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The root is an important organ for plants to absorb water and nutrients. In situ

root research method is an intuitive method to explore root phenotype and its

change dynamics. At present, in situ root research, roots can be accurately

extracted from in situ root images, but there are still problems such as low

analysis efficiency, high acquisition cost, and difficult deployment of image

acquisition devices outdoors. Therefore, this study designed a precise

extraction method of in situ roots based on semantic segmentation model and

edge device deployment. It initially proposes two data expansion methods, pixel

by pixel and equal proportion, expand 100 original images to 1600 and 53193

respectively. It then presents an improved DeeplabV3+ root segmentationmodel

based on CBAM and ASPP in series is designed, and the segmentation accuracy is

93.01%. The root phenotype parameters were verified through the Rhizo Vision

Explorers platform, and the root length error was 0.669%, and the root diameter

error was 1.003%. It afterwards designs a time-saving Fast prediction strategy.

Compared with the Normal prediction strategy, the time consumption is

reduced by 22.71% on GPU and 36.85% in raspberry pie. It ultimately deploys

the model to Raspberry Pie, realizing the low-cost and portable root image

acquisition and segmentation, which is conducive to outdoor deployment. In

addition, the cost accounting is only $247. It takes 8 hours to perform image

acquisition and segmentation tasks, and the power consumption is as low as

0.051kWh. In conclusion, the method proposed in this study has good

performance in model accuracy, economic cost, energy consumption, etc.

This paper realizes low-cost and high-precision segmentation of in-situ root

based on edge equipment, which provides new insights for high-throughput

field research and application of in-situ root.

KEYWORDS

in situ root, high-throughput phenotype, low-cost acquisition, semantic segmentation,
edge equipment
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1 Introduction

Roots play a crucial role in the absorption of water and nutrients

by plants, affecting plant health, environmental adaptation and

productivity (Hinsinger et al., 2011; Lynch and Wojciechowski,

2015; Paez-Garcia et al., 2015). Microroots (mainly composed of

fine roots and root hairs) are the main executive parts of roots. The

absorption of water and nutrients accounts for more than 75% of

the total absorption of roots (Nielsen et al., 2001). The dynamic

changes of their own morphological characteristics (Shan and Tao,

1992) significantly affect root function and plant growth. At present,

root phenotype research focuses on the accurate identification of

root architecture. However, the segmentation of plant roots from

the cultivation environment is vulnerable to the impact of small and

medium soil particles. At the same time, it is difficult to accurately

segment the edges of roots and soil, which restricts the acquisition

of accurate root images.

In order to solve the above problems, scholars at home and

abroad have conducted a lot of relevant research. Obtaining high-

resolution images of roots in soil is the basis for accurate

identification of root configuration. Traditional root acquisition

methods, such as root drilling, soil column method and profile

method, consume materials and manpower. Problems such as

damage to root configuration and loss of small root segments are

easy to occur during extraction, which cannot meet the dynamic

and accurate identification of root configuration, It has been

replaced by in situ root observation (in situ cultivation method

and in situ imaging method) (Xiao et al., 2020; Liu et al., 2020b).

The root in situ imaging method originated from the micro root

canal method (Bates, 1937; Cseresnyés et al., 2021; Rajurkar et al.,

2022) It refers to identifying the root image contacting the glass tube

wall by inserting a glass tube into the soil. However, its

disadvantages lie in poor resolution (numerical value), slow

acquisition speed (time), and low degree of automation. It is

difficult to achieve batch synchronization and real-time

acquisition of the original root image. In addition, X-ray

tomography (XCT) and nuclear magnetic resonance imaging

(MRI) commonly used in medicine also provide new methods

and means for the acquisition of in situ root images (Jahnke

et al. , 2009). XCT scans the root image by using the

characteristics of different attenuation degrees of X-ray passing

through the soil and root, and finally obtains the root image (Park

et al., 2020; Scotson et al., 2021; Ferreira et al., 2022). MRI is a

modern tomographic imaging technology, which mainly transmits

radio frequency electromagnetic waves to obtain the MRI

information of different positions of objects in the magnetic field

to generate images, and uses computers to reconstruct the internal

images of objects(Borisjuk et al., 2012). It has also been applied in

root research (Schneider et al., 2020; Horn et al., 2021; Pflugfelder

et al., 2021). However, there are still drawbacks to the above two

technologies. Among them, XCT imaging takes a long time to

acquire, while MRI is more suitable for acquiring large roots.

Neither of them can recognize that the diameter is less than 400

m M (Metzner et al., 2015), and both technologies have

disadvantages such as high equipment cost and vulnerability to

soil environment interference.
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Digital equipment imaging method can dynamically collect

high-resolution in situ root images without changing the soil

environment and affecting the root growth state, which is

conducive to improving the efficiency of root configuration

segmentation and quantitative analysis (Hammac et al., 2011). In

recent years, it has been widely reported that simple cultivation

devices combined with digital equipment (smart phones, scanners,

digital cameras) are used to obtain root images (Mohamed et al.,

2017; Nakahata and Osawa, 2017; Nahar and Pan, 2019).

On the basis of accurately obtaining high-resolution in situ root

images, accurate and efficient root configuration recognition is a

thorny problem in current root phenotype research (Lynch, 2013).

The traditional image processing methods for root recognition

include traditional manual description, semi-automatic interactive

recognition and automatic threshold segmentation. The manual

description method has the problems of low recognition efficiency,

large workload and high result error (Abramoff et al., 2004; Le Bot

et al., 2010). The semi-automatic method is based on visual

observation and image recognition through auxiliary software.

Although semi-automatic interaction can achieve high accuracy,

it is too dependent on the subjective ability of observers to

distinguish roots and their own experience. The segmentation of

a single complex root image takes a long time, and the efficiency is

too low to achieve high flux in situ root image analysis. Although

the fully automatic threshold method improves the efficiency of root

identification, such as DIRT, GiaRoots, IJ Rhizo and EZ Rhizo can

provide statistical information such as root diameter, height and

density (Galkovskyi et al., 2012; Pierret et al., 2013; Das et al., 2015).

However, it is difficult to eliminate the noise interference of soil

background, and there are errors in root morphology identification.

And most of the research focuses on obtaining the more extensive

root parameters such as structure, length, diameter, etc. It is difficult

to excavate more detailed morphological characteristics of

micro roots.

Compared with traditional methods, root recognition based on

deep learning is easier to mine multi-level characteristics of the

target, and occupies a dominant position in the current root

phenotype research. For example, the SegRoot platform (Wang

et al., 2019) can mine multi-scale features of root images through

the improved SegNet network (Badrinarayanan et al., 2017), but

under fitting may occur in some cases. The ITErRoot network

(Seidenthal et al., 2022) has achieved good results in root

segmentation by stacking the encoding, decoding layer and

residual structure of the U-shaped structure many times, but its

network is too bloated and requires a high training platform. The

RootNav2.0 system (Yasrab et al., 2019) is based on the encoder

decoder CNN architecture and replaces the previous semi-

automatic feature extraction RootNav system (Pound et al., 2013)

with a multitask convolutional neural network architecture. It does

not require user interaction to accurately extract the root structure,

and the speed is increased by nearly 10 times, but it needs to be

carried out when the root is fully visible. Through the improved

UNet structure, the FaRIA platform (Narisetti et al., 2021) divides

the large resolution image into 256 x 256 small images for

prediction, and realizes the batch prediction of root images. The

RootPainter platform (Smith et al., 2022) includes semi-automatic
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and fully automatic methods. The former allows users to

subjectively correct each segmented image, and the model can

learn from the assigned correction, reducing the segmentation

time with the segmentation process; the latter is more suitable for

processing large data sets.

Edge devices include raspberry pie series developed by

Raspberry Pi Foundation, jetson series developed by Nvidia

Company, and orange pie series developed by Xunlong Software

Company. Among them, raspberry pie is increasingly used as a low-

cost, high-throughput solution for plant phenotype analysis (Jolles,

2021). For example, the “Do It Yourself” phenotyping system

(Dobrescu et al., 2017) uses raspberry pie control cameras to

achieve batch plant image acquisition, PYM (Valle et al., 2017)

uses raspberry pie control infrared cameras to perform phenotype

analysis on plant leaves, and Greenotyper (Tausen et al., 2020) uses

raspberry pie control cameras and deploys depth learning to

monitor plant positions. However, most of these platforms are

used for phenotypic analysis of plant parts on the ground, lacking of

research cases on plant underground roots. At present, mainstream

platforms for root identification, such as RhizoVision Crow

(Seethepalli et al., 2020), are based on desktop development and

do not support deploying models to Raspberry pie.

It has been reported that the RhizoPot platform was developed

by our research team in the early stage (Zhao et al., 2022) can

realize high-resolution, non-destructive real-time acquisition of

in-situ root images. In addition, the team has designed a cotton

plant root segmentation method based on DeeplabV3+ and

proposed the improvement strategy of the model for the

research on root segmentation methods (Shen et al., 2020; Jia

et al., 2021). However, the previous studies were all indoor

platform development, and the equipment cost was high,

lacking the exploration of portable equipment in outdoor

environment. Therefore, based on the previous research, this

paper designs a data augmentation scheme to expand the data

set; DeeplabV3+ model is modified to connect CBAM attention

mechanism with ASPP spatial pyramid pooling; The prediction

strategy is modified to make it more suitable for edge devices;

Deploy to Raspberry pie, and design the method of field

experiment. The purpose of this paper is to design a low-cost,

high-throughput in situ root precise identification technology by

replacing the traditional GPU analysis platform with raspberry

pie, and explore the possibil i ty of its application in

outdoor environment.
2 Materials and methods

2.1 Image collection

This experiment was conducted in the experimental station of

Hebei Agricultural University in Baoding, Hebei Province (38.85°N,

115.30°E) in 2021. The climate of the experimental site was mild.

Use Epson scanner V39 (Epson lnc., Suwa shi, Nagano, Japan) to

scan root images in batches. The resolution of the collected images

is set to 1200dpi and the saved format is bmp. The experimental

schematic diagram and equipment are shown in Figures 1A, C
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respectively. Figure 1B shows the prospect of field experiments.

Figures 1D–H are the relevant experimental equipment.

This paper filters and classifies the collected image set, removes

incomplete and fuzzy images, and finally retains 125 complete and

clear cotton roots in situ images, randomly selects 100 of them for

network training, and the ratio of training set to verification set is

9:1. According to the image data expansion method proposed in

this paper, 47873 and 1600 training set images and 5320 and 160

verification set images are finally obtained. The remaining 25

images are used as a test set to evaluate the network performance.

The image annotation is completed by an experienced

agronomist using the Adobe Photoshop CC (Adobe Inc., San

Jose, CA, United States) lasso tool. All pixels considered as roots

are marked white and saved in a new layer. Finally, the remaining

pixels are marked black. The resolution of the annotation image is

10200 pixels x 14039 pixels, and the annotation time of a single

image is about 4.5 hours.
2.2 Data augmentation

The dataset format required for training DeeplabV3+ is jpg, and

the image data set needs to be converted from bmp to jpg. In this

paper, two image data augmentation methods are designed. In

method 1, the training images are divided according to the

resolution of 512 pixels x 512 pixels to ensure that the training

can be carried out by resolution. At this time, the input image data

set is expanded to 53193, and the training set and verification set are

47873 and 5320, respectively.

In method 2, the training input image is segmented according to

the size ratio. To ensure accurate prediction of the original image,

the input resolution of the whole image is set to 2048 pixels x 2048

pixels. During training, the input resolution needs to be kept at 512

pixels x 512 pixels. The ratio of training resolution to prediction

resolution is 1: 16. Therefore, the image is reduced to 1/16 of the

original one to ensure that the prediction of the whole image has a

fixed size ratio. The annotation image also needs to go through the

same processing process, and the final training set based on equal

proportion is 1600 pieces, and the verification set is 160 pieces.

After training, the w1 weight based on the equal proportion method

and the w2 weight based on the pixel by pixel method are obtained

Figure 2 shows the differences between the two methods.
2.3 Segmentation model

2.3.1 Model comparison
The root data set used in this paper is selected in turn to

compare DeeplabV3+(Chen et al., 2018), PSPNet (Zhao et al.,

2017), HRNet (Sun et al., 2019) and UNet (Ronneberger et al.,

2015). The image segmentation results are shown in Figure 3 and

the experimental data are shown in Research 1 of Table 1.

From the segmentation effect of root image (Figure 3), it can be

seen that DeeplabV3+(MobilenetV2) and UNet have the best

segmentation effect, while DeeplabV3+(Xception) has obvious

under fitting phenomenon. The segmentation effect of HRNet
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and PSPNet is very poor, and the model is not suitable for

root segmentation.

According to the prediction results of root image (Research 1 of

Table 1), DeeplabV3+(MobilenetV2) has the best effect, followed by

UNet, DeeplabV3+(Xception), HRNet and PSPNet.

Therefore, based on the previous experimental results, this

paper designs a backbone network based on DeeplabV3+ model

and MobilenetV2 to train and predict the root image.
Frontiers in Plant Science 04
2.3.2 Model improvement
At present, the attention mechanism can significantly improve the

model feature extraction ability and can be embedded in most

mainstream networks without significantly increasing the model

parameters and computation. Attention module includes channel

attention module, space attention module, time attention module and

branch attention module, and mixed attention mechanism: channel

space attention mechanism and space time attention mechanism.
FIGURE 1

Root collection equipment and method (A) Schematic diagram of RhizPot (B) Schematic diagram of field test (C) RhizoPot (D) Raspberry Pie 4B (E)
Jetson Nano (F) RTX2060 Notebook (G) Power Detector (H) Raspberry Pie Remote Desktop.
A

B

D
C

FIGURE 2

Illustration of Equal Proportion Dataset and Pixel by Pixel Dataset (A) Original Image (B) Equal Proportion Dataset (C) Pixel by Pixel Dataset (D) After
Training, w1 is the weight trained by the Equal Proportion Dataset, and w2 is the weight trained by the Pixel by Pixel Dataset.
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CBAM (Woo et al., 2018) is an attention module in the channel spatial

attention mechanism. That is, the image first goes through the channel

attention mechanism (CAM) to solve the problem of “what to pay

attention to”, then goes through the spatial attentionmechanism (SAM)

to solve the problem of “where to pay attention to”, and finally integrates

with the original feature map to form a new feature map that

emphasizes the channel and spatial features. In addition, CBAM is a

lightweight attention mechanism that can be seamlessly integrated into

any neural network without module overhead.

The DeeplabV3+ model designed in this paper uses the ASPP

structure in the encoder part, which contains three parallel hole

convolutions with expansion rates of 6, 12 and 18, which can provide
Frontiers in Plant Science 05
a larger receiving field and capture more context information. On this

basis, inspired by the deployment of the dual attention mechanism to

the DeeplabV3+ network (Liu et al., 2020a). This paper tests two

methods of CBAM attentionmechanism deployment to the DeeplabV3

+ network, namely, the series connection and parallel connection of

CBAM and ASPP. The network structures are shown in Figures 4A, B

respectively. Both methods use the pre training weight of the backbone

network to iterate for 100 times before performance testing. Figure 5

compares the segmented images of the two methods, and the

performance comparison is shown in Research 2 of Table 1. The

results show that the CBAM attention mechanism in series with ASPP

is better than the parallel operation.
A

B D

E

F G

C

FIGURE 3

Segmentation Results of Various Network Roots (A) Original Image (B) Ground Truth (C) PSPNet (D) HRNet (E) UNet (F) DeeplabV3+(MobilenetV2)
(G) DeeplabV3+(Xception).
TABLE 1 Research 1: Performance of each network partition.

Research Network
name

mIoU
(%)

mPA
(%)

mPrecision
(%)

Precision
root(%)

Precision back-
ground(%)

Recall
(%)

GPU
mtime
(min)

Raspberry Pie
mtime(min)

Research 1

PSPNet 51.95 63.8 53.93 8.43 99.43 63.8 NA NA

HRNet 60.23 67.94 69.09 40.12 98.06 67.94 NA NA

DeeplabV3+
67.18 70.25 91.26 86.15 96.36 70.25

NA NA

(Xception) NA NA

UNet 85.06 90.8 91.83 84.2 99.46 90.8 NA NA

DeeplabV3+
75.17 78.22 92.9 87.75 98.05 78.22

NA NA

(MobilenetV2) NA NA

Research 2
Series 74.53 77.49 93.01 88.09 97.92 77.49 NA NA

Parallel 75.77 79.16 92.25 86.28 98.23 79.16 NA NA

Research 3
Fast 85.45 91.96 91.19 83.37 99.55 91.96 0.599 26.01

Normal 85.64 91.94 91.46 82.82 99.55 91.94 0.775 41.19
Research 2: Performance comparison of two methods to improve DeeplabV3+. Research 3: Performance of Fast segmentation and Normal segmentation on raspberry pie 4B and GPU platforms.
NA, Not Applicable. The optimal values are written in bold font.
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2.4 Predictive policy

In the early stage of this paper, the traditional conventional

strategy (Normal) of segmentation followed by splicing was tested.

By dividing the original image to a specified size, network prediction

was performed, and then the prediction results were spliced to obtain a

complete segmentation result. The processing process is shown in
Frontiers in Plant Science 06
Figure 6A. The test results show that although the prediction accuracy

of this method is high, it takes a long time to predict after deployment

to raspberry pie. The shared time of the test set image prediction

process is up to 17 hours and 10 minutes. Therefore, this paper

proposes an improved fast splicing and segmentation strategy (Fast).

The improved Fast method is shown in Figure 6B. Based on the

results of the full image processing of the equal proportion
FIGURE 4

Improved DeeplabV3+ network structure (A) Series improvement (B) Parallel improvement.
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segmentation (Figure 7C), the region is divided into foreground and

background, where the foreground is the part of the region that

contains roots, and the background is the part of the region that

does not contain roots. For the foreground part, the region

corresponding to the original image is put into the network for

segmentation; for the background part, a RGB image with all gray

values of 0 is directly used to replace it. Finally, combine the two

into a complete segmented image (Figure 7D).

The results show that this method can save 22.71% of the time

cost on GPU on average, and the segmentation accuracy only

decreases 0.55% year on year, as shown in Research 3 of Table 1.

Later deployed in the raspberry pie terminal, the time cost of a

single picture can be saved by 36.85%.

2.5 Raspberry pie deployment

The model of the edge device selected in this article is Raspberry

Pi Foundation (Cambs, United Kingdom) 4B, which contains 8G of

memory, plus 32G of memory card. Raspberry Pie is an ARM based

microcomputer motherboard. SD/MicroSD card is used as the

memory hard disk. There are 1/2/4 USB interfaces and a 10/100

Ethernet interface (Type A has no network interface) around the

card motherboard. It can connect the keyboard, mouse and network

cable. It also has a TV output interface for video analog signals and

an HDMI high-definition video output interface.

2.5.1 Installation of raspberry pie system
The raspberry pie system selects the raspberry pie official 64 bit

system image (Raspberry Pi), sets SSH, WIFI, language and time

zone through the official burning software, and then burns it into

the 32G memory card. After startup, connect to Raspberry Pie via

MobaXterm to configure corresponding functions.
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2.5.2 Raspberry pie deployment batch splitter
Deploy the batch splitting program to Raspberry Pie 4B, and its

settable parameters include picture address, cache address and

target address. Its operation process is shown in Figure 8A.

2.5.3 Raspberry pie participates in image
collection and segmentation

In order to give full play to the low power consumption

advantage of Raspberry Pie 4B, this paper combines the image

segmentation program with image acquisition, and can set

parameters including scanner name, acquisition quantity, interval

time, image storage address, cache address, and target address (the

default setting of the scanner is dpi=1200, and the color mode is

color). The operation process is shown in Figure 8B. Compared

with batch segmentation, continuous collection and segmentation

can better reflect the advantages of raspberry pie 4B. The method of

timing acquisition is shown in Figure 8C.

The collection results are shown in Figure 9. The collection

interval is 24 hours and the collection time is 19:00 every day. In

order to show the growth process of root more clearly, the original

image is cropped, and the change trend of root can be clearly

observed in the image after network segmentation.

3 Results

3.1 Model evaluation

3.1.1 Model selection
This paper compares the performance of PSPNet, HRNet, UNet

and DeeplabV3+ depth learning models in cotton root image

segmentation. The test results show the comprehensive

performance of DeeplabV3+ > UNet > HRNet > PSPNet.
A B

DC

FIGURE 5

Serial and Parallel Segmentation Results (A) Original Image (B) Ground Truth (C) Parallel Segmentation Image (D) Parallel Segmentation Image.
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In DeeplabV3+, compare the backbone networks MobilenetV2

and Xception, and see Research 1 of Table 1 for performance

comparison when the backbone network pre training weight is used

to train iterations for 100 times. The effect of MobilenetV2 is better

than that of Xoption because MobilenetV2 is lighter, the network

model is smaller, the number of iterations required is less, and the

prediction time is shorter. The Xception network model is larger,

which is not conducive to deployment to edge devices.

3.1.2 Improvement results
This paper compares CBAMwith ASPP in parallel and in series.

Figure 4 for network structure and Research 2 of Table 1 for

segmentation performance. The results show that in terms of

segmentation accuracy, the method of CBAM in series with ASPP

is the best, DeeplabV3+ is the second, and the method of CBAM in

parallel with ASPP is the second.

In addition, the prediction accuracy of the improved DeeplabV3

+ network is 90.15%, higher than DeeplabV3+, HRNet and PSPNet,

and slightly lower than Unet. However, because the input and

output sizes of the Unet network are inconsistent, resulting in burrs

on the edge of the output prediction image. At the same time, the

cost of the Unet network is slightly higher. If the Unet network is

directly deployed to the Raspberry Pie 4B, it will not be able to

segment the high-resolution root image due to memory

limitations. Therefore, this paper does not use Unet as the root

segmentation network.

The test results show that the improved DeeplabV3+ network

can be directly deployed to the raspberry pie 4B, without pruning,

and runs well with stability and reliability.
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3.2 Performance evaluation

3.2.1 Predictive performance
After the network is deployed to Raspberry Pie, the average

partition time of the test set is about 41.19 minutes with the Normal

strategy, while the average partition time of the test set is about

26.01 minutes with the Fast strategy, a year-on-year decrease of

15.18 minutes. It takes about 9 minutes to segment images with

sparse roots and 33 minutes to segment images with dense roots.

Compare the segmented image with the labeled image, and the

performance indicators are shown in Research 3 of Table 1.

Therefore, compared with the Normal strategy, the Fast strategy

runs 36.85% faster in raspberry pie 4B on average, but the

prediction accuracy is only 0.34% lower. The experimental results

show that the Fast segmentation strategy proposed in this paper can

replace the Normal strategy to a certain extent.

3.2.2 Prediction accuracy
In addition, this paper also uses the open-source Rhizo Vision

Explorers platform (Seethepalli et al., 2021) to analyze the

phenotypic data of segmented root images, mainly comparing the

differences between the result images and the labeled images in root

length and diameter. See Table 2 for the comparison results. The

results show that the error of root phenotypic parameters such as

root length and diameter obtained by Normal strategy and Fast

strategy compared with the original labeled image is acceptable.

However, there is a big error between the root length, diameter and

the actual value of the result image obtained by the equal proportion

segmentation method.
FIGURE 6

Division Method Diagram (A) Normal Division Method (B) Fast Division Method.
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3.3 GPU verification

The advantages of edge devices replacing host devices lie in high

portability and low power consumption. In this paper, the

Raspberry pie 4B with 8G memory and HP Shadow Genie 5 (i7-

9750h+RTX2060+16G memory) notebook computers are used, and

the power supply is connected through the P06S-10 power detector

to compare the power consumption of the two in the continuous 8-

hour image acquisition and segmentation. The acquisition rate is 1

piece per hour, 8 pieces in total are collected, and the image is

segmented in the acquisition window period. The experimental

equipment is shown in Figure 1, and the results are shown

in Table 3.

3.3.1 Power consumption verification
The power consumption of Raspberry Pie 4B is much lower

than that of RTX2060 platform when collecting and segmenting the

same image. At the same time, when the time interval between two
Frontiers in Plant Science 09
root image scans exceeds 30 minutes, Raspberry pie 4B has the

ability to segment within the scanning interval. The time used will

not increase, but the power consumption will be greatly reduced.

Therefore, it is proved that if the scanning interval is allowed, the

edge devices can deploy root segmentation networks to completely

replace the high cost and high energy consumption GPU

analysis platform.

3.3.2 Time verification
In this paper, the Fast policy and the Normal policy are

deployed on the GPU platform for comparison. The results show

that the Fast policy is 22.71% faster than the ordinary policy on

average, which verifies the conclusion that the Fast policy takes less

time than the Normal policy.

3.3.3 Result validation
In this paper, we also carried out a comparative experiment of

raspberry pie and GPU batch segmentation of root images
A B

D

C

FIGURE 7

Comparison of Equal Proportion Image Segmentation and Pixel by Pixel Image Segmentation (A) Original Image (B) Ground Truth (C) Results and
Details of Equal Proportion Segmentation (D) Results and Details of Pixel by Pixel Segmentation.
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simultaneously. Both of them used 25 test set images for

continuous segmentation test, with the same weight. The results

are shown in Table 3, which verify that the raspberry pie is

completely consistent with the GPU in terms of segmentation

accuracy. However, due to the limitation of 4B computing power

of Raspberry pie, the total power consumption is slightly higher

than that of the graphics card.
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3.4 Cost evaluation

Theoretically, semantic segmentation on the Jetson Nano with

GPU in this experiment will accelerate, but since the memory of

the Jetson Nano is only 4G, virtual memory needs to be added for

network deployment. Table 4 records the reference price of the

equipment used in the experiment. Based on the data provided by
A B D EC

FIGURE 9

Continuous acquisition and segmentation results. (A–E) are the root image and network segmentation result collected continuously at a time
interval of 24 hours.
FIGURE 8

Procedure Flow Chart (A) Batch Segmentation Procedure Flow (B) Image Acquisition and Segmentation Procedure Flow (C) Method of Image
Acquisition Interval.
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the RhizoPot platform (Zhao et al., 2022), the cost of using the

RTX2060 laptop with the Tensor core to control the RhizoPot

platform is approximately $1480. Compared with using the Jetson

Nano to control the RhizoPot platform, the cost is reduced to

$301, but the cost of using the raspberry pie 4B is only $247

(excluding the power detector). Considering the cost, the

performance price ratio of raspberry pie 4B or Jetson Nano is

much higher than others. Compared with the segmentation

performance of raspberry pie 4B and Jetson Nano, finally, this

paper selects raspberry pie 4B as the edge device for deploying root

image acquisition and segmentation.
4 Discussion

4.1 Basis for model improvement

The previous results show that both CBAM and ASPP can

improve the cotton image segmentation accuracy in series or in

parallel, but the series method is better than the parallel method.

The author believes that:

First, data processing samples are differentiated. The references are

for remote sensing image data sets. This paper uses cotton root data

sets. The characteristics of the two images are different. The remote

sensing image is characterized by the buildings, farmland and other

objects collected are basically square, while the cotton root image is

irregular, similar to human blood vessels. In addition, remote sensing

image segmentation usually faces multi category problems, and cotton

root segmentation mainly focuses on two category problems.

Secondly, the series and parallel extraction features are

differentiated. The advantage of concatenation is that after CBAM

extracts multi-channel attention mechanism features, ASPP is used to

sample multi-scale convolution kernel, which can more effectively

extract root feature vectors in space and time. In the parallel

connection method, on the premise that MobilenetV2 is used as the

backbone network, the number of channels output by CBAM is 320,
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and the number of channels output by ASPP is 256, that is, the number

of channels entering feature fusion is 576. However, in order to keep

consistent with the number of channels in the network decoding part,

the number of channels output by feature fusion can only be 256.

Therefore, the rise of input feature fusion dimension leads to higher

difficulty of classification, thus reducing the accuracy of the network.

Finally, for the optimization of the tandem method, residual

structure, convolution block and pooling layer can be introduced

into the attention mechanism module in the later stage to mine the

characteristics of attention mechanism at multiple scales.
4.2 Forecast strategy validation

At the beginning of this experiment, the image is similar to pixel

merging processing, that is, using the super pixel method (Ren et al.,

2019), SLIC super pixel segmentation algorithm is introduced in the

prediction, and the input image is divided into a super pixel image.

The traditional DeeplabV3+ output operation of these super pixel

image regions is used to obtain an accurate segmentation image.

However, in actual processing, the SLIC is used to block the image,

and the operation of block by block super pixel area will greatly

increase the prediction time. At the same time, when the prediction

image is more complex and fine, the quality of the output image will

be seriously affected. At the same time, the high resolution image

also limits the strategy of semantic segmentation.

There are two common methods for semantic segmentation of

high-resolution images. The first method is to down sample the

image and put it into the network for prediction, and then up

sample the results, so that the image processing speed is fast and the

context information will not be lost. However, the results of root

phenotype analysis showed that the root length and diameter

predicted by this method were larger than expected. The second

is to use the sliding window operation to divide the image into the

same area with a specified size and about 20% reserved, input the

network prediction to obtain local results, and then complete the
TABLE 2 Comparison of equal proportion segmentation, pixel by pixel segmentation and ground truth root system.

Name Total root length (pt) Root length error (%) Total root diameter (pt) Root diameter error (%)

Ground Truth 5576876 NA 534.835 NA

Equal Proportion 6057449 8.617 837.174 56.529

Pixel by Pixel (Normal) 5659371 1.479 538.775 0.737

Pixel by Pixel (Fast) 5614186 0.669 540.198 1.003
NA, Not Applicable. The optimal values are written in bold font.
TABLE 3 Comparison between Raspberry Pie 4B and RTX2060 Notebook for Collection and Batch Segmentation.

Method Platform Average split time (h) Collection time (h) Total time (h) Power consumption (kWh)

Collection Segmentation
RTX2060 NA 8 8.008 1.281

Raspberry Pie 4B NA 8 8.496 0.051

Batch Segmentation
RTX2060 0.017 NA 0.433 0.073

Raspberry Pie 4B 0.434 NA 10.338 0.086
NA, Not Applicable.
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stitching of image feature points. This method has a good degree of

detail and retains the context information, but it has high time cost

and is not friendly to edge devices.

The fast splicing and segmentation strategy (Fast) proposed

in this paper lacks context information, so the prediction effect

of scattering is poor. The equal proportion segmentation part of

this method actually belongs to the first kind of common

segmentation method, which contains all the context

information of the image. However, as shown in Figure 7, the

image processed by this method lacks details, and the root length

and diameter errors are too large after root phenotype analysis.

Therefore, this method only uses it as a pedal to save the

computing time of edge devices.
4.3 Edge device comparison

Compare the performance of Jetson Nano and raspberry pie 4B

with similar prices in in situ root segmentation. See Table 5 for the

results. In the experiment, 25 cotton root images (from the test set)

were selected for continuous and equal proportion segmentation,

and the network weights used by Jetson Nano and Raspberry Pie 4B

were consistent. Due to memory limitations, the Jetson Nano

cannot segment 1200dpi images with a resolution of 10200 pixels

x 14039 pixels. It can only compare 300dpi root images. In terms of

program startup, when using cuda, the Jetson Nano can only

segment up to three images consecutively, and then it will report

an error that the timer has timed out. When cuda is not used, the
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segmentation time of the Jetson Nano for 300dpi images is much

longer than that of the raspberry pie 4B.

There are three reasons why the split performance of the Jetson

Nano is inferior to that of the raspberry pie 4B. First, because of the

memory problem, more virtual memory needs to be configured

when running programs, but the speed of virtual memory is far

lower than that of running memory. The second is the CUDA

problem. When running the program, the timer will timeout. The

third problem is the processor. The processor model used by the

Jetson Nano is Cortex-A57, which lags behind the Cortex-A72

processor of the Raspberry pie 4B. Therefore, in actual use, the

performance of raspberry pie 4B is better than that of the Jetson

Nano. Theoretically, the performance of the Jetson TX2 is the best

(Süzen et al., 2020), but its cost is high, so it is not considered in

this paper.
4.4 Outdoor deployment prospect

Because soil color is dark and soil contains more impurities in

the case of natural cultivation of plants, this paper tested the image

segmentation of deep soil color and obscure root, as shown in

Figure 10, the network designed in this paper can still be segmented.

The results show that the root segmentation network designed in

this paper can carry out accurate identification of in situ roots in

various situations, and because of the portability and mobility of

raspberry pie, it can be deployed outdoors in the field for

experiments. The schematic diagram of field experiments is
TABLE 4 Reference Price of Equipment Used in the Experiment.

Name Type Price Other

Raspberry Pi Raspberry Pi 4B 8G $35

16G TransFLash card Kingston $5

RhizoPot platform $207 Including scanner, USB cable, acrylic plate and glass sealant

Jetson Nano $89

RTX2060 notebook RTX2060 + 16G Memory $1,268

Power detector Worldliness $4

Total $1,608
TABLE 5 Comparison between raspberry pie 4B and jetson nano (the processing method used for comparison is equal proportion segmentation, 25
sheets).

Name Split time
(300DPI)(ms)

Split time
(600DPI)(ms)

Split time
(1200DPI)

(ms)

Power consumption
(300DPI)(kWh)

Power consumption
(600DPI)(kWh)

Power consumption
(1200DPI)(kWh)

Raspberry
Pi 4B

1747842ms 1834684ms 2060141ms 0.004 0.004 0.005

Jetson nano
CUDA error CUDA error Memory error NA NA NA

(CUDA)

Jetson nano
17960733ms 18582792ms Memory error 0.021 0.031 NA

(no CUDA)
NA, Not Applicable.
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shown in Figure 1B. At the same time, raspberry pie can be used as a

continuous working platform for image segmentation. Compared

with GPU as the control, the Raspberry pie has lower power

consumption, saves GPU, and enables GPU to perform more

computationally demanding tasks.

In the future, this paper will consider adding Nvidia neural

computing stick to raspberry pie, which can theoretically improve

the segmentation speed of raspberry pie. For outdoor experiments,

considering the limited storage capacity of the SD card used by

Raspberry Pie, consider adding cloud storage in the future, and

upload the collected images obtained by the Raspberry Pie control

scanner and the identification images processed by the root

segmentation network to the cloud synchronously. This can not

only save the limited storage space of Raspberry Pie, but also

download scanning and processing images directly from the

cloud, replacing the transmission of removable storage devices,

improving the work efficiency, and laying a foundation for the

development of high-throughput outdoor root phenotype research.

At present, image labeling and training are classified into two

categories: root and non-root. When performing root phenotypic

analysis, only the whole picture can be analyzed, and the taproot

and lateral root cannot be analyzed separately. In the future, this

paper will consider using transfer learning to update the categories

of taproot and lateral root on the basis of the current situation,

which will have more agronomic significance.

In the process of root segmentation, small particles in the soil

will have an impact on the segmentation results, resulting in root

breakage in the segmentation results. The future goal of our

experimental group is to reconstruct the root system by

generating an antagonistic network and analyze the reconstructed

root system.
5 Conclusion

This paper proposes a method to deploy semantic

segmentation model to edge devices, and improves DeeplabV3+

model to segment image edges better. At the same time, we

propose an image segmentation strategy which can save time

and has both image details and context information. The
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improved DeeplabV3+ deployment in Raspberry Pie 4B shows

good performance. Compared with the deployment of the split

network on the GPU platform, the cost of deployment in

Raspberry Pie is as low as $247, and the power consumption of

8-hour acquisition and segmentation is as low as 0.051kWh.

Considering the time and cost, the accuracy of the improved

model is 91.19%, and the errors of the root length and diameter

are 0.669% and 1.003% respectively. The effect is similar to that of

the GPU, and it is more portable than computers. It can be

deployed outdoors for field experiment analysis. It can be seen

that if time permits, edge devices can replace laptops to complete

batch collection and segmentation of plant root images. In this

paper, based on the edge equipment, the segmentation of root

phenotype is effectively explored, which provides a favorable basis

for the study of root phenotype from the experimental

environment to the field and outdoors.
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(2021). Electrical capacitance versus minirhizotron technique: A study of root
dynamics in wheat–pea intercrops. Plants 10 (10), 1991. doi: 10.3390/plants10101991

Das, A., Schneider, H., Burridge, J., Ascanio, A. K. M., Wojciechowski, T., Topp, C.
N., et al. (2015). Digital imaging of root traits (DIRT): A high-throughput computing
and collaboration platform for field-based root phenomics. Plant Methods 11 (1), 51.
doi: 10.1186/s13007-015-0093-3

Dobrescu, A., Scorza, L. C. T., Tsaftaris, S. A., and McCormick, A. J. (2017). A “Do-
It-Yourself” phenotyping system: Measuring growth and morphology throughout the
diel cycle in rosette shaped plants. Plant Methods 13 (1), 95. doi: 10.1186/s13007-017-
0247-6

Ferreira, T. R., Pires, L. F., and Reichardt, K. (2022). 4D X-ray computed
tomography in soil science: an overview and future perspectives at Mogno/Sirius.
Braz. J. Phys. 52 (2), 33. doi: 10.1007/s13538-021-01043-x

Galkovskyi, T., Mileyko, Y., Bucksch, A., Moore, B., Symonova, O., Price, C. A., et al.
(2012). GiA roots: software for the high throughput analysis of plant root system
architecture. BMC Plant Biol. 12 (1), 116. doi: 10.1186/1471-2229-12-116

Hammac, W. A., Pan, W. L., Bolton, R. P., and Koenig, R. T. (2011). High resolution
imaging to assess oilseed species’ root hair responses to soil water stress. Plant Soil 339
(1), 125–135. doi: 10.1007/s11104-010-0335-0

Hinsinger, P., Brauman, A., Devau, N., Gérard, F., Jourdan, C., Laclau, J.-P., et al.
(2011). Acquisition of phosphorus and other poorly mobile nutrients by roots. where
do plant nutrition models fail? Plant Soil 348 (1), 29. doi: 10.1007/s11104-011-0903-y

Horn, J., Zhao, Y., Wandel, N., Landl, M., Schnepf, A., and Behnke, S. (2021).
“Robust skeletonization for plant root structure reconstruction from MRI,” in 2020
25th International Conference on Pattern Recognition (ICPR). (Milan, Italy: IEEE),
10689–10696. doi: 10.1109/ICPR48806.2021.9413045

Jahnke, S., Menzel, M. I., Van Dusschoten, D., Roeb, G. W., Bühler, J., Minwuyelet,
S., et al. (2009). Combined MRI–PET dissects dynamic changes in plant structures and
functions. Plant J. 59 (4), 634–644. doi: 10.1111/j.1365-313X.2009.03888.x

Jia, K. A., Llbc, D., Fz, E., Chen, S. A., Nan, W., and Ls, A. (2021). Semantic
segmentation model of cotton roots in-situ image based on attention mechanism.
Comput. Electron. Agric. 189, 106370. doi: 10.1016/j.compag.2021.106370

Jolles, J. W. (2021). Broad-scale applications of the raspberry pi: A review and guide
for biologists. Methods Ecol. Evolution 12 (9), 1562–1579. doi: 10.1111/2041-
210X.13652

Le Bot, J., Serra, V., Fabre, J., Draye, X., Adamowicz, S., and Pagès, L. (2010). DART:
A software to analyse root system architecture and development from captured images.
Plant Soil 326 (1), 261–273. doi: 10.1007/s11104-009-0005-2
Liu, X., Gu, H., Han, J., Jiang, H., and Duan, S. (2020b). Research progress of ground
penetrating radar and electrical capacitance for in-situ non-destructive measurement of
crop roots. Trans. Chin. Soc. Agric. Eng. 36 (20), 226–237.

Liu, W., Shu, Y., Tang, X., and Liu, J. (2020a). Remote sensing image segmentation
using dual attention mechanism Deeplabv3+ algorithm. Trop. Geogr. 40 (2), 303–313.
doi: 10.13284/j.cnki.rddl.003229

Lynch, J. P. (2013). Steep, cheap and deep: an ideotype to optimize water and n
acquisition by maize root systems. Ann. Bot. 112 (2), 347–357. doi: 10.1093/aob/
mcs293

Lynch, J. P., and Wojciechowski, T. (2015). Opportunities and challenges in the
subsoil: pathways to deeper rooted crops. J. Exp. Bot. 66 (8), 2199–2210. doi: 10.1093/
jxb/eru508

Metzner, R., Eggert, A., van Dusschoten, D., Pflugfelder, D., Gerth, S., Schurr, U.,
et al. (2015). Direct comparison of MRI and X-ray CT technologies for 3D imaging of
root systems in soil: Potential and challenges for root trait quantification. Plant
Methods 11 (1), 17. doi: 10.1186/s13007-015-0060-z

Mohamed, A., Monnier, Y., Mao, Z., Lobet, G., Maeght, J.-L., Ramel, M., et al. (2017).
An evaluation of inexpensive methods for root image acquisition when using
rhizotrons. Plant Methods 13 (1), 11. doi: 10.1186/s13007-017-0160-z

Nahar, K., and Pan, W. L. (2019). High resolution in situ rhizosphere imaging of root
growth dynamics in oilseed castor plant (Ricinus communis l.) using digital scanners.
Modeling Earth Syst. Environ. 5 (3), 781–792. doi: 10.1007/s40808-018-0564-4

Nakahata, R., and Osawa, A. (2017). Fine root dynamics after soil disturbance
evaluated with a root scanner method. Plant Soil 419 (1), 467–487. doi: 10.1007/s11104-
017-3361-3

Narisetti, N., Henke, M., Seiler, C., Junker, A., Ostermann, J., Altmann, T., et al.
(2021). Fully-automated root image analysis (faRIA). Sci. Rep. 11 (1), 16047.
doi: 10.1038/s41598-021-95480-y

Nielsen, K. L., Eshel, A., and Lynch, J. P. (2001). The effect of phosphorus availability
on the carbon economy of contrasting common bean (Phaseolus vulgaris l.) genotypes.
J. Exp. Bot. 52 (355), 329–339. doi: 10.1093/jexbot/52.355.329

Paez-Garcia, A., Motes, C. M., Scheible, W.-R., Chen, R., Blancaflor, E. B., and
Monteros, M. J. (2015). Root traits and phenotyping strategies for plant improvement.
Plants 4 (2), 334–355. doi: 10.3390/plants4020334

Park, J., Seo, D., and Kim, K. W. (2020). X-Ray computed tomography of severed
root wounds of prunus serrulata and zelkova serrata. For. Pathol. 50 (4), e12622.
doi: 10.1111/efp.12622

Pflugfelder, D., Kochs, J., Koller, R., Jahnke, S., Mohl, C., Pariyar, S., et al. (2021). The
root system architecture of wheat establishing in soil is associated with varying
elongation rates of seminal roots: Quantification using 4D magnetic resonance
imaging. J. Exp. Bot. 73 (7), 2050–2060. doi: 10.1093/jxb/erab551

Pierret, A., Gonkhamdee, S., Jourdan, C., and Maeght, J.-L. (2013). IJ_Rhizo: an
open-source software to measure scanned images of root samples. Plant Soil 373 (1),
531–539. doi: 10.1007/s11104-013-1795-9

Pound, M. P., French, A. P., Atkinson, J. A., Wells, D. M., Bennett, M. J., and
Pridmore, T. (2013). RootNav: Navigating images of complex root architectures. Plant
Physiol. 162 (4), 1802–1814. doi: 10.1104/pp.113.221531

Rajurkar, A. B., McCoy, S. M., Ruhter, J., Mulcrone, J., Freyfogle, L., and Leakey, A.
D. B. (2022). Installation and imaging of thousands of minirhizotrons to phenotype
root systems of field-grown plants. Plant Methods 18 (1), 39. doi: 10.1186/s13007-022-
00874-2

Ren, F., He, X., Wei, Z., Lv, Y., and Li, M. (2019). Sematic segmentation based on
DeepLabV3+ and superpixel optimization. Optics Precis. Eng. 27 (12), 2722–2729. (in
Chinese).
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fpls.2023.1122833/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2023.1122833/full#supplementary-material
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1038/139966b0
https://doi.org/10.1111/j.1365-313X.2012.04927.x
https://doi.org/10.1111/j.1365-313X.2012.04927.x
https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.3390/plants10101991
https://doi.org/10.1186/s13007-015-0093-3
https://doi.org/10.1186/s13007-017-0247-6
https://doi.org/10.1186/s13007-017-0247-6
https://doi.org/10.1007/s13538-021-01043-x
https://doi.org/10.1186/1471-2229-12-116
https://doi.org/10.1007/s11104-010-0335-0
https://doi.org/10.1007/s11104-011-0903-y
https://doi.org/10.1109/ICPR48806.2021.9413045
https://doi.org/10.1111/j.1365-313X.2009.03888.x
https://doi.org/10.1016/j.compag.2021.106370
https://doi.org/10.1111/2041-210X.13652
https://doi.org/10.1111/2041-210X.13652
https://doi.org/10.1007/s11104-009-0005-2
https://doi.org/10.13284/j.cnki.rddl.003229
https://doi.org/10.1093/aob/mcs293
https://doi.org/10.1093/aob/mcs293
https://doi.org/10.1093/jxb/eru508
https://doi.org/10.1093/jxb/eru508
https://doi.org/10.1186/s13007-015-0060-z
https://doi.org/10.1186/s13007-017-0160-z
https://doi.org/10.1007/s40808-018-0564-4
https://doi.org/10.1007/s11104-017-3361-3
https://doi.org/10.1007/s11104-017-3361-3
https://doi.org/10.1038/s41598-021-95480-y
https://doi.org/10.1093/jexbot/52.355.329
https://doi.org/10.3390/plants4020334
https://doi.org/10.1111/efp.12622
https://doi.org/10.1093/jxb/erab551
https://doi.org/10.1007/s11104-013-1795-9
https://doi.org/10.1104/pp.113.221531
https://doi.org/10.1186/s13007-022-00874-2
https://doi.org/10.1186/s13007-022-00874-2
https://doi.org/10.3389/fpls.2023.1122833
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Yu et al. 10.3389/fpls.2023.1122833
Ronneberger, O., Fischer, P., and Brox, T. (2015). “U-Net: Convolutional networks
for biomedical image segmentation” in Lecture Notes in Computer Science Eds N.
Navab, J. Hornegger, W. Wells and A. Frangi (Cham: Springer) 9351, 234–241. doi:
10.1007/978-3-319-24574-4_28

Schneider, H. M., Postma, J. A., Kochs, J., Pflugfelder, D., Lynch, J. P., and van
Dusschoten, D. (2020). Spatio-temporal variation in water uptake in seminal and nodal
root systems of barley plants grown in soil. Front. Plant Sci. 11. doi: 10.3389/
fpls.2020.01247

Scotson, C. P., van Veelen, A., Williams, K. A., Koebernick, N., McKay Fletcher, D.,
and Roose, T. (2021). Developing a system for in vivo imaging of maize roots
containing iodinated contrast media in soil using synchrotron XCT and XRF. Plant
Soil 460 (1), 647–665. doi: 10.1007/s11104-020-04784-x

Seethepalli, A., Dhakal, K., Griffiths, M., Guo, H., Freschet, G. T., and York, L. M.
(2021). RhizoVision explorer: Open-source software for root image analysis and
measurement standardization. AoB Plants 13 (6), plab056. doi: 10.1093/aobpla/plab056

Seethepalli, A., Guo, H., Liu, X., Griffiths, M., Almtarfi, H., Li, Z., et al. (2020).
RhizoVision crown: An integrated hardware and software platform for root crown
phenotyping. Plant Phenomics 2020, 3074916. doi: 10.34133/2020/3074916

Seidenthal, K., Panjvani, K., Chandnani, R., Kochian, L., and Eramian, M. (2022).
Iterative image segmentation of plant roots for high-throughput phenotyping. Sci. Rep.
12 (1), 16563. doi: 10.1038/s41598-022-19754-9

Shan, J., and Tao, D. (1992). Overseas researches on tree fine root. Chin. J. Ecol. 11
(4), 46–49.

Shen, C., Liu, L., Zhu, L., Kang, J., and Shao, L. (2020). High-throughput in situ root
image segmentation based on the improved DeepLabv3+ method. Front. Plant Sci. 11,
576791. doi: 10.3389/fpls.2020.576791

Smith, A. G., Han, E., Petersen, J., Olsen, N. A. F., Giese, C., Athmann, M., et al.
(2022). RootPainter: deep learning segmentation of biological images with corrective
annotation. New Phytol. 236 (2), 774–791. doi: 10.1111/nph.18387

Sun, K., Xiao, B., Liu, D., and Wang, J. (2019). “Deep high-resolution representation
learning for human pose estimation,” in 2019 IEEE/CVF Conference on Computer
Frontiers in Plant Science 15
Vision and Pattern Recognition (CVPR). (Long Beach, CA, USA: IEEE), 5686–5696. doi:
10.1109/CVPR.2019.00584
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