AS /PL_ I nDe l - 3 a nd

Pg_PC09_KASP92-Pg_PC09_KASP97. Notably, q.TS.AS.pau-6

had the greatest contribution for total sugars and explained

13.18% of variation based on BLUP values. A single QTL,
Frontiers in Plant Science 13
qRS.AS.pau-2, accounted for 11.33%, 12.18%, and 12.20% of

phenotypic variation in the E1, E2, and BLUP datasets,

respectively. q.NRS.PG.pau-1, detected in all the studied

environments including BLUP, was identified within the marker

interval of Pg_PC01_KASP19–Pg_PC01_KASP26, explaining

16.85%–17.77% of the phenotypic variation. Thus, the QTL

q.NRS.PG.pau-1, with >15% PVE in all environments, could be a

focus for further in-depth study of the non-reducing sugars trait

in guava.
QTL clusters for guava fruit quality

Considering QTLs with overlapping confidence intervals as

QTL clusters, we identified five QTL clusters related to different
TABLE 5 Continued

Trait ENV Chr QTLa Position Marker interval Interval
(cM) LODb PVEc ADD

Kruskal–
Wallis

analysisd

B 3 qRS.AS.pau-3 33.25
Pg_PC03_KASP37–
Pg_PC03_KASP38

30.18–36.32 4.29 14.56 0.16

E1 1 qRS.AS.pau-1 # 19.08
Pg_PC01_KASP19–
Pg_PC01_KASP26

17.01–21.15 3.33 12.25 1.05 ***

E1 2 qRS.AS.pau-2 # 118.09 AS/SG_InDel-12–AS/PL_InDel-34 116.53–119.65 3.41 12.18 0.74 ***

E2 1 qRS.AS.pau-1 # 19.89
Pg_PC01_KASP19–
Pg_PC01_KASP26

17.42–22.36 4.47 11.56 0.69 ****

E2 2 qRS.AS.pau-2 # 119.04 AS/SG_InDel-12–AS/PL_InDel-34 117.02–121.05 4.03 11.33 1.01 ****

E3 6 qRS.AS.pau-6.1 48.65 AS/PL_InDel-30–AS/PL_InDel-3 47.01–50.28 4.13 11.48 1.12 ***

E3 6 qRS.AS.pau-6.2 85.40 AS/PL_InDel-35–AS/PL_InDel-23 83.65–87.14 3.69 13.52 1.29 **

NRS

B 1 qNRS.PG.pau-1 # 21.53
Pg_PC01_KASP19–
Pg_PC01_KASP26

18.47–24.58 4.37 17.77 –0.18 ****

B 6 qNRS.AS.pau-6 # 117.18
ASgsc_16842_SSR8–AS/PL_InDel-
42

115.96–118.39 4.57 15.33 0.24 ****

E1 1 qNRS.AS.pau-1 # 21.46
Pg_PC01_KASP19–
Pg_PC01_KASP26

19.26–23.65 3.85 16.85 0.84 ***

E1 6 qNRS.PG.pau-6 # 117.90
ASgsc_16842_SSR8–AS/PL_InDel-
42

116.25–119.55 3.47 16.96 –0.15 ****

E2 1 qNRS.AS.pau-1 # 20.85
Pg_PC01_KASP19–
Pg_PC01_KASP26

19.01–22.69 3.61 17.05 0.87 ****

E2 9 qNRS.AS.pau-9 127.93 Pg_PC09_KASP89–mPgCIR265 125.64–130.21 4.15 17.85 1.12 ***

E3 1 qNRS.PG.pau-1 # 21.80
Pg_PC01_KASP19–
Pg_PC01_KASP26

20.03–23.56 4.18 16.98 –0.19 ***

E3 6 qNRS.PG.pau-6 9.95
Pg_PC06_KASP63–
Pg_PC06_KASP66

9.16–10.74 3.65 15.21 –0.21 ****

E3 11 qNRS.AS.pau-11 17.92
Pg_PC11_KASP111–
Pg_PC11_KASP112

15.69–20.14 3.12 14.24 0.41 ****
TSS, total reducing sugars; TA, titratable acidity; VC, vitamin C content; TS, total sugars; RS, reducing sugars; NRS, non-reducing sugars; ENV, Environments; E1 , 2016–17; E2 , 2017–18;
E3 , 2018–19; BLUPs, best linear unbiased predictions; Chr, chromosome; cM, centimorgan; ADD, additive effect.
aQTLs are named using “q” as a prefix followed by abbreviated names of the measured traits, the location, alleles-contributing parent, and a chromosome number
bLOD= logarithm of odds (generally ≥ 3).
cThe percentage of total phenotypic variance explained by the QTL.
dSignificance levels **0.001; ***0.0005; ****0.0001.
#Stable QTLs = detected across the multiple environments within the specified overlapping marker intervals.
‘Allahabad Safeda’ and purple guava.
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fruit-quality traits (Table 6). The mPgCIR361–mPgCIR188 interval

on LG1 was involved in the control of TSS (qTSS.PG.pau-1) and TA

(qTA.AS.pau-1) (Figure 4). Nine QTLs controlling VC, TS, RS, and

NRS were detected in the partially overlapping interval of

Pg_PC01_KASP19–Pg_PC01_KASP26 on LG1 . QTL

qNRS.PG.pau-1 was detected in multiple environments with a

relatively high PVE of 17.77%. This indicates that variation in

NRS has a large effect in special environment. Furthermore, this

QTL exhibited negative additive effects, indicating that the NRS-

increasing effect of this locus came from the male parent PG. The

interval AS/SG_InDel-12–AS/PL_InDel-34 on LG2 was involved in

total sugars (qTS.AS.pau-2) and reducing sugars (qRS.AS.pau-2).

The interval AS/PL_InDel-30–AS/PL_InDel-3 on LG6 harbored

three QTLs influencing total sugars and reducing sugars. The

interval Pg_PC09_KASP92–Pg_PC09_KASP97 on LG9 harbored

four QTLs (qTSS.AS.pau-9, qVC.AS.pau-9, qTS.AS.pau-9, and

qTS.AS.pau-9) that influenced vitamin C and total sugars. The

results suggest that some genes involved in non-reducing sugars

(qNRS.AS.pau-11) on LG11 also affect TSS, as qTSS.AS.pau-11 was

identified by BLUP. However, these genes have a relatively larger

impact on NRS (PVE = 15.21%) and TSS (PVE = 15.99%). The

phenomenon of QTL clusters could explain the very high

correlation of traits and the linkage drag, which often hinder

breeding programs for improving fruit quality. Thus, molecular

assisted selection (MAS), could be used effectively to improve the

linked fruit-quality traits mapped over the overlapping intervals.
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The QTLs controlling TSS, TS, RS, NRS, TA, and VC were

found to be associated with 26 annotated genes in the draft genome

assembly of guava (Supplementary Figure 1). Several of the genes

were found to be overexpressed in PG fruit tissue, including

BEACH (beige and Chediak Higashi) domain-containing protein

C2-like controlling vesicle trafficking and protein sorting. Higher

expression of serpin-ZX with protease inhibitor activities endorses

the non-reducing sugars enrichment in Purple Guava.
Discussion

Phenotypic variations and genetic
variability estimates

Fruit-quality attributes are the one of the vital characteristic

traits for horticultural crops. The fruit biochemical traits, viz., TSS,

TA, VC, and sugars, are critical determinants of the fruit quality of

guava (Patel et al., 2014). The F1 population exhibited significant

variations among fruit-quality traits and the female parent

‘Allahabad Safeda’ exhibited consistently higher values of TSS,

TA, VC, and RS in all three environments. Conversely, the male

parent Purple Guava was characterized by higher non-reducing

sugars. The replicated phenotypic evaluations of these traits across

the different environments enhances the precision and reliability of

QTL mapping, especially for the traits with low heritability (Alimi
TABLE 6 Quantitative trait locus (QTL) clusters for fruit quality traits in the guava population (‘Allahabad Safeda’ × Purple Guava).

Cluster QTL Chr Position Nearest marker interval EE (n)

C1 qTSS.PG.pau-1 1 69.39 mPgCIR361–mPgCIR188 1

qTA.AS.pau-1 1 68.67 1

C2 qVC.AS.pau-1 1 18.62, 19.17 Pg_PC01_KASP19–Pg_PC01_KASP26 2

qTS.PG.pau-1 1 19.78 1

qRS.AS.pau-1 1 19.08, 19.89 2

qNRS.AS.pau-1 1 20.85, 21.46 2

qNRS.PG.pau-1 1 21.53, 21.80 2

C3 qTS.AS.pau-2 2 118.25 AS/SG_InDel-12–AS/PL_InDel-34 1

qRS.PG.pau-2 2 115.85 1

qRS.AS.pau-2 2 118.09, 119.04 2

C4 qTA.AS.pau-3 3 143.66 AS/PL_InDel-10–AS/PL_InDel-18 1

qVC.AS.pau-3 3 141.11 1

C5 qTS.AS.pau-6 6 48.58, 48.80, 49.62 AS/PL_InDel-30–AS/PL_InDel-3 3

qRS.AS.pau-6.1 6 48.65 1

C6 qTSS.AS.pau-9 9 67.14 Pg_PC09_KASP92–Pg_PC09_KASP97 1

qVC.AS.pau-9 9 67.14 1

qTS.AS.pau-9 9 67.19, 68.58 2

C7 qTSS.AS.pau-11 11 17.71, 18.05 Pg_PC11_KASP111–Pg_PC11_KASP112 2

qNRS.AS.pau-11 11 17.92 1
fronti
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et al., 2013). The presence of transgressive segregants is probably

owing to the genotypic difference of parents influencing the

segregation patterns in the offspring (Goulet et al., 2017; Koide

et al., 2019). The descriptive statistics of TSS, TA, and VC observed

were within the ranges of previous studies (Rodrıǵuez et al., 2007;

Patel et al., 2011). Similar findings have been reported for sugar

content among different hybrids of guava (Singh, 2017; Singh,

2020). Comparative variability of fruit-quality traits is evaluated

by determining the genotypic parameters (viz., GCV, PCV, h2, and

GAM) and it becomes absolutely necessary to identify genotypes

with higher genetic potential for their utilization in developing an

efficient breeding strategy. Moderate PCV and GCV values were

recorded for TSS, TA, RS, and NRS, suggesting a good amount of

variability among hybrids for these traits. Conversely, TS has low

GCV and PCV values, indicating a high influence of environmental

conditions on these traits. However, a slight difference between

PCV and GCV values for all the evaluated traits suggests that there

was minimal influence of environments in the expression of these

traits. Although GCV is helpful for the measurement of the

presence of a high degree of genetic variation, the amount of

heritable portion can only be determined with the help of

heritability estimates and genetic gains (Rao and Rao, 2015). The

heritability of a trait, as a proportion of the phenotypic variation

that is attributed to genetic causes, has been a prime indicator of

Heritability and helpful in taking decisions for the genetic

improvement of economic traits (Narain, 2010). Heritability of a

trait is a key component in determining GAM (Nyquist, 1991).

Heritability along with genetic advance is more effective and reliable

in predicting the best individuals (Panse, 1942; Johnson et al., 1955;

Lerner, 1958). The studied fruit quality has high heritability and

higher GAM, which indicate that the expression of these traits is

governed by additive gene action and these characters can be easily

improved by phenotypic selection methods.
Correlation analysis

In fruit breeding, the degree of association of different traits has

always been useful for selection of fruit-quality traits, especially

when these follow quantitative inheritance and/or are influence by

the environment. Breeders generally focus on the improvement of

multiple traits, so the correlation analysis is mostly used for

studying the existence of associations between different traits.

Therefore, correlation studies play an important role in

determining the most efficient breeding procedure. There were

different degrees and magnitudes of correlation between the

studied fruit bio-chemical traits. Phenotypic correlations between

TSS, VC, TS, and RS were significantly positive, indicating the

existence of shared genetic control between these traits. Conversely,

there was a negative correlation of TSS with TA. Significantly

positive correlations appeared between TSS and NRS in two or

more environments. Rodrıǵuez et al. (2007) reported a highly

significant correlation of TSS with TA in three mapping
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populations of guava. Linear relationships with significant

corre la t ions are common among fru i t-qua l i ty t ra i t s

(Thimmappaiah et al., 1985; Rajan et al., 2005; Rajan et al., 2008;

Singh, 2015) and our results reflect this. The lower variance for

BLUPs than the different studied environments meant that BLUPs

were able to reduce the environmental variance across the years to a

great extent (Figure 2). The fruit bio-chemical traits’ distribution

curves further agreed with this, showing better normal distribution.

The highest peaks of TS, RS, and NRS were achieved with the

predictor (BLUPs), indicating the potential of this breeding

program. Similarly, the first two dimensions of principal

components showed that BLUPs was able to explain the variance

of studied traits across different environments. The PCA studies

explain that TSS is strongly influenced by VC and RS, while NRS

was more strongly associated with TA and TS (Figure 3A). Through

a combined correlation and path analysis, we provided a first insight

into the nature and magnitude of the complex interactions between

fruit-quality traits of guava.
Selection of excellent introgressed lines

Genotypic selection is very difficult with a large number of

individuals (Noerwijati et al., 2021). Clustering (multivariate analysis)

is an efficient tool for the genotypic selection process (Kozak et al.,

2008) that classifies the phenotypic variations with the function of

homogeneity within intra-clusters and heterogeneity among the inter-

clusters (Oliveira et al., 2016). Significant intra-cluster variability

(p< 0.01) was observed with respect to fruit-quality traits in guava.

Cluster analysis is a complementary tool to PCA (El-Hashash, 2017).

Hybridizations often produce transgressive segregating progenies in

guava (Patel et al., 2007; Singh, 2020). Eighteen transgressive hybrids

from cluster-4 with the best comprehensive TSS and TS phenotypes

stable over all environments have set a milestone in strategic breeding

for guava improvement.
Linkage mapping and quantitative trait loci
analysis

Guava has the potential for higher productivity and nutritional

quality (Sanda et al., 2011). Several hybrids have been released

recently that fulfill one of the breeding objectives for guava (Pandey

et al., 2007; Singh, 2015; Singh, 2020), but there is still a dearth of

perfected cultivars with traits of commercial importance (Dinesh

and Vasugi, 2010). Major hybridization limitations such as guava’s

perennial nature, long juvenile phase, heterozygous nature, and

epigynous floral structure limits the speed of genetic improvement

(Pommer and Murakami, 2008). With the advancement of

molecular markers and the concept of linkage mapping (Babu

et al., 2004), speeded-up genetic improvement has been achieved

in different fruit crops of a perennial nature (Mathiazhagan et al.,

2021). Mostly, the microsatellite (SSR-based) markers have been
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applied for genetic map construction and the exploration of

genomic regions of horticultural crops (Ahmad et al., 2020), but

the molecular exploration of guava is still in its infancy owing to

insufficient genomic resources (Nimisha et al., 2013; Padmakar

et al., 2016). The first molecular linkage map in guava was

established using AFLP markers (167 primers mapped onto 11

linkage groups) by Valdés-Infante et al. (2003). Only a few genetic

maps, which predominantly use SSRs in combination with AFLP,

RAPD, and SRAP markers, have been published (Rodrıǵuez et al.,

2007; Lepitre et al., 2010; Ritter et al., 2010; Padmakar et al., 2016;

Sohi et al., 2022).

The present genetic map was made for 11 linkage groups,

comprising 76 EST-KASP, 77 SSR, and 42 EST-InDeL markers,

with a genome spanning 1,604.47 cM and an average distance of

8.80 cM between markers (Table 4). Relative to previously

published genetic maps in guava, this is the first common genetic

map based on SNPs and InDels markers with a wider marker

density and greater genome-wide span. NGS-based technologies

have resulted in the availability of large genomic resources and

enriched the marker repository (Pérez-de-Castro et al., 2012). SNPs

and InDels relatively pose more abundance, can be scored with high

accuracy, are highly repeatable, and are spread over the entire

genome (Liu B et al., 2013; Yamaki et al., 2013; Wu J et al., 2014s;

Liu et al., 2015; Verma et al., 2015). Our study is the first of its kind

to report the development of a linkage map using SNPs and InDels

markers as well as the exploration of guava genomic regions. This

linkage map has the smallest average marker intervals (9.42 cM)

when compared with previous linkage maps in guava, making it

ideal for genetic mapping of desirable traits. After the construction

of the genetic linkage map, QTL analysis was performed to

understand the genetic architecture of fruit physico-chemical-

related traits. By ascertaining the number, relative positions, and

effect of the markers underlying phenotypic variation, the QTL

results open up new prospects for the implementation of molecular-

assisted selection (MAS), which can ultimately accelerate and

maximize genetic gains (Collard and Mackill, 2008). Despite the

great advances in the genomics of horticultural crops, guava has

received meagre attention with respect to the establishment of

genotype–phenotype associations (Mittal et al., 2020). We

previously developed a biparental mapping population of guava

(‘Allahabad Safeda’ × Purple Guava) aimed at mapping leaf

anthocyanin coloration (Sohi et al., 2022), and this trait shows

segregation and normal distribution in the mapping population.

Thus, the population should be useful for identifying QTLs for

other important traits (Sohi et al., 2022).

The genetic factors for fruit-quality traits have long been a

concern of fruit breeders. Molecular markers enhance the ability to

determine the inheritance and parentage of specific genomic

regions and to monitor the introgression of specific chromosomal

segments that are linked to desirable traits in breeding lines

(Vishwakarma et al., 2022). Graphical genotyping software

programs, such as GGT (van Berloo, 2008), are very useful tools

for selecting preferable progenies on the basis of their genotypic
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content. The number of markers tested on each chromosome of

phenotypically selected transgressive segregants is shown in

Figure 5A, along with the number and introgressed proportion/

average recovery of ‘Allahabad Safeda’ (Figure 5B), Purple Guava

(Figure 5C), and heterozygosity (Figure 5D). On the basis of GGT

analysis, eight F1 transgressive progenies (H52, H90, H48, H40,

H38, H81, H36, and H97) showing stable values of TSS (> 12.01 °B)

and TS (> 9.88%) in four different environments cover more than

50% of the ‘Allahabad Safeda’ genome. Therefore, the F1 individuals

from Cluster-4 could be useful in developing cultivars with high

TSS and total sugar content.

Tremendous efforts have been made to identify QTLs for

fruit-quality traits in different fruit crops (Wu J et al., 2014; Liu

et al., 2016; Nantawan et al., 2019; Shi et al., 2020). However,

limited efforts have been made in genetic dissection and QTL

discovery for fruit quality in guava. The present genetic map of a

cross between ‘Allahabad Safeda’ and Purple Guava has the

highest marker density of any maps published so far. Most of

the fruit-quality characteristics are of a quantitative nature, and

it is very important to locate QTLs for fruit quality in guava and

estimate their effects. The 195 markers cover the whole genome

of guava, ensuring that all the introgressed segments are

identified (Figure 5A). The effectiveness of markers associated

with detected QTLs should be determined as the percentage of

the explained genetic variance (Nishio et al., 2011). The

introgressed segments were evaluated for favorable QTL

alleles. Fruit quality is particularly influenced by the

environmental conditions. Understanding the genetics of fruit

physio-chemical characteristics related to fruit quality is crucial

for guava breeding programs worldwide. To date, no such

comprehensive research has been executed to identify genomic

regions in the guava associated with these traits. We identified 58

QTLs located on eight chromosomes related to six fruit-quality

traits with approximately 10.58%–17.85% PVE. Guava fruits are

expected to have a sweet taste, and consumer acceptance is

associated with the ripe soluble solids concentration reaching

10%–11%, a sugar–acid ratio of approximately 7:13, and total

sugar content of approximately 7%–9%. TSS and sugar–acid

blend are the central determinants of fruit quality. A total of 15

QTLs associated with TSS were detected on LG1, LG2, LG3, LG5,

LG6, LG9, and LG11, whereas QTLs associated with fruit acidity

(TA) have been mapped onto four LGs: LG1, LG2, LG3, and

LG6. Rodrıǵuez et al. (2007) reported two QTLs for TSS (PVE of

approximately 7.9%–8.3%), two for vitamin C (PVE of

approximately 5.4%–6.0%), and three for titratable acidity

(PVE of approximately 8.3%–12.0%) located on LG5, LG6,

LG7, and LG10. However, the PVEs in our study are higher

than previous reports. Vitamin-C content in fruit may have

health benefits as a source of antioxidants and higher sugar levels

are a means of promoting the guava commercially. Nine QTLs

associated with vitamin C mapped on LG1, LG3, LG6, and LG9

showed dominant inheritance and had PVEs between 12.05%

and 14.21%. Our findings are consistent with the literature, as
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Ritter et al. (2010) reported two QTLs for acidity (approximately

7.2%–9.8% PVE), four QTLs for TSS (approximately 6.6%–

10.9% PVE), and seven QTLs for vitamin C (approximately

4.9%–11.5% PVE) on LG1, LG2, LG4, LG6, LG7, LG8, and

LG10. QTLs across different studies are not always the same

due to differences in the genetic background of materials,

environments, and cultivation methodologies. Therefore, QTL

validation through replications over multiple environments and

agroclimatic zones is crucial (Zhaoming et al., 2017).

The BLUP analysis combines the selection index and least

square methods, which were proposed for animal breeding

(Henderson, 1974). This method considers fixed environmental

and random genetic effects at the same time, thus increasing the

accuracy of the prediction in different years, environments, and

generations (Piepho et al., 2008: Wang et al., 2016). This method is

now widely used in genome-wide association studies (GWAS),

genomic selection (GS), and QTL mapping. Out of the 16 QTLs

identified using BLUP datasets, 13 QTLs were detected in multiple

environments. These stable QTLs would be valuable for guava

breeding and are suggestive of genetic interactions owing to the

presence of similar genes and their expression pattern, exhibited

in terms of phenotype. Furthermore, the use of BLUPs improved

the QTL detection power by blurring the environmental variance.

Indeed, several studies have demonstrated the effectiveness of

using BLUPs for QTL localization in different fruit species such as

apple (Segura et al., 2009), citrus (Khefifi et al., 2022), and

grapevine (Doligez et al., 2013), where the experimental material

had been phenotyped under different environments. The observed

instability in common QTL detection might be due to a complex

quantitative genetic model and different physiological

mechanisms in the determination of different fruit-quality

components in response to environmental variations between

years (Fanizza et al., 2005). Thus, the identification of different

QTLs for the same trait should be expected in different years

because QTL detection will depend on the prevailing yearly

environmental variations. This will result in an increased

number of QTLs and affect the detection of different QTLs

across years for each fruit trait. Out of the seven QTL clusters,

five harbored at least one stable QTL.

Robust QTLs or QTL clusters in multiple environments

provide valuable information for further underlying gene

identification. The QTL clusters are QTL-rich regions

containing two or more QTLs of different traits within some

common confidence-overlapping region. We found seven QTL

clusters with stable or common QTLs affecting two or more

different traits distributed on six chromosomes (LG1, LG2, LG3,

LG6, LG9, and LG11). Four TSS- and NRS-QTL regions (TNs)

containing TSS- and NRS-QTLs were found to affect two or

more different traits in the segregants. Cluster-1 (C1), located

near mPgCIR8, affected TSS (62.17 cM) and TA (61.52 cM),

whereas C2 affected VC, TS, RS, and NRS, located near

Pg_PC01_KASP19 and Pg_PC01_KASP26 on LG1. C5 affects
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TS and RS, located near AS/PL_InDel-30 (47.40 cM) in more

than one environment (Table 5). These QTL clusters are very

important and noteworthy, especially the QTL cluster C2

affecting more than two fruit-quality traits (Figures 4, 5). This

genetic map of 'AS' x 'PG' successfully lays the foundation for

further fine mapping of these QTLs. QTL analyses of fruit quality

in a guava F1 population developed from an intraspecific cross

demonstrates the extent to which transgressive segregation for

fruit biochemical traits can occur in intraspecific progenies

derived from plant types with standard phenotypic values.

Pyramiding of favorable alleles in the QTLs from the

introgression segment of 'AS' and 'PG' has the potential to

greatly improve fruit quality traits (i.e., TSS, TA, VC, TS, and

RS) and NRS in guava varieties through marker-assisted

breeding. The 18 superior segregant individuals obtained in

our study lays the foundation for the further fine mapping of

traits in subsequent filial generations.
Conclusion

To the best of our knowledge, this is the first report of a

constructed linkage map in guava based on genome-wide SNP,

SSR, and InDel markers. This linkage map is a worthy reference

for the fine mapping of important fruit traits in guava. Continuous

phenotypic variation displayed in the segregating progeny reflects

the genetic differences between the phenotypically contrasting

parents: ‘Allahabad Safeda’ was superior in TS, TSS, RS, and VC,

and Purple Guava was predominant for NRS and polygenic

inheritance of these traits. QTLs with major effects on fruit

quality, specifically the seven QTL-rich regions affecting two or

more different traits and 13 QTLs detected in multiple

environments, indicate that genetic background has a stronger

effect on fruit-quality traits than environmental factors. In

addition, it also demonstrates that genetic and environmental

interactions surely effect the fruit quality in guava, as in other

species. Hence, the identification of molecular markers associated

with fruit-quality traits might prove useful in facilitating future

marker-assisted breeding in guava. Therefore, our study provides

valuable information and new stable QTL regions for undertaking

MAS in guava. Overall, our study has extended knowledge on the

inheritance and genetic controls for key guava fruit-quality traits and

provided eight superior transgressive segregants that can be

evaluated for agronomic characters over different agroclimatic zones.
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Ritter, E., Rodrıǵuez-Medina, N. N., Velásquez, B., Rivero, D., Rodrıǵuez, J. A.,
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