
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Yu Xue,
Nanjing University of Information Science
and Technology, China

REVIEWED BY

Ran Li,
Xinyang Normal University, China
Guangjun Liang,
Jiangsu Police Officer College, China
Jianfang Xin,
Harbin Institute of Technology, China

*CORRESPONDENCE

Linguo Li

llg-1212@163.com

SPECIALTY SECTION

This article was submitted to
Sustainable and Intelligent Phytoprotection,
a section of the journal
Frontiers in Plant Science

RECEIVED 13 December 2022

ACCEPTED 02 January 2023
PUBLISHED 26 January 2023

CITATION

Li S, Li Z, Li Q, Zhang M and Li L (2023)
Hybrid improved
capuchin search algorithm
for plant image thresholding.
Front. Plant Sci. 14:1122788.
doi: 10.3389/fpls.2023.1122788

COPYRIGHT

© 2023 Li, Li, Li, Zhang and Li. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 26 January 2023

DOI 10.3389/fpls.2023.1122788
Hybrid improved capuchin
search algorithm for plant
image thresholding

Shujing Li1, Zhangfei Li1, Qinghe Li1, Mingyu Zhang1

and Linguo Li1,2*

1School of Computer and Information Engineering, Fuyang Normal University, Fuyang, China, 2School
of Computer, Nanjing University of Posts and Telecommunications, Nanjing, China
With the development and wider application of meta-heuristic optimization

algorithms, researchers increasingly apply them to threshold optimization of

multi-level image segmentation. This paper explores the performance and

effects of Capuchin Search Algorithm (CAPSA) in threshold optimization. To

solve problems of uneven distribution in the initial population of Capuchin

Search Algorithm, low levels of global search performance and premature falling

into local optima, this paper proposes an improved Capuchin Search Algorithm

(ICAPSA) through a multi-strategy approach. ICAPSA uses chaotic opposite-based

learning strategy to initialize the positions of individual capuchins, and improve the

quality of the initial population. In the iterative position updating process, Levy

Flight disturbance strategy is introduced to balance the global optimization and

local exploitation of the algorithm. Finally, taking Kapur as the objective function,

this paper applies ICAPSA to multi-level thresholding in the plant images, and

compares its segmentation effects with the original CAPSA, the Fuzzy Artificial Bee

Colony algorithm (FABC), the Differential Coyote Optimization Algorithm (DCOA),

the Modified Whale Optimization Algorithm (MWOA) and Improved Satin

Bowerbird Optimization Algorithm (ISBO). Through comparison, it is found that

ICAPSA demonstrates superior segmentation effect, both in the visual effects of

image segmentation and in data comparison.

KEYWORDS

capuchin search algorithm, chaotic mapping, opposite-based learning, levy flight, plant
image thresholding
1 Introduction

Due to the advantages of fast convergence rate and high accuracy of meta- heuristic

optimization algorithms, many researchers increasingly apply them to real-world problems,

to improve the application effects of computer-aided design in the engineering field (Pare

et al., 2020). Ma et al. (2011) combine Artificial Bee Colony algorithm (ABC) with image

segmentation to improve the segmentation accuracy of Synthetic Aperture Radar (SAR)

images. Hemasian-Etefagh and Safi-Esfahani, (2019) apply Whale Optimization Algorithm

(WOA) to solve the scheduling problem of cloud computing, thus reducing the execution and
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2023.1122788/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1122788/full
https://www.frontiersin.org/articles/10.3389/fpls.2023.1122788/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2023.1122788&domain=pdf&date_stamp=2023-01-26
mailto:llg-1212@163.com
https://doi.org/10.3389/fpls.2023.1122788
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science

Li et al. 10.3389/fpls.2023.1122788
response time of scheduling tasks, and increasing the computing

throughput in the context of a cloud environment. (Gholizadeh and

Baghchevan, 2017) apply Firefly Algorithm (FA) in the seismic design

of steel frames to locate the optimal goal more quickly. Specifically, in

the field of plant image processing, with the change of environment

and the development of information technology, many countries

regard ecological construction and the development of smart

agriculture as national strategies. In order to improve the benefits

of ecological environment and agricultural development, scholars

have deeply integrated traditional plant planting technology with

the internet of things, 5G and artificial intelligence technology (Maray

et al., 2022; Ruwona and Scherm, 2022). This development model

reduces the labor of workers and improves production efficiency.

However, in the current development process, the main problem

encountered is that the frequent occurrence of diseases has led to

reduction of output or even crop failure. In order to reduce the loss of

plant quality and economy caused by diseases, targeted screening and

diagnosis in advance are required during plant growth (Patel et al.,

2023). The traditional way is manual identification, relying on

experience, high cost and low accuracy. In recent years, the

recognition based on computational image processing is more

efficient and accurate, the processing steps include: image

preprocessing, image segmentation, feature extraction and

recognition, and the higher accuracy of image segmentation, the

higher accuracy of recognition (Xue et al., 2021; Hasan et al., 2022).

However, segmentation accuracy and efficiency directly affect the

application of segmentation technology in plant applications. Making

use of the advantages of meta-heuristic algorithms in multi-level

image thresholding is thus considered an effective plant disease

assisted treatment (Li et al., 2022).

As one of the main technical means of image segmentation, multi-

level thresholding based on specific objective function is fused with a

meta-heuristic algorithm, and has been thus used successfully

(Merzban and Elbayoumi, 2019; Xue et al., 2022). Image

segmentation divides an image into several regions according to

characteristics such as texture, color, brightness, contrast, shape,

and size (Pare et al., 2020; Rodrıǵuez-Esparza et al., 2020; Xue

et al., 2019). Specifically, thresholding segmentation is divided into

bi-level (Bao et al., 2019) and multi-level thresholding (Ma and Yue,

2022). Bi-level is used mainly for image binarization, and its

application field is limited. The multi-level can dynamically

improve segmentation accuracy in response to actual needs by

adjusting the number of thresholds, although such increase of

thresholds leads to an explosive increase in computational

complexity. Therefore, a meta-heuristic algorithm based on specific

objective functions can effectively strike the balance between these

problems (Ma and Yue, 2022). The common objective functions

include Kapur entropy (Upadhyay and Chhabra, 2020), Minimum

Cross Entropy (MCE) (Wang and Song, 2022), Tsallis (Lin

et al., 2020).

Regarding the selection of objective functions, Sathya et al. (2021)

compare and analyze the segmentation effect of Exchange Market

Algorithm (EMA) using Kapur, Otsu and MCE. Through comparison

of visual effects and quantitative data after standard image

segmentation, they conclude that the Kapur-based method has

faster processing speed and better segmentation effect. Li et al.

(2016) taking Kapur as the objective function, prove the efficiency
Frontiers in Plant Science 02
of the fuzzy ABC (FABC) in multi-level image thresholding through

experimental comparison using BSD500 dataset. Kalyani et al. (2021)

use EMA algorithm based on Kapur and MCE to segment three

different images, comparing it with Krill Herd (KH), Teaching-

Learning based Optimization (TLBO) and Cuckoo Search

Algorithm (CSA). They find that the Kapur-based algorithm has

faster convergence speed and segmentation accuracy, and thus has

better practical application value. Rajinikanth et al. (2021) improve

Moth Flame Optimization (MFO) algorithm and compare the image

thresholding segmentation effects based on Kapur and Tsallis.

Through comparison of multiple experimental results, they find this

method achieves better segmentation effect than other methods of the

same kind. Chen et al. (2022) taking Kapur as the objective function,

integrate the multi-strategy driven Shuffled Frog-Leaping Algorithm

with Horizontal and Vertical Crossover search (HVSFLA) to perform

multi-level thresholding, achieving remarkable segmentation effect.

Compared with traditional methods (Kittler and Illingworth,

1986; Otsu, 1979), meta-heuristic optimization algorithms perform

more efficiently in multi-level image thresholding. Zhao et al. (2021)

use random spare strategy and logistic chaos enhancement strategy to

optimize Ant Colony Optimization (ACO), effectively improving the

convergence speed and accuracy of ACO and enhancing the ability of

the algorithm to evade local optima. The experimental results show

that the improved ACO algorithm is satisfactory. To optimize the

multi-level thresholding of gray-scale images, Abdel-Basset et al.

(2022) combine Linearly Convergence Increasing and Local

Minima Avoidance Technique (LCMA) and Ranking-based Update

Method (RUM) to improve the Wheel Optimizer Algorithm (WOA).

The former moves the individual at the worst position in the

population into the range of the best current scheme to avoid local

optimization. The latter replaces the unfavorable solution with a

better one. Similarly, based on Kapur, 13 test images of Berkeley

segmentation dataset BSD are verified, demonstrating that the

improved WOA is superior to other methods in both segmentation

image quality and convergence speed. Ewees et al. (2020) propose an

Improved Artificial Bee Colony Algorithm integrating the Sine Cosine

Algorithm (ABCSCA). This algorithm uses ABC to narrow the search

scope and optimize the threshold, while SCA can determine the global

optimal threshold and obtain the optimal solution. To measure the

effects of ABCSCA, Otsu and fuzzy entropy are used as the objective

functions to segment 19 images. Compared with the original ABC,

SCA algorithms and Hybrid Swarm Optimization (FASSO), the

algorithm has more obvious advantages in image segmentation

effect, and convergence speed. Anitha et al. (2021) improve

Modified Whale Optimization Algorithm (MWOA) by using cosine

function, and obtain better image segmentation quality and

convergence speed than PSO, ABC and other algorithms using

Otsu as the objective function. Li et al. (2021) use the differential

evolution strategy to improve the population updating mechanism of

Coyote Optimization Algorithm (DCOA), not only improving the

convergence speed of the algorithm, but also its image segmentation

accuracy, rendering it superior to standard COA, Gray Wolf

Optimizer (GWO), modified Discrete Gray Wolf Optimizer

(DGWO) and other methods. To solve the problem of identifying

corn pests and diseases, Chen et al. (2021) improve Particle Swarm

Optimizer (PSO) with an elite based advantage scheme to form an

Enhanced Comprehensive Learning Particle Swarm Optimizer
frontiersin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
(ECLPSO). Compared with the Comprehensive Learning Particle

Swarm Optimizer (CLPSO) and Hybridizing Sine Cosine Algorithm

with Differential Evolution (SCADE) algorithm in the corn leaf

disease image in the public database of a plant village company, the

results show this method to be superior to other comparison

algorithms in locating the best threshold, and have higher

convergence accuracy. Li et al. (2022) proposed a strategy based on

chaos initialization and Cauchy mutation to improve Satin Bowerbird

Optimization Algorithm (SBO), and verified its values in Kaggle plant

image dataset. The comparison between the fuzzy Modified Discrete

Grey Wolf Optimizer with aggregation strategy (FMGWO) and the

fuzzy Coyote Optimization Algorithm (FCOA) proves that the

improved ISBO has higher accuracy in the field of plant

image segmentation.

Meta-heuristic optimization algorithms can effectively improve

the computational efficiency in multi-level image thresholding.

However, there is room for further improvement in population

initialization and global search ability (Pare et al., 2020; Li et al.,

2022). Therefore, this paper seeks to improve CAPSA, comparing its

efficacy in plant image segmentation with other algorithms. CAPSA is

a novel meta-heuristic optimization algorithm proposed by Braik

et al. (2021) in 2021. This algorithm divides the population into two

groups with distinct functions so as to strike the balance between

global search ability and local exploitation ability. Compared with

other similar algorithms, it has higher convergence speed and

accuracy, but in later iterations, CAPSA is also prone to fall into

local optima.

Therefore, this paper uses Tent chaotic iterative mapping and

Opposite-based learning strategy to initialize the population, improve

the quality of the initial population, make its distribution more

uniform, thus eschewing the premature local optima of CAPSA. In

the position updating strategy of the algorithm, Levy Flight strategy is

integrated to balance the ability of global search and local exploitation

of the algorithm to form an Improved Capuchin Search Algorithm

(ICAPSA). To verify the effects of ICAPSA, this paper uses Kapur

entropy as the objective function to segment plant images into

multiple thresholds, and compares the experimental results with the

results of the FABC (Li et al., 2016), MWOA (Anitha et al., 2021),

DCOA (Li et al., 2021) et al.

The remainder of this paper is as follows: In the second section,

the original CAPSA and its model construction is described. In the

third section, the improved strategy of the algorithm is presented in

detail. In the fourth section, to verify the practical effect of ICAPSA in

plant image segmentation, six plant images are selected for visual and

quantitative data comparative analysis. Finally, the fifth

section concludes.
2 Description and model construction
of Capuchin Search Algorithm (CAPSA)

2.1 Original CAPSA description

Capuchin search algorithm (CAPSA) is a new algorithm that

simulates the foraging behavior of capuchin populations in Brazil and

South America. Each population includes about 10 to 35 capuchins,
Frontiers in Plant Science 03
and each population has an alpha (a) monkey commanding this

group, called the leader, who is responsible for finding food sources

for this group. The remaining capuchins are called followers. If the

alpha monkey cannot obtain sufficient food sources in time, the group

will be divided into smaller sub-groups to forage independently.

Capuchin monkeys use jumping, swinging and climbing in the

process of foraging for food. Jumping allows capuchin monkeys to

have a wider search range. Swinging and climbing are used to improve

local search ability. Followers will update their positions according to

the leader’s position and their own positions, and finally improve the

foraging rate and success rate.
2.2 Initialization of CAPSA

Like other similar algorithms, capuchin search algorithm is also a

population-based search algorithm. It randomly initializes the

population. Each individual of the population represents the

candidate scheme of the target problem. The initialized individuals

are divided into two categories: alpha monkeys and followers.

Assume that the capuchin monkey population has n individuals,

and the search space is d-dimensional. The initial position can then be

expressed by the following matrix:

x =

x11 x12 ⋯ ⋯ x1d

x21 x22 ⋯ ⋯ x2d

⋮ ⋮ ⋮ ⋮ ⋮

xn1 xn2 ⋯ ⋯ xnd

2
666664

3
777775 (1)

Where x represents the positions of capuchin monkeys, n the

number of capuchins, d the dimension of the problem, and xid the

position of the i -th capuchin monkey in d-dimensional space.

Initialize the position of each capuchin individual by (2):

xi = ubj + r � (ubj − lbj) (2)

Where ubj and lbj represent the upper and lower bounds of the

capuchin monkey in the dimensional space respectively, and r is a

random number uniformly generated inside [0,1].
2.3 Evolution of CAPSA

In Capuchin search algorithm, the updating of capuchin positions

depends on their current position and best position along with the

location of food F. F is the target of capuchin monkeys in d-

dimensional search space. The position of the leader and those of

its followers relative to where food F is, are updated as follow steps.

Jump on the tree: the leader (a monkey) can jump from tree to

tree or from the current branch to other branches of the same tree,

then a monkey’s position updating formula is as follows.

xij = Fj +
Pbf (v

i
j)
2 sin (2q)
g

, i < n
2= , 0:1 < ϵ ≤ 0:20 (3)

Where xij represents the position of amonkey and its followers in

the j dimension, Fj the position of food in the j-th dimension, ∈ the

random number generated inside [0, 1], Pbf is the probability that the
frontiersin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
tail provides balance in the capuchin jumping process, g the

gravitational acceleration, g=9.81, q is the capuchin jumping angle,

t represents the life cycle, systematically decreases in the whole

iteration process, vij represents the speed of the i-th capuchin in the

j-th dimension.

The jumping angle of a capuchin monkey can be defined by (4):

q =
3
2
r (4)

Where r is a random number generated uniformly in the range

[0,1]. To balance the global search ability and local exploitation

ability, CAPSA introduces the concept of life cycle t as shown in (5):

t = b0e − b1
k
K

� �b2
(5)

Where k and K respectively represents the current iteration

number and the maximum iteration number. The values of

parameters b0, b1 and b2 are respectively 2, 21 and 2. The

exponential function has a great impact on updating the positions

of Capuchin monkeys, the exploration and development of regions,

and the quick locating of food sources.

The velocity of the i-th capuchin monkey in the j dimension is

shown in (6):

vij = rvij + ta1ðxibestj − xij)r1 + ta2ðFj − xij)r2 (6)

Where i=1, 2, 3,…,n, j stands for the dimension of the problem, vij
the current velocity of the i-th capuchin monkey in the j dimension, xij
the current position of the i-th capuchin monkey in the j-th

dimension. xibestj the best velocity of the i-th capuchin monkey in

the j-th dimension, Fj the position of food in the j-th dimension. a1
and a2 are two normal numbers, their values can be taken at 1 or 0,

representing the impact of xibestj and Fj on the velocity of capuchins. r1
and r2 are random numbers generated evenly in the range [0, 1]. r is

the inertia coefficient with a value of 0.7, indicating the impact of the

current velocity on the motion.

Jumping on the ground: Capuchins can jump from one place to

another on the ground, from one side of the riverbank to the other, or

wander normally to search for food. In this case, the position updating

formula of a monkey and its followers is as follows:

xij = Fj +
Pef Pbf (v

i
j)
2 sin (2q)
g

,

i < n
2= , 0:2 < ϵ ≤ 0:30 (7)

Where Pef represents the elasticity probability of a capuchin

monkey moving on the ground, q is defined in (4).

On the other hand, when a monkey wanders normally, the

position updating can be shown in (8):

xij = xij + vij, i <
n

2= , 0:3 < ϵ ≤ 0:50 (8)

From these two jumping mechanisms, it can see that capuchin

monkeys have two basic parameters in the process of approaching

food. the probability Pbf that the tail provides balance in the process of

jumping, and the elasticity probability Pef of moving on the ground.

These two coefficients balance their global search and local
Frontiers in Plant Science 04
exploitation ability, and their values are taken at 0.7 and

9, respectively.

Swing: some a monkeys and their followers will swing their

bodies over the branches with their tails and perform local

exploitation to forage food. The positions of capuchin monkeys are

updated as follows:

xij = Fj + tPbf � sin (2q), i < n
2= , 0:5 < ϵ ≤ 0:75 (9)

Where q is defined in (4);

Climbing: in the process of foraging, some a monkeys and their

followers will climb up a tree or branches, and then climb down. This

behavior is also local exploitation. Their positions are as follows:

xij = Fj + tPbf (v
i
j − vij−1), i <

n
2= , 0:75 < ϵ ≤ 1:0 (10)

Where vij is the current velocity of the i-th capuchin in the j-th

dimension, vij−1is the previous velocity of the i-th capuchin in the j-

th dimension.

Random migration of capuchin monkeys: in foraging food,

capuchin monkeys will randomly search in several new directions

to effectively explore the forest to search for better food sources.

Random migration is shown in (11):

xij = t� lbj + ϵ� (ubj − lbj)
� �

, i < n
2= , ϵ < Pr (11)

Where Pr is a normal number with a value of 0.1, representing the

probability of capuchin monkeys performing random search. ubj and

lbj are the upper and lower bounds of the j-th dimensional search

space, respectively. The random migration of capuchins not only

enhances the global search ability, but also prevents CAPSA from

falling into local optima.

To sum up, as is shown in (3) to (10), the capuchins will change

their positions depending on the availability of food, their search

target. This situation is particularly apparent when r > 0.1.

On the other hand, when r≤0.1, capuchin monkeys are more

likely to randomly change their positions in the search domain so as

to explore different areas for food. In this case, parameter t can

enhance the search space available for exploration.

The positions of the followers are updated according to the

position of a monkey, as is shown by (12).

xf = xi + v0t +
1
2
at2 (12)

Where xf is the final displacement, x1 is the initial displacement. t

is the time, v0 represents the initial velocity. a is the acceleration, its

value is shown in (13):

a =
Dv
Dt

=
vf − v0
t1 − t0

(13)

Where t1 and t0 represent the last time and the first time

respectively. The parameter vf represents the final velocity, its value

is shown in (14):

vf =
Dx
Dt

=
xf − x0
t1 − t0

(14)

Substitute (14) into (13), and set the initial velocity v0=0, then a

can be shown by (15):
frontiersin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
a =
xf − x0
(t1 − t0)

2 (15)

In optimization, t1 represents iteration, t1-ti-1 represents the

difference between successive iterations, equal to a value of 1. Based

on (12) and (15), (16) represents the position updating formula of the

followers:

xij =
1
2
(x0ij + xi−1j), n=2 ≤ i ≤ n (16)

Where xij represents the current position of the followers in the j-

th dimension. xi−1j represents the previous position of the followers in

j-1-th dimension. x0ij the current position of the leader in the j-

th dimension.

3 The Hybrid Improved CAPSA

3.1 Tent chaotic mapping

The Capuchin search algorithm performs well in convergence

speed, and also considers the balance between global search and local

exploitation. However, similar to other meta-heuristic optimization

algorithms, there exists a certain probability of “local optimal” in later
Frontiers in Plant Science 05
iterations, which is attributable to the population random

initialization strategy of meta-heuristic optimization algorithm. In

constructing the model in section 2.2, it is described that the

population initialization of CAPSA is completed randomly

according to (2), and the distribution of individual positions of the

population is inherently random. As chaotic mapping has the

advantages of ergodicity and universality, many researchers use it to

optimize the population initialization of meta-heuristic optimization

algorithms. Commonly used chaotic map methods include Circle

map (Ewees and Abd Elaziz, 2020), Gauss map (Elaziz et al., 2021),

Logistic map (Prasad et al., 2021) and Tent map (Li et al., 2020), as

shown in (Figures 1A-D). Circle chaotic map and Logistic chaotic

map have the characteristics of small humps and peaks at both ends,

which may cause group aggregation and are not conducive to global

search. Compared with Gauss chaotic map, Tent chaotic map has the

advantages of more uniform distribution and smaller peak value,

which will not affect the convergence speed of the algorithm.

Therefore, Tent chaotic map model is selected in this paper. Tent

chaotic map model is as follows:

xi+1 =
 xi=b xi ∈ (0, b�
(1 − xi)=(1 − bÞ xi ∈ (b, 1�

(
(17)
B

C D

A

FIGURE 1

Comparison of four chaotic maps. (A) Circle (B) Gauss (C) Logistic (D) Tent.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
3.2 Opposite-based learning (OBL)

Sihwail et al. (2020) use Opposite-based learning (OBL) to

improve meta-heuristic algorithms, proving the ability of OBL to

prevent the algorithm falling into local optima. Relying on chaotic

reflection, and the initial population individuals, OBL compares the

fitness values of the individuals before and after reflection and adds

the higher fitness values to the initial population. It improves the

quality and diversity of the population. The steps of OBL are

as follows.

Assume that the initial population generated by Tent chaotic map

is xi,j,(i=1,2,3,…,N;j=1,2,3,…,d) , first, sequence the individuals in the

current population, select the optimal value as the elite individual xei,j
= (xei,1, x

e
i,2, x

e
i,3,…, xei,d), generate the chaotic elite inverse solution x

e
i,j =

(xei,1, x
e
i,2,…, xei,d) according to (17), and then deal with the points

beyond the boundary according to (18).

xei,j = k � (aj + bj) − xei,j (18)

Where k∈(0,1) is the inverse coefficient, aj the minimum value of

the feasible solution, bj the maximum value of the feasible solution.

Finally, the initial solution generated by chaotic map and the solution

generated by OBL are sequenced, and the best first N individuals are

selected as the initial of the population.
3.3 Position updating

From the model construction in section 2.2, it knows that when the

leader a monkey finds the location of the best food, that is, the optimal

solution of the problem. Other followers in the population will follow the

leader to approach the location of the best food, indicating that the value

will increasingly converge to the “optimal value”. However, this optimal

value is not guaranteed to be the optimal one of the whole search spaces.

If the algorithm falls into local optimization, the optimization range will

be unexpectedly narrowed, and optimization accuracy undermined. In

order to reduce the probability of Capuchin algorithm falling into local

optima in iteration, this paper introduces Levy Flight disturbance strategy

(He et al., 2023) to disturb the population when updating the position of

local exploitation, so that the global search and local exploitation can be

balanced. As far as the application of ICAPSA is concerned, Levy Flight is

integrated into Jump on the tree [formula (3)], Jumping on the ground

[formula (7)-(8)], Swing [formula (9)], Climbing [formula (10)] and

Random migration of capuchin monkeys [formula (11)], as described in

the Pseudo code of section 3.4. In detail, Levy Flight runs through all

stages of population position updating.

Levy Flight is a random walk strategy that conforms to Levy

distribution. It is a strategy proposed by academics according to the

foraging process of natural organisms. As it has the characteristics of

long-distance and short-distance staggering motion and fully random

direction, researchers often use it to optimize meta-heuristic

algorithms, improve the global search range of the algorithm, and

evade falling into the trap of local optima. Its mathematical model is

shown in (19):

levyða) = 0:05� x

yj j1=a (19)
Frontiers in Plant Science 06
Where x and y are two normally distributed variables subject to

standard deviation sx and sy, the calculation formula is as follows:

x = Normalð0,sx2) (20)

y = Normalð0,sy2) (21)

sx =
Gð1 + a)sinð pa

2)

Gð 1+a
2)a2

(a−1)
2

" #1=a

,sy = 1,a = 1:5 (22)
3.4 Pseudo code of ICAPSA

After setting the initial parameter∈ and P, Tent Chaotic Mapping

and OBL are used to optimize the positions of N capuchins. Tent

Chaotic Mapping is used to ensure that the initial population has a

higher randomness, and OBL strategy can improve the dispersion of

the population, which to some extent reduces the risk of the algorithm

falling into the local optimum. To balance the global search and local

exploitation, Levy Flight is merged in all stages of ICAPSA’s

population position updating, as show in step 15, step 17, step 19,

step 22, step 24 and step 27 of ICAPSA’s pseudo code.

Pseudo code: ICAPSA

1: Initialization parameter∈ is a random number inside the range [0,1].
2: Initialization probability parameter P=0.5.
3: Initialize the positions of N capuchins with formulas (17) and (18).
4: Calculate the fitness value of each capuchin position.
5: Initialize the velocity of capuchin monkey.
6: Capuchins smaller than n/2 are randomly selected as leaders and companions,
and the remaining capuchins follow the leader.
7: while t<maxitet
8: Update the parameter life cycle according to formula (5).
9: For k=1: noP (noP is the number of Capuchins in the population)
10: if (k<n/2)
11: Use formula (6) to update the velocity of the leader.
12: if (∈ ≥ 0.1)
13: if (∈ ≥ P)
14: if (∈≤ 0.2)
15: Update the position of the leader jumping on the tree with formula (3) and
(19).
16: else if (0.2<∈ ≥ 0.30)
17: Update the position of the leader who jumps the riverbank with formula (7)
and (19).
18: else
19: Update the position of the leader wandering on the ground with formula (8)
and (19).
20: end if
21: else if (0.5<∈ ≤ 0.75)
22: Update the position of the leader swinging between the branches with formula
(9) and (19).
23: else if (0.75<∈ ≥ 1.0)
24: Update the position of the leader climbing the tree with formula (10) and (19).
25: end if
26: else
27: Update the position of the leader of the random migration with formula (11)
and (19).
28: end if
29: else
30: Update the positions of the followers with formula (16).
31: end if
32: end for

(Continued)
frontiersin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
Continued

Pseudo code: ICAPSA

33: Calculate the fitness value of each individual.
34: end while
35: Obtain the best solution
4 Analysis and comparison of
experimental results

4.1 Parameter setting and discussion

To demonstrate the efficacy of the improved capuchin search

algorithm in plant image thresholding, this paper selects six plant

images (Figures 2A-F) in the Kaggle plant image dataset (https://

www.kaggle.com/datasets/asheniranga/leaf-disease-dataset-

combination, https://www.kaggle.com/datasets/vipoooool/new-

plant-diseases-dataset) for verification. In addition to comparing

the results with the original capuchin search algorithm, the results

are also fully compared and analyzed with FABC (Li et al., 2016),

MWOA (Anitha et al., 2021), DCOA (Li et al., 2021) et al. To reflect

the best performance of ICAPSA, the parameter setting is discussed

first. In this paper, the number of thresholds (NT) is set to 2, 3, 4, 5.

the objective function is set as the Kapur which commonly used in

thresholding image segmentation (Li et al., 2022), and the parameter

selection feature similarity FSIM (Pare et al., 2020) and peak signal-

to-noise ratio PSNR (Abualigah et al., 2022) are compared. The

experiments performed in our work are run on Windows10-64bit,

Intel processor and 16GB running memory and the programming

software is Matlab 2016a. The initial experimental parameter values

are shown in Table 1.

In Table 1, noP represents the number of capuchins, NT

represents the number of thresholds, maxiter represents the
Frontiers in Plant Science 07
maximum number of iterations. Next, we discuss the rationality

optimization of parameter selection in Table 1 for plant

image threshliding.

To reflect the impact of a single variable noP on the experimental

results, the threshold number NT is set to 5 and the maxiter is set to

500. Then, by setting the number of individuals in different

populations, the image threshold segmentation of the Leaf01 plant

image is performed, and the PSNR value is recorded. The average

value is calculated through multiple experiments as shown in Table 2.

It can be observed that the best experimental results are achieved

when the population individual number noP is set to 30.

On the premise that the number of individuals noP of Capuchin

monkey population is set to 30, to determine the impact of the

maximum number of iterations on the segmentation effect, Table 3

lists the maximum PSNR and FSIM values of Leaf01 image through

numerous experiments. As can be seen, when the maximum number

of iterations is set to 200, the segmentation effect is the best.
4.2 Plant image segmentation results
with ICAPSA

To reflect the threshold segmentation efficacy of ICAPSA for

different plant images, six plant images are selected, with Kapur as the

objective function to obtain the optimal segmentation solution under

different threshold numbers. Figures 2, 3 show the visual diagram of

segmentation effect based on CAPSA and ICAPSA under different

thresholds. Table 4 demonstrates the segmentation quality evaluation

results (PSNR and FSIM values) of ICAPSA with different thresholds.

In Figures 2, 3, the segmentation effects are shown when NT was

set to 2(Figure 2 from (A-i) to (F-i) and Figure 3 from (A-i) to (F-i)), 3

(Figure 2 from (A-ii) to (F-ii) and Figure 3 from (A-ii) to (F-ii)), 4

(Figure 2 from (A-iii) to (F-iii) and Figure 3 from (A-iii) to (F-iii))

and 5 (Figure 2 from (A-iv) to (F-iv) and Figure 3 from (A-iv) to
TABLE 1 Experimental related parameter setting.

Parameter noP NT maxiter

Value 40 2,3,4,5 500
fron
TABLE 2 Effect of experimental results by noP.

noP 10 20 30 40 50 60

PSNR 26.5038 26.7058 26.7737 26.6898 26.7129 26.5218

FSIM 0.8513 0.8579 0.8624 0.8577 0.8541 0.8508
ti
TABLE 3 Effect of experimental results by maximum iteration number (maxiter).

maxiter 50 100 200 300 400 500

PSNR 25.1092 26.5741 26.8305 26.2416 26.6439 26.5458

FSIM 0.8329 0.8385 0.8583 0.8136 0.8583 0.8577
ersin.org

https://www.kaggle.com/datasets/asheniranga/leaf-disease-dataset-combination
https://www.kaggle.com/datasets/asheniranga/leaf-disease-dataset-combination
https://www.kaggle.com/datasets/asheniranga/leaf-disease-dataset-combination
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
https://www.kaggle.com/datasets/vipoooool/new-plant-diseases-dataset
https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
(F-iv)) respectively based on original CAPSA and ICAPSA. As can be

observed, when NT was 2, the background and disease areas were

better segmented and located. When NT was set to 3, 4 and 5, the

segmentation effect was gradually refined, and the regional details

were better defined. But in comparison with CAPSA and other

algorithms, it is difficult for ICAPSA to directly show its advantages

visually. Therefore, in Table 4, the values of PSNR and FSIM obtained

in thresholding segmentation process are recorded too. As the

number of thresholds gradually increased from 2 to 5 in Table 4,

the distribution of thresholds in the range [0 255] was more balanced.

In combination with the visual effects of Figure 3, the effectiveness of

ICAPSA in plant image thresholding is illustrated from the data level.

In addition, more detailed data comparison will be given in

Section 4.3.
4.3 Comparison and analysis of
similar algorithms

The visual and segmentation data analysis of ICAPSA alone

cannot fully demonstrate its consistently reliable performance. To
Frontiers in Plant Science 08
demonstrate the effects of ICAPSA more fully, we refer in this paper

to the evaluation methods used in relevant comparative literature.

We take PSNR value as the measurement standard, and compare it

with the original CAPSA, FABC, DCOA, MWOA and ISBO. On the

basis of keeping the original parameters of FABC, DCOA, MWOA

and ISBO, the results are provided in Table 5. From the data

comparison in Table 5, the effect of ICAPSA is visibly superior to

the original CAPSA. The most obvious improvement occurred at

Citrus Bacterial Canker image when the threshold number was 2,

the value of PSNR increased by 6.0525, a proportional increase of

39.7%. In the worst case is at Powdery Mildew image, when the

threshold was 2, the PSNR value also increased by 0.0142, with an

increase of 0.07%. But overall, ICAPSA was proved about 10.6%

higher than the original CAPSA. Compared with the experimental

data of FABC, the effect of ICAPSA is also better than that of FABC.

In the Citrus Bactrial Canker image, when the threshold is 2, the

effect improvement is the largest, with an increase of about 91.3%. In

general, the effect of ICAPSA is 12.5% higher than that of FABC on

average. Compared with experimental results of DCOA, similarly,

ICAPSA’s segmentation effect is slightly higher, with an average

increase of 11.7%.
A

B

D

E

F

C

A-i

B-i

D-i

E-i

F-i

C-i

A-ii

B-ii

D-ii

E-ii

F-ii

C-ii

A-iii

B-iii

D-iii

E-iii

F-iii

C-iii

A-iv

B-iv

D-iv

E-iv

F-iv

C-iv

FIGURE 2

Plant image segmentation based on CAPSA. (A) Leaf01. (B) Apple Brown Spot. (C) Citrus Bacterial Canker. (D) Black Spot. (E) Bacterial Keratosis of
Cucumber. (F) Powdery Mildew.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
Compared with the experimental data of MWOA, it is found

that the segmentation effect of ICAPSA is generally slightly higher

than that of MWOA, with an average improvement of 10%.

Finally, from the comparison results with ISBO, except at

Powdery Mildew image, when the threshold is 4, the effect of
Frontiers in Plant Science 09
ICAPSA is lower than that of ISBO, and the PSNR difference is

only 0.2647. From the overall analysis of the results, ICAPSA was

about 7.5% higher than ISBO. From the analysis of the above

results, it can be concluded that ICAPSA has better effects in plant

image segmentation.
A

B

D

E

F

C

A-i

B-i

D-i

E-i

F-i

C-i

A-ii

B-ii

D-ii

E-ii

F-ii

C-ii

A-iii

B-iii

D-iii

E-iii

F-iii

C-iii

A-iv

B-iv

D-iv

E-iv

F-iv

C-iv

FIGURE 3

Plant image segmentation based on ICAPSA. (A) Leaf01. (B) Apple Brown Spot. (C) Citrus Bacterial Canker. (D) Black Spot. (E) Bacterial Keratosis of
Cucumber. (F) Powdery Mildew.
TABLE 4 Experimental results of ICAPSA with different threshold numbers.

Image NT Thresholds PSNR FSIM

Leaf01

2
3
4
5

141 213
21 155 225

51 119 190 224
5 61 130 159 233

16.2911
22.5087
25.7779
26.8305

0.7229
0.7858
0.8015
0.8583

Apple Brown Spot

2
3
4
5

147 221
63 137 207

33 82 138 180
27 116 156 192 252

18.6521
21.2129
22.7506
23.9403

0.6066
0.6904
0.7467
0.7953

Citrus Bacterial Canker

2
3
4
5

44 204
60 168 232

79 142 200 254
13 36 58 122 168

21.3084
24.4853
26.0432
27.1299

0.7655
0.8379
0.8805
0.8943

(Continued)
frontie
rsin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
TABLE 4 Continued

Image NT Thresholds PSNR FSIM

Black Spot

2
3
4
5

98 211
97 162 245

49 165 218 248
17 67 134 202 243

21.5449
23.7496
25.1650
26.2449

0.6556
0.7590
0.8137
0.8436

Bacterial keratosis of cucumber

2
3
4
5

134 231
87 167 214

28 92 146 246
36 98 140 204 255

19.2370
21.8199
23.6029
24.6088

0.6028
0.7081
0.7808
0.8402

Powdery Mildew

2
3
4
5

90 205
94 159 220

42 111 153 236
18 58 78 104 200

20.0592
21.8992
23.2750
24.9361

0.5600
0.6061
0.6390
0.7018
F
rontiers in Plant Science
 10
 frontie
TABLE 5 Thresholding results with different segmentation algorithms.

Image NT PSNR

ICAPSA CAPSA FABC DCOA MWOA ISBO

Leaf01

2 16.2911 16.1719 16.2788 15.9541 16.1141 16.2897

3 22.5087 16.5023 16.5314 16.5394 16.7720 16.6751

4 25.7779 21.9052 16.6181 16.7702 24.6964 17.5584

5 26.8305 23.7037 16.8697 17.1991 26.2811 26.1164

Apple Brown Spot

2 18.6521 17.6643 18.5825 16.2137 17.2934 18.0229

3 21.2129 20.0332 20.1522 20.9419 20.7366 20.5594

4 22.7506 21.1680 21.9783 21.6583 21.8136 21.9044

5 23.9403 22.8429 23.6587 23.3634 23.2905 23.2198

Citrus Bacterial Canker

2 21.3084 15.2559 11.1408 20.8239 13.7563 20.0875

3 24.4853 21.1620 24.0375 22.6063 23.0258 23.0702

4 26.0432 23.8553 25.4951 24.8464 24.1417 25.2638

5 27.1299 25.6433 26.5732 26.4201 25.5010 25.7739

Black Spot

2 21.5449 18.6999 20.9316 18.8026 15.6189 20.2820

3 23.7496 20.0288 22.1855 21.1415 21.0457 21.3856

4 25.1650 23.7635 23.7159 24.2592 23.4749 23.6836

5 26.2449 24.4805 24.6354 24.4448 24.9746 24.3882

Bacterial keratosis of cucumber

2 19.2370 17.3167 19.1072 17.5003 18.9013 19.1536

3 21.8199 20.2393 20.9140 20.8431 19.9737 20.0132

4 23.6029 22.0439 22.7280 22.8016 22.6521 22.1477

5 24.6088 23.6152 23.4007 23.7169 23.4316 23.0604

Powdery Mildew

2 20.0592 20.0450 19.8182 17.4870 19.7587 19.3961

3 21.8992 20.9081 21.4543 20.7328 21.3120 21.2948

4 23.2750 22.1054 23.1606 22.0906 21.6392 23.5397

5 24.9361 23.4687 24.3110 23.7426 22.3853 24.6649
rsin.org

https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
5 Conclusion

To improve the accuracy and effects of plant image segmentation,

this paper combines and improves the traditional thresholding image

segmentation by improving the CAPSA. It uses Tent chaotic map

sequence and Opposite-based learning to improve the quality of the

initial population and the ability of global optimization in ICAPSA. To

avoid the problem of local optimization, Levy Flight disturbance strategy

is introduced to make the algorithm mutate when updating the position,

so as to balance the global optimization and local exploitation of

ICAPSA. Finally, the Kapur entropy is used as the objective function

to segment the plant images. The results are compared with CAPSA,

FABC, DCOA, MWOA and ISBO. From these results, the improved

CAPSA (ICAPSA) demonstrates superior segmentation effects in the

field of plant image segmentation.

Data availability statement

The original contributions presented in the study are included in

the article/supplementary material. Further inquiries can be directed

to the corresponding author.

Author contributions

All authors listed have made a substantial, direct, and intellectual

contribution to the work and approved it for publication.
Funding

This paper is supported by the National Youth Natural Science

Foundation of China under Grant 61802208, the Natural Science
Frontiers in Plant Science 11
Foundation of Anhui under Grant 1908085MF207, KJ2020A1215,

KJ2020A1216 and KJ2021A1251, the Excellent Youth Talent Support

Foundation of Anhui under Grant gxyqZD2019097 and

gxyqZD2021142, the Postdoctoral Foundation of Jiangsu under Grant

2018K009B, the Foundation of Fuyang Normal University under Grant

TDJC2021008 and the Quality Engineering Project of Anhui under

Grant 2021jyxm1117, 2021kcszsfkc307 and 2019sjjd81.
Acknowledgments

Thanks for the support and help of the team when writing the

paper. Thanks to the reviewers and experts of this magazine for their

valuable opinions on the article revision.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
References
Abdel-Basset, M., Mohamed, R., and Abouhawwash, M. A. (2022). A new fusion of whale
optimizer algorithmwith kapur’s entropy for multi-threshold image segmentation: analysis and
validations. Artif. Intell. Rev. 55, 6389–6459. doi: 10.1007/s10462-022-10157-w

Abualigah, L., Almotairi, K. H., and Elaziz, M. A. (2022). Multilevel thresholding image
segmentation using meta-heuristic optimizationalgorithms: comparative analysis, open
challenges and new trends. Artif. Intell. Rev. 9, 1–51. doi: 10.1007/s10489-022-04064-4

Anitha, J., Pandian, S. I. A., and Agnes, S. A. (2021). An efficient multilevel color image
thresholding based on modified whale optimization algorithm. Expert Syst. Appl. 178, 1–
12. doi: 10.1016/j.eswa.2021.115003

Bao, X., Jia, H., and Lang, C. (2019). A novel hybrid harris hawks optimization for color
image multilevel thresholding segmentation. IEEE Access. 7, 76529–76546. doi: 10.1109/
ACCESS.2019.2921545

Braik, M., Sheta, A., and Al-Hiary, H. (2021). A novel meta-heuristic search algorithm
for solving optimization problems: capuchin search algorithm. Neural Comput. Appl. 33,
2515–2547. doi: 10.1007/s00521-020-05145-6

Chen, Y., Wang, M., Heidari, A., Shi, B., Hu, Z., Zhang, Q., et al. (2022). Multi-
threshold image segmentation using a multi-strategy shuffled frog leaping algorithm.
Expert Syst. Appl. 194, 1–12. doi: 10.1016/j.eswa.2022.116511

Chen, C., Wang, X., Heidari, A., Yu, H., and Chen, H. (2021). Multi-threshold image
segmentation of maize diseases based on elite comprehensive particle swarm optimization
and otsu. Front. Plant Sci. 12. doi: 10.3389/fpls.2021.789911

Elaziz, M. A., Yousri, D., and Mirjalili, S. (2021). A hybrid Harris hawks-moth-
flame optimization algorithm including fractional-order chaos maps and
evolutionary population dynamics. Adv. Eng. Software 154, 1–13. doi: 10.1016/
j.advengsoft.2021.102973
Ewees, A., and Abd Elaziz, M. (2020). Performance analysis of chaotic multi-verse
harris hawks optimization: a case study on solving engineering problems. Eng. Appl. Artif.
Intel. 88, 1–15. doi: 10.1016/j.engappai.2019.103370

Ewees, A. A., Elaziz, M. A., Al-Qaness, M. A., Khalil, H. A., and Kim, S. (2020).
Improved artificial bee colony using sine-cosine algorithm for multi-level thresholding
image segmentation. IEEE Access. 8, 26304–26315. doi: 10.1109/ACCESS.2020.2971249

Gholizadeh, S., and Baghchevan, A. (2017). Multi-objective seismic design
optimization of steel frames by a chaotic meta-heuristic algorithm. Eng. Comput. 33,
1045–1060. doi: 10.1007/s00366-017-0515-0

Hasan, S., Jahan, S., and Islam, M. I. (2022). Disease detection of apple leaf with
combination of color segmentation and modified DWT. J. King Saud Univ-com 34, 7212–
7224. doi: 10.1016/j.jksuci.2022.07.004

He, Q., Liu, H., Ding, G., and Tu, L. (2023). A modified levy flight distribution for
solving high-dimensional numerical optimization problems.Math. Comput. Simulat. 204,
376–400. doi: 10.1016/j.matcom.2022.08.017

Hemasian-Etefagh, F., and Safi-Esfahani, F. (2019). Dynamic scheduling applying new
population grouping of whales meta-heuristic in cloud computing. J. Supercomput. 75,
6386–6450. doi: 10.1007/s11227-019-02832-7

Kalyani, R., Sathya, P. D., and Sakthivel, V. P. (2021). Medical image segmentation using
exchange market algorithm. Alex. Eng. J. 60, 5039–5063. doi: 10.1016/j.aej.2021.04.054

Kittler, J., and Illingworth, J. (1986). Minimum error thresholding. Pattern Recogn. 19,
41–47. doi: 10.1016/0031-3203(86)90030-0

Li, Y., Han, M., and Guo, Q. (2020). Modified whale optimization algorithm based on
tent chaotic mapping and its application in structural optimization. KSCE J. Civ. Eng. 24,
3703–3713. doi: 10.1007/s12205-020-0504-5
frontiersin.org

https://doi.org/10.1007/s10462-022-10157-w
https://doi.org/10.1007/s10489-022-04064-4
https://doi.org/10.1016/j.eswa.2021.115003
https://doi.org/10.1109/ACCESS.2019.2921545
https://doi.org/10.1109/ACCESS.2019.2921545
https://doi.org/10.1007/s00521-020-05145-6
https://doi.org/10.1016/j.eswa.2022.116511
https://doi.org/10.3389/fpls.2021.789911
https://doi.org/10.1016/j.advengsoft.2021.102973
https://doi.org/10.1016/j.advengsoft.2021.102973
https://doi.org/10.1016/j.engappai.2019.103370
https://doi.org/10.1109/ACCESS.2020.2971249
https://doi.org/10.1007/s00366-017-0515-0
https://doi.org/10.1016/j.jksuci.2022.07.004
https://doi.org/10.1016/j.matcom.2022.08.017
https://doi.org/10.1007/s11227-019-02832-7
https://doi.org/10.1016/j.aej.2021.04.054
https://doi.org/10.1016/0031-3203(86)90030-0
https://doi.org/10.1007/s12205-020-0504-5
https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

Li et al. 10.3389/fpls.2023.1122788
Lin, Q., Zhang, L., Wu, T., andMean, T. (2020). Application of tsallis cross-entropy in image
thresholding segmentation. Sensor. Ma-ter. 32, 2687–2696. doi: 10.18494/SAM.2020.2798

Li, L., Qian, S., Li, Z., and Li, S. (2022). Application of improved satin bowerbird
optimizer in image segmentation. Front. Plant Sci. 13. doi: 10.3389/fpls.2022.915811

Li, L., Sun, L., Jian, G., Chong, H., and Li, S. (2016). Fuzzy multilevel image
thresholding based on modified quick artificial bee colony algorithm and local
information aggregation. Math. Probl. Eng. 2016, 1–18. doi: 10.1155/2016/5985616

Li, L., Sun, L., Xue, Y., Li, S., Huang, X., and Mansour, R. F. (2021). Fuzzy multilevel
image thresholding based on improved coyote optimization algorithm. IEEE Access. 9,
33595–33607. doi: 10.1109/ACCESS.2021.3060749

Ma, M., Liang, J., Guo, M., Fan, Y., and Yin, Y. (2011). SAR image segmentation based
on artificial bee colony algorithm. Appl. Soft Comput. 11, 5205–5214. doi: 10.1016/
j.asoc.2011.05.039

Maray, M., Albraikan, A. A., Alotaibi, S. S., Alabdan, R., Al Duhayyim, M., Al-Azzawi,
W. K., et al. (2022). Artificial intelligence-enabled coconut tree disease detection and
classification model for smart agriculture. Comput. Electr. Eng. 104, 1–15. doi: 10.1016/
j.compeleceng.2022.108399

Ma, G., and Yue, X. (2022). An improved whale optimization algorithm based on
multilevel threshold image segmentation using the otsu method. Eng. Appl. Artif. Intel.
113, 1–28. doi: 10.1016/j.engappai.2022.104960

Merzban, M. H., and Elbayoumi, M. (2019). Efficient solution of otsu multilevel image
thresholding: A comparative study. Expert Syst. Appl. 166, 299–309. doi: 10.1016/
j.eswa.2018.09.008

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans.Syst. Man Cybernet. 9, 62–66. doi: 10.1109/TSMC.1979.4310076

Pare, S., Kumar, A., Singh, G. K., and Bajaj, V. (2020). Image segmentation using
multilevel thresholding: a research review. IJST-T Electr. Eng. 44, 1–29. doi: 10.1007/
s40998-019-00251-1

Patel, R., Mitra, B., Vinchurkar, M., Adami, A., Patkar, R., Giacomozzi, F., et al. (2023).
Plant pathogenicity and associated/related detection systems a review. Talanta 251, 1–9.
doi: 10.1016/j.talanta.2022.123808

Prasad, D., Mukherjee, A., and Mukherjee, V. (2021). Temperature dependent optimal
power flow using chaotic whale optimization algorithm. Expert Syst. 38, 1–10.
doi: 10.1111/exsy.12685
Frontiers in Plant Science 12
Rajinikanth, V., Kadry, S., Crespo, R. G., and Verdu, E. (2021). A study on RGB image
multi-thresholding using Kapur/Tsallis entropy and moth-flame algorithm. Int. J.
Interact. Multi. 7, 163–171. doi: 10.9781/ijimai.2021.11.008

Rodrıǵuez-Esparza, E., Zanella-Calzada, L. A., Oliva, D., Heidari, A. A., Zalldivar, D.,
Pérez-Cisneros, M., et al. (2020). An efficient harris hawks-inspired image segmentation
method. Expert Syst. Appl. 155, 1–12. doi: 10.1016/j.eswa.2020.113428

Ruwona, J., and Scherm, H. (2022). Sensing and imaging of plant disease through the
lens of science mapping. Trop. Plant Pathol. 47, 74–84. doi: 10.1007/s40858-021-
00478-6

Sathya, P. D., Kalyani, R., and Sakthivel, V. P. (2021). Color image segmentation using
kapur, otsu and minimum cross entropy functions based on exchange market algorithm.
Expert Syst. Appl. 172, 1–16. doi: 10.1016/j.eswa.2021.114636

Sihwail, R., Omar, K., Ariffin, K. A. Z., and Tubishat, M. (2020). Improved harris
hawks optimization using elite opposition-based learning and novel search
mechanism for feature selection. IEEE Access. 8, 121127–121145. doi: 10.1109/
ACCESS.2020.3006473

Upadhyay, P., and Chhabra, J. K. (2020). Kapur’s entropy based optimal multilevel
image segmentation using crow search algorithm. Appl. Soft Comput. 97, 1–15.
doi: 10.1016/j.asoc.2019.105522

Wang, Y., and Song, S. (2022). An adaptive firefly algorithm for multilevel image
thresholding based on minimum cross entropy. J. Supercomput. 78, 11580–11600.
doi: 10.1007/s11227-021-04281-7

Xue, Y., Tang, Y., Xu, X., Liang, J., and Neri, F. (2022). Multi-objective feature selection
with missing data in classification. IEEE Trans. Emerg. Top. Comput. Intell. 6, 355–364.
doi: 10.1109/TETCI.2021.3074147

Xue, Y., Xue, B., and Zhang, M. (2019). Self-adaptive particle swarm optimization for
large-scale feature selection in classification. ACM T. Knowl. Discov D. 13, 1–27.
doi: 10.1145/3340848

Xue, Y., Zhu, H., Liang, J., and Slowik, A. (2021). Adaptive crossover operator based
multi-objective binary genetic algorithm for feature selection in classification. Knowl-
Based Syst. 227, 1–9. doi: 10.1016/j.knosys.2021.107218

Zhao, D., Liu, L., Yu, F., Heidari, A. A., and Chen, H. (2021). Chaotic random spare ant
colony optimization for multi-threshold image seg-mentation of 2D kapur entropy.
Knowl-Based Syst. 216, 1–18. doi: 10.1016/j.knosys.2020.106510
frontiersin.org

https://doi.org/10.18494/SAM.2020.2798
https://doi.org/10.3389/fpls.2022.915811
https://doi.org/10.1155/2016/5985616
https://doi.org/10.1109/ACCESS.2021.3060749
https://doi.org/10.1016/j.asoc.2011.05.039
https://doi.org/10.1016/j.asoc.2011.05.039
https://doi.org/10.1016/j.compeleceng.2022.108399
https://doi.org/10.1016/j.compeleceng.2022.108399
https://doi.org/10.1016/j.engappai.2022.104960
https://doi.org/10.1016/j.eswa.2018.09.008
https://doi.org/10.1016/j.eswa.2018.09.008
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1007/s40998-019-00251-1
https://doi.org/10.1007/s40998-019-00251-1
https://doi.org/10.1016/j.talanta.2022.123808
https://doi.org/10.1111/exsy.12685
https://doi.org/10.9781/ijimai.2021.11.008
https://doi.org/10.1016/j.eswa.2020.113428
https://doi.org/10.1007/s40858-021-00478-6
https://doi.org/10.1007/s40858-021-00478-6
https://doi.org/10.1016/j.eswa.2021.114636
https://doi.org/10.1109/ACCESS.2020.3006473
https://doi.org/10.1109/ACCESS.2020.3006473
https://doi.org/10.1016/j.asoc.2019.105522
https://doi.org/10.1007/s11227-021-04281-7
https://doi.org/10.1109/TETCI.2021.3074147
https://doi.org/10.1145/3340848
https://doi.org/10.1016/j.knosys.2021.107218
https://doi.org/10.1016/j.knosys.2020.106510
https://doi.org/10.3389/fpls.2023.1122788
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Hybrid improved capuchin search algorithm for plant image thresholding
	1 Introduction
	2 Description and model construction of Capuchin Search Algorithm (CAPSA)
	2.1 Original CAPSA description
	2.2 Initialization of CAPSA
	2.3 Evolution of CAPSA

	3 The Hybrid Improved CAPSA
	3.1 Tent chaotic mapping
	3.2 Opposite-based learning (OBL)
	3.3 Position updating
	3.4 Pseudo code of ICAPSA

	4 Analysis and comparison of experimental results
	4.1 Parameter setting and discussion
	4.2 Plant image segmentation results with ICAPSA
	4.3 Comparison and analysis of similar algorithms

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /PageByPage
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages false
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /ENU (T&F settings for black and white printer PDFs 20081208)
 >>
 /ExportLayers /ExportVisibleLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName ([High Resolution])
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

