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Integrative analysis of sensory
evaluation and non-targeted
metabolomics to unravel tobacco
leaf metabolites associated with
sensory quality of heated tobacco
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Zhongbang Song1, Lijuan Peng3, Zhuolin Li4 and Bingwu Wang1*

1National Tobacco Genetic Engineering Research Center, Yunnan Academy of Tobacco Agricultural
Sciences, Kunming, Yunnan, China, 2Research and Development Center, China Tobacco Yunnan
Industrial Co., Ltd., Kunming, Yunnan, China, 3Laboratory of Tobacco Chemistry, Yunnan Tobacco
Quality Supervision and Test Station, Kunming, Yunnan, China, 4Department of Technical Support,
Malong Branch of Qujing Tobacco Company, Qujing, Yunnan, China
Introduction: Heated tobacco (Nicotiana tabacum L.) products are heating

tobacco plug at a temperature of 350°C and produce different emissions in

aerosol and sensory perceptions of tobacco leaf compared with combustible

tobacco. Previous study assessed different tobacco varieties in heated tobacco for

sensory quality and analyzed the links between sensory scores of the final products

and certain chemical classes in tobacco leaf. However, contribution of individual

metabolites to sensory quality of heated tobacco remains largely open

for investigation.

Methods: In present study, five tobacco varieties were evaluated as heated

tobacco for sensory quality by an expert panel and the volatile and non-volatile

metabolites were analyzed by non-targeted metabolomics profiling.

Results: The five tobacco varieties had distinct sensory qualities and can be classified

into higher and lower sensory rating classes. Principle component analysis and

hierarchical cluster analysis showed that leaf volatile and non-volatile metabolome

annotated were grouped and clustered by sensory ratings of heated tobacco.

Orthogonal projections to latent structures discriminant analysis followed by

variable importance in projection and fold-change analysis revealed 13 volatiles

and 345 non-volatiles able to discriminate the tobacco varieties with higher and

lower sensory ratings. Some compounds such as b-damascenone, scopoletin,

chlorogenic acids, neochlorogenic acids, and flavonol glycosyl derivatives had

strong contribution to the prediction of sensory quality of heated tobacco. Several

lyso-phosphatidylcholine and lyso-phosphatidylethanolamine lipid species, and

reducing and non-reducing sugar molecules were also positively related to

sensory quality.
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Discussion: Taken together, these discriminating volatile and non-volatile

metabolites support the role of leaf metabolites in affecting the sensory quality

of heated tobacco and provide new information on the types of leaf metabolites

that can be used to predict applicability of tobacco varieties for heated tobacco

products.
KEYWORDS

heated tobacco products, sensory evaluation, non-targeted metabolomics profiling,
orthogonal projections to latent structures discriminant analysis, discriminating metabolites
1 Introduction

Sensory quality of tobacco products is perceived through

organoleptic attributes including aroma and mouthful feeling, and

is generally assessed by experts who use all senses and professional

judgements to identify the aroma types, recognize the flaws in taste,

and determine the suitability in making tobacco blends (Carpenter

et al., 2007). Sensory attributes such as aroma and mouthfeel

sensation of combustible tobacco are predominantly determined by

the chemical compositions of tobacco leaf (Weeks et al., 1992).

Oronasal aroma is influenced by volatile metabolites and volatile

precursors, which mainly impart the typical tobacco flavor and

pleasant aroma (Sun et al., 2011; Popova et al., 2019). While the

mouthfeel sensation is mainly affected by non-volatile metabolites.

For example, organic acids and nicotine were found to make positive

contributions to the taste and strength characteristics of tobacco

product, respectively (Wang et al., 2008). Non-volatile carbonyls

and unsaturated hydrocarbons were reported to enhance taste and

contribute to quality (Mendell et al., 2014; Banožić et al., 2020). In

addition, chemical compositions, and interaction between volatile and

non-volatile compounds also affect the sensory properties of tobacco

products. For example, flue-cured tobacco cultivar ‘Zhongyantexiang

301’ was perceived to produce heady rose-like aroma in the sensory

evaluation of combustible tobacco, and its aroma characteristic was

found to strongly associate with higher concentrations of reducing

sugars, b-damascenone, trans-b-ocimene, and a higher sugar to

alkaloid ratio in the cured leaf (Xu et al., 2019).

Heated tobacco (Nicotiana tabacum L.) is a new type of tobacco

product that relies on a battery powered heating system to heat a

tobacco plug in the cartridge to around 200-350°C and trigger aerosol

production containing nicotine and aroma substances (Simonavicius

et al., 2019). The tobacco plug is made from tobacco leaves that are

grounded and reconstituted into sheets with the addition of flavors or

additives, wood cellulose fibers and aerosol formers (e.g. glycerin,

propylene glycol and ethylene glycol) (Czegeny et al., 2016; Smith

et al., 2016). As tobacco combustion is eliminated (Eaton et al., 2018),

tobacco pyrolysis in heated tobacco product is reduced to a minimum

and aerosol formation mainly undergo evaporation and distillation

(Schaller et al., 2016; Gasparyan et al., 2018), resulting in significant

reduction of harmful constituents such as tar and carbon monoxide in

the mainstream smoke (Farsalinos et al., 2018). In contrast to a

greater than 800°C combustion in burning tobacco, heating at a

temperature around 350°C and different leaf processing presumably
02
lead to different emission profiles and sensory perceptions of tobacco

varieties in heated tobacco products (Cancelada et al., 2019). One

study of five flue-cured tobacco varieties showed that Yunyan 116, an

industrial-favored flue-cured tobacco variety in manufacturing

combustible tobacco products, was not highly rated when used in

heated tobacco products (Zhao et al., 2020).

Tobacco leaf chemistry and their correlations with the aroma and

sensory quality of combustible tobacco have been investigated (Weeks

et al., 1992; Carpenter et al., 2007). Many aroma-related components

were used as chemical indicators for better sensory perception or

identified as breeding targets relating to quality traits (Cui et al., 2011;

Zhang et al., 2015; Zhang et al., 2018). With respect to the heated

tobacco products, aroma-related markers that were identified for

combustible tobacco were utilized in the prediction of sensory

quality at low heating temperatures, and the sum of concentrations

of all individual metabolites of certain chemical classes (e.g.

polyphenols, aldehydes, ketones, and alcohols) were used to

characterize their associations with the sensory scores of final

products (Chen et al., 2021). However, compounds of the same

chemical class are likely to contribute to and/or detract from

sensory quality, and many could have little or no impact (Chen

et al., 2021), and combustible and heated tobacco may have different

suites of significant metabolites associated with sensory quality due to

different working temperatures. Consequently, difficulties in

interpretating the relationships between these compounds and

sensory properties of heated tobacco were encountered (Zhao et al.,

2020; Chen et al., 2021).

Metabolomics profiling has been widely applied in food industry

and multivariate analysis such as partial least squares regression

(PLSR) and orthogonal projections to latent structures discriminant

analysis (OPLS-DA) were commonly used to identify significant

flavor metabolites that vary in samples with different sensory traits

(Schmidtke et al., 2013; Romanini et al., 2019; Sherman et al., 2020).

To better understand the relationships between tobacco leaf

metabolites and sensory quality of heated tobacco, and identify

significant metabolites that can be used in prediction of sensory

quality, volatile and non-volatile metabolomes offive tobacco varieties

were acquired using non-targeted metabolomics profiling and used to

predict sensory quality ratings as assessed by a panel of experts in this

study. Discriminating compounds contributing to the prediction of

sensory quality of heated tobacco were identified by OPLS-DA. Five

tobacco varieties planted and cured in Yunnan province in China

were selected on the basis of employing different curing practices after
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field harvest, normally being used in combustible tobacco products

such as traditional blended cigarettes and pipe tobacco. This study

tested the hypothesis that the tobacco leaf metabolites influenced the

sensory quality of heated tobacco in a way that allow the

metabolomics profiling and OPLS-DA to identify significant

metabolites with utility in prediction of sensory quality.
2 Materials and methods

2.1 Plant materials

Five tobacco varieties produced in Yunnan province, including

flue-cured tobacco K326, sun-cured tobaccos Luxitu (LXT) and

Luxilao (LXL), sun/air-cured tobaccos Leye (LY) and Badahe

(BDH), were evaluated for the applicability to heated tobacco

products. The middle tobacco leaves were harvested 3 weeks post

topping and processed as previously described in Chen et al. (2021).
2.2 Preparation of heated tobacco cartridge
and sensory evaluation

The cured leaves of each tobacco variety were processed to

manufacture the heated tobacco cartridges as described in Chen

et al. (2021). Briefly, the cured leaf was ground into powder and

added into the coating slurry used to manufacture the reconstituted

tobacco sheet. The coating slurry contained 10% of tobacco leaf

powder and 90% of the mixture of glycerin, propylene glycol and

exogenous wood pulp fibers. The reconstituted sheet was then

shredded, rolled in bundles, and made into the tobacco plug. The

tobacco cartridge was heated in the Webacco holder (China Tobacco

Yunnan Industrial Co., Ltd.) at the temperature of 350°C.

Eleven qualified experts who had more than five years’ experience

in tobacco industry (China) were recruited to undertake the

descriptive sensory and quality evaluations of heated tobacco

samples based on the Sensory Evaluation Standard of Heated

Tobacco Products as described in Chen et al. (2021). Panelists were

asked to rate each heated tobacco sample on the intensities of six

sensory attributes including volume of smoke (10 scores), aroma (30

scores), physiological strength (10 scores), coordination (10 scores),

irritation (15 scores), and taste (25 scores). The overall sensory quality

(100 scores) was rated last based on their own concepts. The score of

each attribute was calculated using the formula Xi, = SXi=n, where

Xi,SXi and n represent the mean score, the sum of scores and the

number of participants, respectively (Chen et al., 2021). Tobacco

samples were heated using the same carrier and evaluated by the same

panel of experts, and then ranked by the overall sensory scores to

categorize the tobacco varieties into “higher” or “lower” sensory

rating class. The point 85 was used to sort the tobacco varieties, in

which an overall sensory score higher than 85 for higher sensory

rating class, and a score lower than 85 for lower sensory rating class.

The rationale was that metabolome analysis was performed to profile

the cured leaves of five tobacco varieties and only the leaf metabolites

that differ between higher and lower sensory rating classes were

focused on characterization.
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2.3 Volatile profiling of tobacco leaf

Cured leaf samples were taken at the time of preparing heated

tobacco cartridge and stored at -80°C until analysis. Leaf samples were

ground into fine powder using liquid nitrogen and an aliquot (1 gram)

of leaf powder was transferred immediately to a 20 mL head-space

vial (Agilent, Palo Alto, CA, United States), containing NaCl

saturated solution to inhibit any enzyme reaction. The vials were

sealed with crimp-top caps with TFE-silicone headspace septa

(Agilent). The solid phase microextraction (SPME) analysis and

identification of volatile metabolites were performed as previously

described (Yuan et al., 2022).Mass spectra were analyzed using

Agilent MassHunter software (Agilent Technologies, Santa Clara,

CA, USA). Volatile compounds were identified by comparison of

mass spectra to those in the NIST library and an in-house Metware

database (WMDB) (Wei et al., 2016; Peng et al., 2022).
2.4 Non-volatile profiling of tobacco leaf

Cured leaf samples were taken at the time of preparing heated

tobacco cartridge, and then lyophilized using a vacuum freeze-dryer

(Scientz-100F) and ground using a mixer mill (MM400, Retsch)

with a zirconia bead for 1.5 min at 30Hz. An aliquot (100 mg) of leaf

powder was suspended in 1.2 mL of 70% methanol solution,

vortexed for 30 s at 30 min intervals for six times in total, then

incubated at 4°C for 12 h. Following incubation, samples were

centrifuged at 12,000 rpm for 10 min, and the extracts were

filtrated (SCAA-104, 0.22 mm pore size; ANPEL, Shanghai, China)

prior to ultra performance liquid chromatography-tandem mass

spectrometry (UPLC-MS/MS) analysis. Non-volatile metabolite

profiling and data processing were performed as previously

described (Chen et al., 2013). Quantification and annotation of

non-volatile metabolites were achieved through a scheduled

multiple reaction monitoring method (Zou et al., 2020).
2.5 Data analysis

The ratings of sensory attributes and overall quality were analyzed

by a univariate analysis of variance (ANOVA) where tobacco variety

was considered as a fixed effect while panelist was considered as a

random effect. Tukey’s honest significant difference (HSD) test was

used as a post-hoc comparison of means.

Unsupervised principal component analysis (PCA) is designed to

reduce the dimensionality of the original data, extract sample

composition information and remove noise (Liland, 2011; Mascellani

et al., 2021). To analyze the difference in chemical composition among

different tobacco varieties, PCA was conducted on unit-variance (UV)

scaled metabolites with SIMCA software 14.1 (Umetrics, Sartorius

Stedim Biotech, Umea, Sweden) (Wang et al., 2020a). Hierarchical

cluster analysis (HCA) is an unsupervised method that groups data

according to their affinity in clusters of progressive dissimilarity

(Mascellani et al., 2021) and presented as the heatmap with

dendrogram. Volatile and non-volatile metabolite data were

normalized via z-transformation and then converted into colors and
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grouped using hierarchical clustering (Cheadle et al., 2003). The

hierarchically clustered heatmaps were generated using MetaboAnalyst

5.0 with default settings (Pang et al., 2022). The similarity among group

averages was measured using the Pearson distance and the cluster

aggregation was based on the average linkage method.

Orthogonal projections to latent structures discriminant analysis

(OPLS-DA), performed in SIMCA software 14.1 (Umetrics, Sartorius

Stedim Biotech, Umea, Sweden), was conducted to separate

systematic variation based on linearity and orthogonality, and

extract significant metabolites that discriminate sample groups
Frontiers in Plant Science 04
(Wang et al., 2020a). The quality of model was examined by

checking the values of R2Y (goodness-of fit) and Q2Y (goodness of

prediction), and a value > 0.5 was adopted as the threshold of

acceptable models (Romanini et al., 2019). Permutation testing was

performed for 200 times to avoid overfitting, and the model is reliable

when the R2 > 0 and Q2< 0. Variable importance in projection (VIP)

was used to identify volatile and non-volatile metabolites with highest

discrimination potential (VIP score > 1.0). The discriminant

metabolites with VIP > 1 and p-value< 0.05 were subjected to fold-

change (cut off > 2.0 or< 0.5) analysis.
TABLE 1 Comparison of the mean scores of six sensory attributes and overall quality for five tobacco varieties in sensory evaluation.

Tobacco
variety

Smoke volume
(10)

Aroma
(30)

Physiological strength
(10)

Coordination
(10)

Irritation
(15)

Taste
(25)

Sensory quality
(100)

K326 8.50 25.17 ab 8.17 9.00 a 12.17 ab 22.33 ab 86.33 a

LXT 8.50 25.00 bc 8.17 8.33 ab 12.33 a 22.67 a 85.50 a

LXL 8.50 26.00 a 8.33 8.33 ab 12.17 ab 22.17 ab 86.33 a

LY 8.50 24.67 bc 7.67 7.67 b 11.67 ab 21.67 b 82.17 b

BDH 8.50 24.17 c 8.63 7.63 b 11.33 b 21.83 ab 82.00 b
Table values are the measured means.
Unique lowercase letters within the same column indicate significant differences between different tobacco varieties, p< 0.05.
A

B

FIGURE 1

Metabolite variation among five tobacco varieties. (A) PCA score plot for the 309 annotated volatile metabolites (R2X = 0.923, Q2 = 0.783). (B) PCA score
plot for the 1168 annotated non-volatile metabolites (R2X = 0.932, Q2 = 0.871).
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3 Results

3.1 Sensory evaluation of five tobacco
varieties

The sensory quality was assessed by 11 panelists for the scores of

six sensory attributes and overall quality (Table 1). The scores of

aroma, coordination, irritation, taste and sensory quality were

significantly different among tobacco varieties. The scores of overall

sensory quality were not significantly different among K326, LXT and

LXL, but they scored higher than LY and BDH. There were no

significant effects on the attributes of smoke volume and physiological

strength due to tobacco varieties but there were differences in scores

of physiological strength based on tobacco varieties. The overall

sensory quality varied among tobacco varieties. Sun-/air-cured

tobacco varieties LY and BDH were rated lower in sensory quality

than sun-cured tobacco varieties LXL and LXT, and flue-cured

tobacco K326.
3.2 Volatile and non-volatile metabolomics
profiling of five tobacco varieties

To investigate whether the differences in sensory qualities were

attributed to metabolite chemistry, metabolomics profiling was

performed for volatiles and non-volatiles using GC-MS and UPLC-

MS/MS, respectively. Full dataset multivariate unsupervised statistical

analysis through PCA was performed on volatile and non-volatile

profiling data, respectively (Supplementary Tables S1, S2). A five-

component PCAmodel was obtained for 309 volatile metabolites with

the goodness of fit (R2X) and predictive power (Q2) both greater than

0.75 (Figure 1A). The PCA score plot of 309 volatiles showed three

separated clusters, with the first cluster describing K326 and LXT, the

second cluster describing LXL, and the third cluster containing LY

and BDH. PC1 (49.9% of the variation) was attributed to the distinct

volatile profiles of LY and BDH, and PC2 (15.4% of the variation) was

associated with differences in LXL. For the 1168 non-volatile

metabolites, a four-component PCA model was obtained with R2X
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= 0.932 and Q2 = 0.871, and PC1 (66.2% of the variation)

demonstrated separation between higher (K326, LXT and LXL) and

lower (LY and BDH) sensory rating varieties (Figure 1B).

Hierarchical clustering analysis and heatmap revealed that five

tobacco varieties can be classified into two distinct clades based on the

signal intensities of the volatile metabolites and/or non-volatile

metabolites. One clade contained K326, LXL and LXT, and the

other clade included LY and BDH (Figure 2). In the heatmap of

volatiles, K326 and LXT belonged to the same sub-clade and were

clustered with LXL (Figure 2A). By contrast, the heatmap of non-

volatiles showed that K326 belonged to the same sub-clade as LXL

and then clustered with LXT (Figure 2B). The PCA and clustering

results demonstrated that the higher sensory rated varieties K326,

LXL and LXT had similar metabolite profiles of volatiles and non-

volatiles, and their metabolomic profiles differed from the lower

sensory rated varieties LY and BDH. Therefore, it is likely that

specific chemical compositions might associate with perceived

sensory quality.
3.3 OPLS-DA modeling characterized leaf
volatile and non-volatile metabolites that
co-varied with overall sensory quality of
heated tobacco

To investigate relationship between leaf metabolite profiles and

overall sensory quality, an OPLS-DA supervised approach was

performed on 309 volatile and/or 1168 non-volatile metabolites

according to the sensory ratings of the tobacco varieties. The OPLS-

DA models developed with volatile metabolites and/or non-volatile

metabolites provided strong clustering according to the sensory

ratings (Figure 3). The R2Y and Q2Y of both models were 0.99 and

0.99, respectively. The R2X being correlated to Y were 0.45 and 0.65,

respectively, for the volatiles (Figure 3A) and non-volatiles

(Figure 3B), hence much higher than the orthogonal (uncorrelated

to Y) components which were 0.19 and 0.10, respectively. These

results demonstrated that the sensory ratings mainly accounted for

the overall variability observed in the metabolite dataset (volatile and
A B

FIGURE 2

Hierarchical clustering of volatile (A) and non-volatile (B) profiles of tobacco leaf by variety. Volatile and non-volatile metabolite data were normalized
within each variety via z-transformation. The resulting z-scores were converted into colors and grouped using hierarchical clustering. The color in each
cell represents the z-transformed abundances of the averaged replicates (n = 3) per tobacco variety (red: high, blue: low).
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non-volatile compounds) and chemical indicators of overall sensory

quality, unrelated to a specific tobacco variety, could be identified.

Volatile and non-volatile compounds possessing the highest

discrimination capacity (VIP > 1.0 and p-value< 0.01) between higher

and lower sensory ratings were identified, regardless of the type of

tobacco variety (Supplementary Tables S3, S4). Discriminating volatile

and non-volatile compounds correlated with the higher or lower sensory

ratings were further identified with fold-change values (fold-change cut

off > 1.5 or< 0.5 for volatiles; fold-change cut off > 2 or< 0.5 for non-

volatiles). Volatile compounds such as alcohols, aldehydes, esters,

heterocyclic compounds, ketones, nitrogen compounds and terpenoids

contributed to the prediction of sensory quality of heated tobacco

products (Table 2). Metabolite abundances were z-transformed and the

colors denote range in variation of a compound class within a variety,

with red (high) and blue (low) indicate proportions of a compound’s

contribution to the profile (Figure 4). Grouping of tobacco varieties based

on 13 volatile compounds revealed two distinct clades, with one clade

containing LXL, K326 and LXT, and the other clade containing LY and

BDH (Figure 4A). Relatively higher abundances of carbazole, 3(2H)-

pyridazinone, tert-butylisocyanate, isoquinoline, (E)-beta-damascenone,

2-(4-hydroxyphenyl) ethanol were observed in the higher sensory rating

varieties LXL, K326 and LXT.

Non-volatile compounds including 21 alkaloids, four amino acids

and derivatives, 21 lignans and coumarins, 43 lipids, 15 nucleotides and
Frontiers in Plant Science 06
derivatives, 117 flavonoids, six organic acids, 82 phenolic acids, two

quinones, five tannins, five terpenoids and 24 others were characterized

with higher VIP scores (VIP > 1.0) and strongly correlated with higher

and lower sensory ratings (p-value< 0.01, fold-change > 2)

(Supplementary Table S5). The heatmap displaying the top 50

discriminating non-volatile compounds ranked by t-test exhibited

two distinct clades corresponding to tobacco varieties with relatively

higher sensory ratings (LXT, K326 and LXL) and those with lower

sensory ratings (LY and BDH) (Figure 4B). In the resulting heatmap of

non-volatile metabolites including alkaloids, amino acids, nucleotides

and derivatives (Supplementary Figure S1), BDH and LY had similar

profiles and were distinct from LXL, K326 and LXT. BDH and LY had

higher abundances of serotonin, N-hydroxytryptamine, hexanoyl-L-

glycine, L-sepiapterin, 2’-deoxycytidine-5’-monophosphate and 1-

methylxanthine, while LXL, K326 and LXT had overall reduced

abundances of these compounds. The most distinct nucleotides and

derivatives in LY were 8-hydroxy-2-deoxyguanosine and 2’-

deoxyadenosine. For the rest of the identified alkaloids, amino acids,

nucleotides and derivatives, BDH and LY had overall reduced

abundances, whereas LXL, K326 and LXT had more distinct profiles.

A similar pattern was observed for lignans, quinones, terpenoids and

other compounds, where BDH and LY had lower abundances of most

compounds in these classes, with the exceptions of piperitol, fraxetin-

7,8-di-O-glucoside, cafestol and 3’-acetylsweroside (Supplementary
A

B

FIGURE 3

OPLS-DA performed on (A) 309 volatile metabolites and (B) 1168 non-volatile metabolites identified in five tobacco varieties according to the higher and
lower sensory ratings. The colors indicate the different levels of sensory ratings (red: higher sensory rating, blue: lower sensory rating).
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TABLE 2 Discriminating volatile compounds identified by VIP analysis and p-value together with fold-change cut off > 1.5 or < 0.5.

Compound
ID Class Compounds CAS VIP

scores
p-value (higher vs.

lower)
Log2FC normalized (higher

vs. lower)

NMW0193 Alcohol 2-(4-Hydroxyphenyl)ethanol 501-94-0 1.06 0.004 -1.17

KMW0640 Aldehyde Tetradecanal 124-25-4 1.40 3.25×10–8 0.61

XMW0908 Aldehyde 1,2-Diformylhydrazine 628-36-4 1.10 0.001 1.84

KMW0594 Ester Ethyl laurate 106-33-2 1.13 0.001 1.97

XMW1359 Ester Ethyl tridecanoate
28267-29-

0
1.44 2.40×10–10 2.21

NMW0107
Heterocyclic
compound

Isoquinoline 119-65-3 1.48 7.31×10–19 -2.29

NMW0367
Heterocyclic
compound

Carbazole 86-74-8 1.47 1.63×10–14 -2.26

XMW2892
Heterocyclic
compound

N2-Trifluoroacetyl-pyridine-4-
carbohydrazide

332055-
87-5

1.10 0.001 2.11

XMW0335
Heterocyclic
compound

3,4-Diamino-3H-pyrazole
1000288-
40-0

1.48 3.64×10–22 2.39

XMW2604
Heterocyclic
compound

2,6-Diaminopurine 1904-98-9 1.48 2.59×10–20 2.19

XMW0886 Ketone 3(2H)-Pyridazinone 504-30-3 1.48 1.20×10–15 -2.29

XMW2507
Nitrogen
compounds

tert-Butylisocyanate 1609-86-5 1.48 1.97×10–16 -2.00

KMW0526 Terpenoids (E)-beta-damascenone
23726-93-

4
1.48 8.69×10–24 -2.62
F
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FIGURE 4

Analysis of metabolite variation among five tobacco varieties within chemical classes. (A) Heatmap of 13 volatile metabolites including one alcohol, two
aldehydes, two esters, five heterocyclic compounds, one ketone, one nitrogen compound and one terpenoid. (B) Heatmap of the top 50 discriminating
non-volatile compounds ranked by t-test including three alkaloids, 12 flavonoids, three lignans and coumarins, six lipids, 17 phenolic acids, three tannins,
two terpenoids, one quinone, one saccharide and two other non-volatile metabolites. Volatile and non-volatile metabolite data were normalized within
each variety via z-transformation. The resulting z-scores were converted into colors and grouped using hierarchical clustering. The color in each cell
represents the z-transformed abundances of the averaged replicates (n = 3) per tobacco variety (red: high, blue: low).
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Figure S2). LXL, K326 and LXT lignan profiles were higher in several

coumarins such as scopoletin-7-O-glucoside, scopoletin b-D-

glucuronide, scopoletin-7-O-xylosyl (1!6) glucoside and

isoscopoletin. The abundances of several di-, tri- and oligosaccharides

(i.e., D-sucrose, galactinol, trehalose 6-phosphate, D-melezitose,

lactobiose, D-lactulose, raffinose, D-melezitose O-rhamnoside, etc.)

were higher in LXT and K326, while lower in LXL, BDH and LY.

In the heatmap of 43 lipids, several lyso-phosphatidylcholine (LPC)

and lyso-phosphatidylethanolamine (LPE) species showed higher

intensities in LXT followed by K326 and LXL, but lower intensities in

BDH and LY (Supplementary Figure S3), suggesting positive

relationships between these LPC and LPE species in tobacco leaf and

the sensory quality of heated tobacco products. For flavonoids and

tannins, BDH and LY had similar profiles, where most flavonoids and

tannins were low in abundances except for 2-hydroxynaringenin and

apigenin-6-C-fucoside (Supplementary Figure S4). In contrast, LXT,

K326 and LXL had profiles containing higher abundances of many

flavonols such as quercetin, kaempferol, dihydrokaempferol and their

glycosyl derivatives. The heatmap of phenolic acids and organic acids

was similar to that of flavonoids, where the abundances of most

phenolic acids were higher in LXT, LXL and K326, whereas lower in

LY and BDH (Supplementary Figure S5). The phenolic acids most

unique to LY included maleoyl-caffeoylquinic acid, b-ureidoisobutyric
acid and 2-O-caffeoylmalic acid.
4 Discussion

4.1 Tobacco leaf metabolites influenced the
sensory quality of heated tobacco products

Tobacco leaf chemical compositions have been reported to highly

influence the sensory quality of tobacco products (Weeks et al., 1992;

Chou and Que Hee, 1994). Previous studies have particularly reported

that volatile compounds of cured tobacco leaf influenced the taste and

aroma of tobacco smoke and correlated with sensory quality of

combustible tobacco products (Weeks et al., 1989). Volatile

compounds such as b-damascenones, megastigmatrienone, ionone,

cembratrieneol were identified as important evaluation indexes that

were used to predict the quality and quantity of leaf aroma in

combustible tobacco (Slaghenaufi et al., 2016; Yan et al., 2016;

Popova et al., 2019). To enhance the aroma and sensory quality of

combustible tobacco, numerous studies have focused on the regulatory

mechanisms involved in modulating the biosynthesis of these

carotenoid or diterpenoid degradation products (Shi et al., 2015;

Zhang et al., 2015; Sui et al., 2018). However, studies on the

relationships between tobacco leaf metabolites and sensory quality of

heated tobacco products are limited. Chen et al. (2021) and Zhao et al.

(2020) have evaluated the links between leaf chemistry and sensory

attributes of heated tobacco, in which the levels of certain chemical class

were summed from concentrations of all individual compounds. Effects

of individual metabolites on sensory quality of heated tobacco remain

largely open for investigation. Moreover, whether the compounds

associated with good sensory evaluation in combustible tobacco can

be used to grade sensory perception of heated tobacco remains to be

investigated. In the study reported herein, the objective was to take a

deep insight into the metabolome of tobacco leaf and characterize
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discriminating metabolites with strong contributions to the prediction

of sensory perception of heated tobacco by OPLS-DA. Using non-

targeted metabolomics to profile leaf metabolites of the five tobacco

varieties, we were able to annotate 309 volatile and 1168 non-volatile

metabolites. Higher abundances of most non-volatile compounds were

observed in the higher sensory rated varieties (LXT, K326 and LXL)

(Figure 2B), suggesting that the overall sensory quality of heated

tobacco imparted by the non-volatile composition was generally

perceived as positive. The variations in chemical profiles revealed by

PCA and HCA indicated that leaf volatile and non-volatile metabolome

annotated could be grouped and clustered by sensory quality ratings

(Figures 1, 2). These results indicated that classifications of sensory

quality ratings were primarily influenced by leaf metabolome. The

OPLS-DA supervised approach allowed the modeling of the sensory

rating levels of five tobacco varieties based on volatile and/or non-

volatile metabolites (Figure 3). Models were assessed for goodness of fit

and predictive ability by calculating R2Y and Q2Y, respectively (Senizza

et al., 2023). The model fit and predictive ability statistics of OPLS-DA

model constructed using volatiles were comparable to the results from

the model constructed using non-volatiles, suggesting that both volatile

and non-volatile compositions of tobacco leaf contributed to the

sensory perception of heated tobacco. Following VIP analysis and p-

value together with fold-change analysis, 13 out of 309 volatiles and 345

out of 1168 non-volatiles were characterized as the discriminating

compounds detected as either significantly higher or lower in tobacco

varieties with higher or lower sensory ratings (Table 2 and

Supplementary Table S5). There were considerably more non-volatile

compounds than volatile compounds with strong prediction of sensory

quality of heated tobacco, which may further implicate greater

influences of non-volatile compositions on the perception of sensory

quality and higher efficacy of using non-volatile compounds for

prediction of sensory quality at low heating temperatures.
4.2 Leaf metabolites able to discriminate
tobacco varieties with higher and lower
sensory ratings

Many volatile and non-volatile discriminating compounds that

were identified by VIP analysis, p-value and fold-change individual

values, are also substances associated with good sensory perception in

combustible tobacco. For example, volatile compound b-damascenone

(Figure 4A), non-volatile compounds glutamine derivative (L-

glutamine-O-glycoside) (Supplementary Figure S1), scopoletins

(Supplementary Figure S2), chlorogenic acids and neochlorogenic

acids (Supplementary Figure S5) showed higher abundances in

higher sensory rated varieties (K326, LXL and LXT) in conjunction

with the VIP scores >1 and fold-change > 2 (Table 2 and

Supplementary Table S5). Beta-damascenones are a class of tobacco

carbonyls produced from carotenoid degradation, and they were

previously identified as the key volatile compounds positively

correlated with tobacco aroma in combustible tobacco products

(Popova et al., 2019). The pyrolytic products of aliphatic a-amino

acid glutamine were reported to be present in the tobacco smoke,

affecting the perceived sensory quality of combustible tobacco (Sharma

et al., 2006). Scopoletin is commonly used as a chemical indicator of the

aroma property of cured tobacco leaf (Yu et al., 2010) and it has also
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been found to have a significant positive correlation with aroma of

heated tobacco product (Chen et al., 2021). Chlorogenic acids and its

isomer neochlorogenic acids account for more than 50% of total

phenolic acids in flue-cured tobacco (Sheen et al., 1969; Sheen, 1973),

and act as precursors of aroma impact compounds in flue-cured

tobacco leaf, providing typical tobacco aroma and rich taste in

combustible tobacco products (Xie et al., 2018). They were also

found to be positively associated with the aroma and overall sensory

quality of heated tobacco in Chen et al. (2021). These compounds with

positive relevance to the sensory evaluation in combustible tobacco also

strongly contributed to the prediction of sensory quality of low heat

tobacco. Therefore, if the previous work with combustible tobacco has a

metabolomics profile, the variations of these compounds can be derived

to predict the sensory quality of the same tobacco variety in heated

tobacco, and vice versa. Flavonoids such as kaempferol, quercetin,

kaempferol-3-glucoside and quercetin-3-rutinoside have previously

been related to sensory quality in combustible tobacco, where they

were reported to impart special flavor during tobacco curing and aging

(Wu et al., 2022). Chen et al. (2021) quantified kaempferol and

quercetin-3-rutinoside in different tobacco types and found positive

correlation with physiological strength and taste of heated tobacco

products. Consistent with previous sensory evaluation research, current

study identified many flavonols and their glycosyl derivatives as strong

positive predictors of sensory quality of heated tobacco (Supplementary

Figure S4). As flavonoids and carotenoids are related to stress

resistance, plant growth and development, crop quality, and so on,

flavonoid and carotenoid biosynthesis in tobacco have been studied

extensively (Shi et al., 2014; Shi et al., 2015a; Shi et al., 2015b; Wang

et al., 2020b; Zhao et al., 2021). Therefore, components such as b-
damascenone, chlorogenic acids, quercetin, quercetin-3-rutinoside can

be breedable and tobacco lines varying on these constituents can be

generated to further evaluate whether they would have higher sensory

quality for combustible and low heat tobacco products. Moreover, these

tobacco lines are proper genetic resources that might determine the

efficacy of using only flavonoids and/or carotenoids to rank tobacco

quality by sensory perception prior to actual processing and evaluation.

In addition to the compounds positively impacting the sensory

quality of both combustible and heated tobacco, several volatile and

non-volatile compounds that have a positive relevance with aroma and

taste attributes in combustible tobacco did not strongly associate with

the sensory ratings of heated tobacco. Volatiles including

dihydroactinidiolide, 5-methyl furfural, 6-methyl-5-hepten-2-one and

carotenoid-derived aromatic compounds such as megastigmatrienone

and ionone were recognized as aroma-related components commonly

used to predict the quantity of leaf aroma in combustible tobacco (Clark

and Bunch, 1997; Slaghenaufi et al., 2016). However, they were not

identified as discriminating compounds by the VIP scores and fold

change analysis in the present study (Supplementary Table S3).

Similarly, non-volatile compounds such as solanone and proline were

not able to discriminate higher and lower rated tobacco varieties

(Supplementary Table S4). Thus, these aroma-related volatile and

non-volatile compounds in combustible tobacco have relatively week

contribution to the prediction of sensory properties of heated tobacco.

Interestingly, comprehensive metabolomics profiling followed by

discriminant analysis allowed the discovery of some new

relationships between leaf metabolites and sensory quality ratings of

heated tobacco. Several lipid species were found to have positive
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influences on the perception of sensory quality of heated tobacco

(Supplementary Figure S3), and therefore they should be considered

together with other non-volatile metabolites when evaluating the

applicability of tobacco varieties to heated tobacco products. LPC is a

lysophospholipid consisting of one long hydrophobic fatty acid chain

and one hydrophilic choline head group, attached to the glycerol

backbone, and was found to enhance tobacco resistance to pathogen

infection (Wi et al., 2014). LPE produced through hydrolysis of

phosphatidylethanolamine by phospholipase A2 functions in the

early stage of plant senescence and primes the plant immune system

(Volz et al., 2021). Although the biological roles of these lipids have

been investigated in tobacco, this is the first report of their positive

contributions to the sensory perception of heated tobacco. These lipid

species in tobacco leaf can be further investigated for their dynamic

changes in physical and chemical properties at the temperatures of 200-

350°C, and their interactions with the added agents such as glycerol to

form the heated tobacco aerosol (Gasparyan et al., 2018) that might

help understand their specific contributions to the sensory properties of

heated tobacco. Moreover, many di-, tri- and oligosaccharides varied

with the sensory rating levels (Supplementary Figure S2) and these

reducing and non-reducing sugar molecules might be derived from the

degradation of macromolecules such as starch and pectin during leaf

curing (Tao et al., 2022). The carbonyls of reducing sugars can interact

with amino acids to produce melanoid polymers (flavor compounds)

through Maillard reactions, improving tobacco sweetness

characteristics and aroma quality (Quan et al., 2020). Lower

temperatures and humidity during air-curing process have previously

been found to reduce sugar concentrations in air-cured tobacco

varieties (Zhao et al., 2022). The lower abundances of these sugar

molecules in the cured leaves of LY and BDH might therefore be

attributed to the air-curing process.
5 Conclusions

Non-targeted metabolomics profiling and OPLS-DA together

with fold-change values outlined volatile and non-volatile

compounds that were correlated with the higher or lower sensory

rating classes. Some compounds that were previously found in

combustible tobacco associated with good sensory evaluation are

the same as that with the low heat tobacco. Some new relationships

between leaf metabolites and sensory quality of heated tobacco were

found: several lipid species, and reducing and non-reducing sugar

molecules were positively related to sensory quality ratings of heated

tobacco. These discriminating volatile and non-volatile compounds

can represent the first step for gaining insights into the chemical

predictors for selecting tobacco varieties with desired sensory quality

in heated tobacco.
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SUPPLEMENTARY TABLE 1

Volatile metabolites detected by GC-MS.

SUPPLEMENTARY TABLE 2

Non-volatile metabolites detected by UPLC-MS/MS.

SUPPLEMENTARY TABLE 3

Discriminant volatile metabolites identified by VIP (VIP>1.0) and p-value (p-

value< 0.01).

SUPPLEMENTARY TABLE 4

Discriminant non-volatile metabolites identified by VIP (VIP>1.0) and p-value (p-
value< 0.01).

SUPPLEMENTARY TABLE 5

Discriminant non-volatile compounds identified by VIP analysis and p-value

together with fold-change cut off > 2 or < 0.5. The compounds highlighted in
red were the top 50 discriminant non-volatiles ranked by t-test and used to

construct the heatmap in Figure 4B.
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