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Phytohormones unlocking their
potential role in tolerance of
vegetable crops under drought
and salinity stresses

Jun Chen* and Xin Pang

Faculty of Horticulture Science & Technology, Suzhou Polytechnic Institute of Agriculture,
Suzhou, China
Globally, abiotic stresses are drastically reducing the productivity of vegetable

crops. Among abiotic stresses, drought and salinity are more challenging

constraints for the sustainable production of vegetables. A great variety of

vegetables are facing dry and hot summer spells, poor water availability, and

higher salinity mainly due to irrigation with brackish water. Vegetables are

considered higher water-dependent crops, requiring water for proper growth

and yield. Drought and salinity impair plant metabolism. The disruption in plant

metabolism leads to a reduction in growth, developmental processes, and

ultimately crop yield. Appropriate management measures are needed to cope

with the adverse effects of drought and salinity. Different agronomic andmolecular

approaches contributed to improving tolerance. Therefore, the present review

significantly explores the impact of phytohormones on vegetable crops under

drought and salinity stresses. Phytohormones (salicylic acid, melatonin,

jasmonates, Brassinosteroids, ascorbic acid, and numerous others) can be

sprayed for improvement of plant growth, yield, and photosynthetic pigments by

modulation of physiological and biochemical processes. In this manner, these

phytohormones should be explored for sustainable production of vegetable crops

growing under abiotic stress conditions.

KEYWORDS
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Introduction

Phytohormones are considered plant-protecting hormones under abiotic stress

conditions. Different phytohormones are well-known management strategies, which act as

stress-relieving bioactive compounds in vegetable crops (Fahad et al., 2015; Altaf et al.,

2022a). The exogenous spray of numerous phytohormones can reduce the drought and

salinity stresses and also improve the plant defense mechanism focusing on sustainable

production. Fascinatingly, phytohormones are more effective for the reduction of challenges

that occur from stressful conditions at any growth or developmental phases even from

germination to plant senescence. These hormones are contributing to numerous signaling
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and transduction pathways through hormonal reception and

regulatory actions (Hu et al., 2012). The membrane receptors, ionic

networks, reactive oxygen species (ROS) indications, and mitogen-

activated protein kinase (MAPK) indications are noticeable to

numerous fundamenta l ut i l i t i e s in the synchrony by

phytohormones to cope with the negative effects of abiotic stress.

Understanding the interactive mechanism of phytohormones and

transcriptomics can be effective for the development of tolerant

germplasm of vegetables (Diao et al., 2015; Mangal et al., 2022).

Modulation of physiological and photosynthetic pigments was found

to be helpful for an increase in plant yield growing under water stress

and saline conditions. The susceptible germplasm can also become

higher yielding by sufficient use of phytohormones based on genetic

makeup and climatic conditions of the characterized germplasm, as

reported by Forni et al. (2017). However, the impact of

phytohormones on the regulation of secondary metabolites and

other signaling molecules needs further investigation for better

understanding. For the development of tolerant germplasm,

traditional breeding ways are time-consuming and not specific.

However, the application of phytohormones is more effective for

the alleviation of abiotic stress tolerance.

Plants growing under field conditions could be exposed to

multiple stresses, which can damage the crops’ yield (Glick, 2012).

Severe climatic conditions in summer, irregular nutrition

management, and unavailability of irrigation water are causing

stunted growth and poor crop yield. Sustainable agricultural crop

production is drastically affected by numerous biotic stresses (such as

insects, pests, and disease) and abiotic stresses (like drought, salinity,

temperature extremes, humidity, light, ultraviolet radiations, mineral

nutrition deficiencies, and heavy metals) (Akram et al., 2017;

Shakoor et al., 2017). Drought and salinity are considered more

destructive conditions, extensively affecting growth, developmental

stages, and yield. Plants can change their defense system against

stressful conditions to regulate metabolism, growth, and

development (Ahmad et al., 2008). Vegetable crops are potentially

growing under diverse environmental conditions by natural

acclimation, as well as numerous adaptation strategies. However,

these approaches may not be sufficient to reduce losses from

variations in climate change (Shahid et al., 2021; Zhang et al.,

2022a). The severity of abiotic stress is mainly based on the type of

species and intensity and duration of stress (Zhang et al., 2022b).

Stressful conditions cause variations in plant physiological and

biochemical processes, either reversible or irreversible. However,

these constraints affect vegetable crops primarily, which are

susceptible to abiotic stress (Parveen et al., 2020). Presently,

vegetable crop demand is higher; therefore, it is necessary to

develop some excellent approaches or tolerant germplasm to tackle

the severity of drought and salinity stresses. Drought and salinity

stresses are critical global concerns and harm the sustainable

production of crops. Irrigation water resources are depleting due to

climate change, urbanization, and industrialization (Gruda et al.,

2019). Soil salinity is also increasing, mainly due to irrigation with

poor-quality and brackish water. The unavailability of quality water

in various regions is causing salt accumulation in the soil, which

further translocates toward the root zone of vegetable crops. It has

been estimated that approximately 20% of global land is negatively

affected by salt extremes (Forni et al., 2017).
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Vegetables are considered an essential source of the human diet

because they are rich in dietary fibers, vitamins, antioxidants, and

minerals. Their consumption is also due to good taste, excellent

texture, and religious value (Gamalero and Glick, 2022). Global

vegetable production in 2020 increased by nearly 66%, from 447 to

1,130 Mt (FAO, 2021). Farmers are investing considerable efforts in

improving vegetable production and nutritional aspects under

stressful environments (Gruda et al., 2019). The severity of drought

and salinity is mainly based on different climatic constraints like the

distribution of solar radiation, the need for evapotranspiration, and

the retention of soil moisture content (Sabir et al., 2022). Hence,

numerous agricultural practices and breeding approaches can be

employed for the alleviation of tolerance in vegetable crops against

drought and salinity.

Plant researchers urge sustainable management practices to

increase vegetable production under drought and salinity stresses

(Ahmad et al., 2010; Checker et al., 2018). The exogenous application

of phytohormones is a more promising approach to cope with the

adverse effects of drought and salinity for sustainable vegetable

production. The involvement of phytohormones is attracting much

attention from plant researchers due to their multifunctioning

behavior against drought and salinity stresses. However, their

utilization is still limited in vegetable crops growing under drought

and salinity. Therefore, the present study elaborates on the utilization

of phytohormones in vegetable crops under drought and salinity

stresses. Deep insights into physiological, biochemical, and molecular

basis were also explored in the vegetables to cope with the adverse

effects of drought and salinity.
Phytohormones are major modulators
of plant responses to drought
and salinity

Vegetable production is low in different growing areas due to

water deficit and salinity. Restricted growth and low yield are due to

the unavailability and shortage of water and excessive salt

accumulation in the root zone of plants. The higher uptake of Na+

through roots by xylem vessels resulted in restriction in the uptake of

nutrients and minerals necessary for sufficient growth and yield

(Maksimovic and Ilin, 2012). Salinity, sodicity, and water stress

revealed adverse effects on the growth, yield, and quality of

vegetable crops. Higher accumulation of salts disturbed the soil

structure, texture, porosity, and permeability of water, which

ultimately reduces the productivity of vegetable crops (Malhi et al.,

2021). Soil provides better anchor and acts as a reservoir of mineral

nutrients necessary for better growth, development, and yield.

Therefore, the development of mechanistic approaches is needed to

minimize the damaging effects of drought and salinity in vegetable

crops. Drought and salinity affect vegetable crops, causing restriction

in growth with poor yield (Hossain et al., 2022). Drought stress and

excessive Na+ accumulation are causing a disturbance in the

metabolism of vegetable crops. Moreover, the osmotic potential of

plants is also adversely affected due to drought and excessive salt

accumulation in different plant cells and compartments (Zaidi et al.,

2015). Alterations in metabolism and disturbances in osmotic
frontiersin.org
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potential are the leading causes of restricted growth and low yield and

sometimes complete or partial death of a plant (Neha et al., 2021).

In addition to supporting signaling pathways, endogenous plant

hormones are critical in the response to drought and salinity.

Phytohormones play a major role in mediating how plants respond

to osmotic adjustment under stress conditions. Small signaling

molecules called phytohormones have a significant impact on

almost every aspect of the development of plants. The methods of

action taken by different hormones for various activities may be very

different. Furthermore, it is well recognized that even a single

hormone can have an impact on a wide range of cellular and

developmental processes or that multiple hormones can regulate a

single function concurrently. Phytohormones protect and control

plants from biotic and abiotic stresses. As a result, phytohormone

application aims to expand crop stress research in the future (Ahmad

et al., 2008).
General signs and ion toxicity under
drought and salinity stresses

Drought and salinity stress decrease the uptake of Ca2+ and K+ in

vegetable crops, which is the primary reason why nutritional

imbalances occur in plants. Plant physiology and morphology are

also affected by numerous stresses and thus are susceptible to

drought and salinity stresses (Rodrıguez et al., 2005). The initial

response of vegetable plants under drought and salinity is the

dropping of leaves or the initiation of leaf senescence. After that, a

reduction in fresh and dry weights may also be considered an early

response of plants growing under water shortage and salinity stress

conditions (Zhu, 2002). The decline in fresh and dry weights ultimately

reduces the plant yield. Yield reduction is evident in vegetable crops

growing under drought and salinity stresses (Alian et al., 2000).

However, a reduction in yield can also be a responsive mechanism,

especially in aerial plant parts (Sharma et al., 2011) (Figure 1).

Plants have been categorized into two main groups, halophytes

and glycophytes. It has been reported that halophytes are more
Frontiers in Plant Science 03
tolerant than glycophytes (Zhang et al., 2017). The potential of

halophytes was much imperative, and higher survival and

reproduction rates were observed as compared to glycophytes due

to improved root architecture, regulation in stomatal conductance,

balanced nutrition, improved metabolism, and distinctive genetic

makeup (Gao et al., 2018). Halophytes can tolerate approximately

200 mM of NaCl because, at this level, glycophytes cannot survive.

Furthermore, the halophyte group constitutes a 1% proportion of

global flora, and the individuals of this group were grown naturally

(Patane et al., 2013). Leaf growth, especially leaf area, is also

considered an initial response in stressful conditions within plant

cells and compartments. Numerous other signs include leaf scorching

from tip and margins, yellowing and bronzing, leaf dropping of

leaves, dieback in twigs, necrosis, blackening, and burning

(Bernstein et al., 2004).

Different ion movements continue within plant organelles and

compartments under normal conditions. Higher regulation of

cytosolic K+ and Na+ ratio was recorded in the vegetable crops

grown under favorable conditions (Zhu and Gong, 2014). Under

salinity and drought conditions, ion balances are disturbed, and

abnormal movements of ions continue until the availability of

favorable conditions. Water-deficit conditions increased the

accumulation of salts in the root zone (Sattar et al., 2021).

Excessive Na+ in the root zone and its translocation to other plant

parts are also improved. Na+ and K+ channels are also present in the

xylem vessels. The discrimination of both ions is necessary,

although both are similar in power to hydrated ions, and their

discrimination is difficult for plants. However, some transporters of

ions with high-affinity potassium transporters (HKTs) are more

effective for the discrimination and movement of ions through

xylem vessels in all plant parts. Furthermore, some proteins, such

as integrated membrane proteins, are also involved in the regulation

of solute movements within plant cells and compartments (Ahmad

et al., 2008). Moreover, these transporters and proteins are specific

for ion regulation; for example, some are specific for the

discrimination of Na+ and others for the discrimination of K+.

Hence, it has been reported that regulation of Na+ and K+ is
FIGURE 1

Adverse effects of salinity in vegetable crops.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1121780
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Chen and Pang 10.3389/fpls.2023.1121780
necessary for sufficient plant growth, development, and yield of

potatoes (Kamran et al., 2021).

Recently, vegetable crops are facing numerous biotic and abiotic

stresses; however, a single abiotic stress is also sufficient for the drastic

reduction in crop yield. The water shortage and excessive salt

concentrations show a direct effect on the reduction in vegetable

crop yield (Lin et al., 2006). Any plant parts, even underground or

aerial parts, can be damaged due to low soil moisture levels and

excessive salts (Li et al., 2022). Under stressful conditions, vegetable

plants and their response to drought and salinity are mainly based on

the type of species, cultivars, and even landraces. It has been studied

that Cl− ions are effective for the catabolism of numerous enzymatic

and non-enzymatic activities, and these are also known as co-factors

for the regulation of the photosynthesis process (Rodrıǵuez-Delfıń

et al., 2011). The behavior of sensitive and tolerant germplasm of

vegetable crops toward Cl− is more different. The excess of Cl− is

toxic; however, Na+ is more toxic than Cl−. Numerous genes are also

involved in regulating Cl− produced in plants. Aquaporin has also

been involved in the characterization of numerous genes that

contributed to the regulation of Cl− efflux, which has significant

involvement in the sustainable production of crops.
Avoidance mechanism of vegetable
crops against stressful conditions

Salt exclusion and excretion restrict the salt’s access to the xylem

vessels of vegetable crops. The exclusion of salts like Na+ and Cl− via

roots revealed that the storage of Na+ and Cl− in leaves is not at a toxic

level (Andre et al., 2009). However, their increased concentration

disturbed physiological mechanisms, further resulting in leaf drop

(Sobhanian et al., 2011). Grafting will be successful in numerous

vegetable families and species like Solanaceae and Cucurbitaceae.

Rootstock and scion combination contributed to the avoidance of salt

mechanism in vegetable crops (Colla et al., 2010). Excessive salts in

the root zone further translocated toward other plant parts. However,

salt translocation can be reduced and not transported toward leaves.
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The rootstock’s basal portion can absorb the salts (Giordano et al.,

2021). Therefore, it has been distinguished that the rootstock and

scion combination is most necessary for alleviating salinity in

vegetable crops (Figure 2).

Salt exclusion is a variety-specific character in vegetable crops,

and the higher exclusion of salts is the capability of a specific variety.

However, this mechanism does not reveal the tolerance mechanism in

vegetable crops. The avoidance mechanism of drought and salinity is

also based on the root architecture of vegetable crops. Zhang et al.

(2019) reported that grafting improves plant performance under

drought and salinity stress in tomatoes. Similarly, phytohormones

could improve the Solanaceae vegetable crop performance.
Phytohormones and gene expression
under drought and salinity stresses

Expression of genes related to drought and salts is a more

imperative utilization for the development of tolerant germplasm.

Different genes and their expression in agronomic crops are widely

discussed in the literature; however, in vegetable crops, this molecular

phenomenon is still in progress. Most functional markers are related

to numerous genes involved in the stress tolerance mechanism of

vegetable crops (Ahmad et al., 2008). Gene expression potentially

contributes to the development of salt-tolerant germplasm.

Characterization of drought- and salt-tolerant and susceptible

germplasm is a prerequisite for the sustainable production of

vegetable crops (Malhi et al., 2021). Wild germplasm had more

significant variation in genetic makeup and novel alleles, which can

be explored to develop salt-tolerant germplasm. Numerous resistant

genes can be identified, and further genome editing and

transformation can be helpful for the development of tolerant

germplasm in vegetable crops (Malhi et al., 2021). However, the

expression of genes can be regulated by exogenous and endogenous

improvements of phytohormones for the increase of tolerance against

stress drought and salinity. Phytohormones are involved in the

upregulation of transcriptomics of ATPase. Moreover, they were
FIGURE 2

Critical stages of irrigation water at different growth stages of vegetable crops.
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also involved in the reduction of the expression level of PpATG for the

regulation of numerous morpho-physiological and biochemical

activities in cucumbers. Moreover, similar findings were also

reported by Parveen et al. (2021) for the expression of genes related

to the tolerance mechanism.
Management approaches for mitigation
of drought and salinity in vegetables

Different management approaches comprised of proteomics,

marker-assisted selection, genome characterization, genome editing,

genome mapping, quantitative trait locus (QTL) mapping, genomic

editing, and genomic transformation are promising molecular bases

for salinity and drought tolerance in vegetable crops (Saidi and

Hajibarat, 2020). Furthermore, the molecular bases can be utilized

for the backcrossing of genes present in wild species toward offspring

or landraces. The first genome map was developed in the 1980s on

potatoes in relation to sexual recombination regularities. Plant

breeders have successfully characterized disease-tolerant genes in

potatoes (Byun et al., 2007). Moreover, numerous economic traits

were detected in potatoes. Furthermore, “NL25” is one of the

functional markers with excellent capability to identify candidate

genes related to tolerance characteristics of potato warts (Saidi and

Hajibarat, 2020).
Phytohormones and vegetable crops
under drought and salinity stresses

Phytohormones have the potential to enhance vegetables’ growth

and development by interacting with numerous processes responsive

to stressful conditions (Groppa and Benavides, 2008).

Phytohormones have the capability to improve the defense system

of vegetable crops growing under drought and salinity stresses. Plants

activate their defense system against adverse climatic conditions for
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their survival (Choudhary et al., 2012). Therefore, supplementation of

phytohormones boosts the immune system of plants growing under

drought and salinity stresses. Plant defense system comprises the

activation of enzymatic compounds (i.e., superoxide dismutase

(SOD), peroxidase (POD), and catalases (CATs), non-enzymatic

activities (i.e., ascorbic acid (AsA), phenolic content, and different

sugars), osmolytes (i.e., glycine betaine (GB), ascorbate peroxidase

(APX), and proline), and oxidative stress-indicating activities (ROS,

malondialdehyde (MDA), and hydrogen peroxide (H2O2) (Table 1).

Therefore, the impact of phytohormones on vegetable crops is

imperative and needs more investigation on the molecular level to

enhance plant tolerance (Diao et al., 2015).
Brassinosteroids

These are more emerging, eco-friendly, and multifunctional plant

hormones involved in regulating physiological mechanisms occurring

within the plants (Mumtaz et al., 2022). Plant researchers and

physiologists are working on utilizing these plant hormones for

sustainable crop production. Alhaithloul et al. (2020) reported that

Brassinosteroids (BRs) are more effective for plants growing under

drought and salinity stress environments. It has been studied that BRs

enhanced seed germination, root growth, seedling development, cell

expansion and differentiation, ripening of fruits, leaf senescence, and

reproduction of floral parts of vegetable crops (Bhandari and Nailwal,

2020). Moreover, in the findings of Kaya (2021), it has been

discovered that BRs can improve growth traits, mineral content,

antioxidant activities, and osmolytes and protect from membrane

injury. Similarly, Shahid et al. (2011) evaluated that BRs elevated pea

productivity against drought and salinity. Thus, it has been confirmed

that BRs effectively elevate salinity tolerance in vegetable crops. BRs

are effective for amelioration of drought and salinity tolerance in

numerous vegetable crops like tomatoes (Jangid and Dwivedi, 2017),

cucumber (Jakubowska and Janicka, 2017), and radish (Ramakrishna

and Rao, 2015). Furthermore, elevated enzymatic activities like SOD,
TABLE 1 Role of different antioxidant activities in drought and salt tolerance mechanism of vegetable crops.

Bioactive mole-
cules

Key findings References

ROS, MDA, and H2O2 The activation of these activities is more toxic for plants.
Chances of membrane injury increased under stress.

Sobhanian et al.
(2011)

Electrolyte leakage Membrane injury increased due to stress conditions because membrane damage enhanced due to the production of lipid
peroxidation.

Zhang et al. (2013)

SOD, POD, and CAT Toxic ROS, MDA, and H2O2 scavenging are made by CAT activity naturally.
These are scavengers of toxic compounds, and their activation also improved the defense system of plants growing under
stressful environments.
These are helpful to disturb the O2 to form H2O2 and remove the harmfulness of superoxide anion.

Zhang et al. (2013)

APX and glutathione Ascorbate activity enhanced the plants’ tolerance mechanism.
These are effective to decrease the H2O2 production in vegetables against osmotic stress and oxidative injury.
H2O2 and its derivatives are rapidly decreased by glutathione.
These have better scavenging capability under stress conditions.

Wu et al. (2018)

Proline and GB These osmolytes are considered signaling molecules against stress conditions.
Proline and GB are known as antioxidant profiling that improves drought and salt tolerance in vegetables.
Proline may act as a signaling molecule in order to maintain osmotic regulation.
Oxidative injury is regulated by the production of proline and GB.

Zhang et al. (2013)
ROS, reactive oxygen species; MDA, malondialdehyde; SOD, superoxide dismutase; POD, peroxidase; CAT, catalase; APX, ascorbate peroxidase; GB, glycine betaine.
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POD, CAT, and improved metabolites were recorded with exogenous

application of these phytohormones. Moreover, improved

physiological systems and reduction in oxidative injury were also

observed in numerous vegetables, i.e., tomatoes (Jordan et al., 2020),

peppers, and cucumbers (Per et al., 2017; Fahad et al., 2019), by

application of BRs. Abiotic stress tolerance can be mitigated in the

radish by supplemental use of BRs. Reduction in the over-generation

of ROS, MDA, H2O2, and electrolyte leakage indicated that BRs are

stress-relieving compounds for radish plants growing under stressful

conditions as studied by Ramakrishna and Rao (2015). Furthermore,

the increase in plant defense indicated that BRS is effective for the

improvement of the plant immune system against harsh

environments. In another study by Jakubowska and Janicka (2017),

it has been indicated that BRs are much more effective for abiotic

stress tolerance, as a similar tolerance mechanism was reported in the

cucumbers. The exogenous spray of 24-EBRs on cucumbers improved

the gaseous exchange processes and all its related traits, chlorophyll

fluorescence, starch, soluble sugars, and rubisco activities. Therefore,

it is much more effective for higher-yielding vegetable crops growing

under normal and abiotic stress conditions. Similarly, in the other

research by Choudhary et al. (2012), it has been studied that free

radicle-scavenging potential in radishes was improved with enhanced

antioxidant potential along with improvements in morphological

traits of roots under heavy metal (copper) excess. From previous

literature, it has been indicated that BRs are the more effective, eco-

friendly, naturally occurring substances that might be extensively

utilized for the reduction of drought and salinity stresses

in vegetables.
Jasmonates

This group is comprised of methyl jasmonate (MeJA) and

jasmonic acid (JA), which have been explored for their impacts on

vegetable crops (Dar et al., 2015). Deprivation of photosynthetic

pigments and tuber formation can be regulated under the

exogenous application of JAs, as studied by Viswanath et al. (2020).

The exogenous spray of this plant hormone improved sugar beet

growth and defense system under drought (Ghaffari et al., 2019).

Importantly, the exogenous JA application improved the endogenous

production of JAs, and consequently, it can be used for hormonal

regulation (Shahzad et al., 2015). MJ improved the drought resistance

in cauliflower by improving oxidative bioactive compounds (Wu

et al., 2012). Therefore, it has been exhibited that vegetable

production can be increased with JA supplementation. JAs

strengthen the defense system against environmental stresses in

horticultural crops (Dar et al., 2015). These are significant for

horticultural crops growing in areas with drought (Ge et al., 2010)

and salinity (Pedranzani et al., 2003). Environmental threats can be

regulated by the application of JAs. Similarly, Zou et al. (2017)

revealed that the defense mechanism of plants was improved under

environmental stresses like waterlogged conditions in peppers. JAs

have good potential as a regulatory mechanism of vegetable crops

against drought and salinity stresses. Abouelsaad and Renault (2018)

reported that ROS mediation can be improved with JA because ROS is
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an indication of stress occurrence in tomato plants. Manan et al.

(2016) reported that MeJA had the good capability to enhance the

yield-related traits of tomato cultivars growing under elevated salinity

as evaluated by Manan et al. (2016). The exogenous spray of MeJA on

peas growing under stressful situations results in the improvement of

indigenous hormonal levels of JA (Shahzad et al., 2015). Cauliflower

grows under water-deficit conditions, facing challenges in growth at

the seedling stage and poor yield at the reproductive stage. Wu et al.

(2012) examined whether MeJA potentially triggered both oxidative

and non-oxidative activities. Absorption and uptake of heavy metals

were decreased in eggplant through the exogenous application of

MeJA as supplementation (Yan et al., 2015). Seed priming is also an

effective way to reduce challenges due to stress conditions. Therefore,

it has been recorded that JA contributed to the increase in the

germination of okra seeds, increase of seedlings, improved level of

osmoprotectants, defense activities, photopigments, ROS reduction,

lessening of H2O2, and low MDA level against salinity as studied by

Iqbal et al. (2022). Exogenous application of MeJA on peppers

improved osmolyte generation, oxidative and non-oxidative

bioactive molecules, and metabolism and also improved the uptake

of minerals via roots. Furthermore, decreases in MDA, H2O2,

electrolyte leakage, and ROS were also reported by supplemental

application of MeJA in the peppers. Therefore, it has been considered

that JAs are suitable phytohormones for the mitigation of adverse

effects of salinity and water-deficit conditions in horticultural crops.
Salicylic acid

This is a phenolic-based hormone that contributes to the elevated

growth and yield of vegetable crops grown under drought and salinity

environments, mainly by improving the plant defense system (Khan

et al., 2015). Similarly, in another vegetable crop (pea), different

concentrations of salicylic acid were applied exogenously (nearly 1–4

mM) under salinity conditions (50, 100, and 150 mM of NaCl) (Saidi

and Hajibarat, 2020). In this study, it has been noted that salicylic acid

improved pea growth, yield, enzymatic and non-enzymatic activities,

and osmolytes. Salicylic acid (SA) (300 ppm) improved the mineral

content in garlic and decreased Na+ uptake and translocation to other

plant parts. Therefore, it has been considered that SA is helpful for

vegetable crops growing under drought and salinity stresses (Shama

et al., 2016). Similarly, in another study, nearly 0.11 mM of SA

improved the tolerance of potatoes against abiotic stress (chilling).

Priming seeds with salicylic acid at 100 mg/L is an effective strategy

for the mitigation of adverse effects of salinity in cucumber (Rehman

et al., 2011). The use of salicylic acid is an effective strategy for

tolerance of abiotic stresses in vegetable crops, i.e., potatoes (Li et al.,

2019), bell pepper (Zhang et al., 2020), spinach (Gilani et al., 2020),

and peppermint (Ahmad et al., 2018). Spraying 1 mM of SA on

tomatoes growing under heat stress resulted in an improved process

of gaseous exchange, good water use potential, enzymatic activity

generation, non-oxidative activation, and reduced oxidative stress

conditions as studied by Zulfiqar et al. (2021). Moreover, biomass

reduction on a fresh or dry basis was decreased, ultimately reducing

the yield because of salinity and drought stresses. Furthermore,
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disruption in photopigments, photosynthesis disturbances, and

irregularities in the functions of stomata are causes of osmotic

stress. Therefore, it has been explored that regularities in the

process of photosynthesis and stomatal function are important by

application of different levels of SA. Similarly, in other findings, nearly

0.1 mM of SA enhanced the fresh and dried biomass, regulated

photosynthesis, generation of oxidative and non-oxidative

compounds, regulation in electrolyte leakage, protection from

membrane injury, efficient water use potential, and excellent

anatomical responses (Galviz et al., 2021). Moreover, it has been

recorded that SA had the capability to mitigate challenges that occur

from drought and salinity stresses by reduction of oxidative and

osmotic injuries (Kaya, 2021).
Polyamines

The polyamine (PA) group from phytohormones primarily

comprised spermidine, putrescine, and spermine having a lower

molecular weight (Ahmad et al., 2012). Several physiological and

biochemical processes were administered through polyamines by

improving root, leaf differentiation, pollen viability, flower

development, fruit growth, gene transcription, morphogenesis,

embryo-genesis, leaf senesce, organogenesis, embryogenesis, and

fruit maturation of the respective vegetable crop (Chen et al., 2019).

Multiple abiotic stresses can be regulated by the application of varying

concentrations of polyamines in horticultural crops, especially

vegetable crops. Abiotic stresses can be regulated by the alteration

of numerous processes of plants with a spray of polyamines available

in the markets globally, as reported by Kamran et al. (2019).

Moreover, the exogenous application of spermidine revealed good

outcomes for tomato seedlings grown under stressful conditions.

Moreover, the application of spermidine also enhanced the

concentration of polyamine compounds within cells and

compartments, especially in the root zone of tomato seedlings. The

higher concentration of spermidine can be effective for tomato plants

growing under saline conditions. The differentiation of ions and their

translocation to other plant parts can be improved by supplementing

polyamines (Hu et al., 2012). Exogenous application of spermidine is

found to be effective for the improvement of plant growth,

chlorophyll content, proline level, and different sugars, as reported

by Zapata et al. (2004). Furthermore, it has also been reported that the

reduction in ROS, MDA, and H2O2 was also measured in tomato

plants. Pepper seeds were treated with different polyamines

(spermine, putrescine, and spermidine), and it has been studied

that the improved rate of germination, higher germination index,

and early germination were recorded in treated seeds as compared to

non-treated seeds. Similarly, in another study by Wu et al. (2018), it

was revealed that the application of polyamines in cucumber seedlings

improved crop performance under stressful conditions. Ormrod and

Beckerson (1986) reported that polyamines are stress-relieving

molecules as in the tomato for higher yield. The reduction and

balance in the generation of oxidative stress markers, i.e., ROS,

H2O2, MDA, free radicles, and movement of electrons, indicate the

reduced stress in plants. Therefore, it has been studied that PA is an

appropriate hormone for the improvement of endogenous hormones

and also improved the activation of scavengers of toxic compounds.
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Ascorbic acid

This contributed to the regulation of biosynthesis of ascorbates

within the plant body. It is involved in the detoxification and

compartmentation of H2O2 and MDA activities. Ascorbic acid is an

important phytohormone necessary for sustainable vegetable

production globally, grown under drought and salt stress conditions.

The increased concentration of ascorbic acid on lettuce revealed that

ascorbic acid is also effective for increasing the fresh and dry weights of

lettuce and the number of leaves, which are considered yield-

contributing factors against salinity. Seed germination is disturbed

due to stressful conditions. Therefore, the exogenous application of

AsA significantly enhanced seed germination with the endogenous

improvement of ascorbates, which further activates the scavengers of

toxic bioactive molecules within the plant cells. Hence, the initiation of

seed germination is regulated with supplemental AsA as studied by

Akram et al. (2017). Moreover, its application had a good role in the

balance and neutralization of free radicals and toxic ROS generated

within the plant cells. The exogenous application of ascorbic acid

effectively improves the endogenous ascorbic acid content.
Abscisic acid

Its production is enhanced due to low moisture availability in the

root zone of plants (Seiler et al., 2011; Lim et al., 2015). The enhanced

production of abscisic acid (ABA) adversely affected plant growth and

yield by producing nutritional imbalances (Sreenivasulu et al., 2012).

The optimum production of ABA regulates the osmotic stress

conditions (Ali et al., 2021a; Ali et al., 2021b). Induced levels of Na+

and ABA are the main causes of nutrient uptake restriction and

nutrient translocation from roots toward leaves for food synthesis

(Soma et al., 2021). Vegetables faced a reduction in stem and leaf,

cell membrane injury, chlorophyll instability, lipid peroxidation, low

water potential, degradation of photosynthetic pigments, poor gas

exchange, higher Na+, Cl−, ABA, reduced K+, turgidity in leaf,

osmolyte generation, and ROS scavenger production under stress

(Malhi et al., 2021).
Melatonin

Melatonin (MLE) is a stress-reducing molecule by exogenous

supplementation. It is involved in the improvement of seed

germination, the proliferation of roots, better flowering, fruit set and

enlargement, fruit ripening, shelf life, and quality as studied by Wang

et al. (2021). Drought and salinity stresses can be mitigated by the

supplemental spray of MLE on many vegetable crops because of MLE’s

multifaceted functions (Wang et al., 2013; Qi et al., 2018; Altaf et al.,

2022b). MLE has the good capability to scavenge toxic ROS, MDA,

H2O2, and electrolyte leakage as studied by Wang et al. (2012). The

enhanced level of endogenous MLE has the capability to mitigate

challenges that occur from drought and salinity in agricultural crops

as reported by Nawaz et al. (2018). Restricted translocation of minerals

(macronutrients and micronutrients) is upregulated by supplemental

application of MLE. Moreover, the uptake and absorption of minerals

by roots are regulated due to the application of appropriate melatonin
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levels. Oxidative and osmotic stresses are relieved by MLE due to the

regulation of endogenous hormones and activation of scavengers of

oxidative stress markers (Neha et al., 2021). The morphology of roots is

improved regarding uptake, absorption, and further translocation

toward other plant parts by supplemental MLE. Drought and salinity

are involved in the disruption of plant metabolism. Therefore,

disturbance in the plant metabolism is an indication of a stress

situation. The activation of oxidative stress markers like ROS, H2O2,

and MDA is reduced, and their scavengers (enzymatic, non-enzymatic,

and osmolytes) are activated. Therefore, the availability of nutrients to

plants is imperative especially when growing under stressful conditions.

Hence, MLE can be a suitable method for the alleviation of drought and

salinity in vegetable crops.

Hormonal regulations are necessary to enhance vegetable crop

tolerance against drought and salinity stress conditions (Figure 3).
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Different concentrations of antioxidant sprays improved crop

performance by modulation of physiological and biochemical

mechanisms in sweet potatoes (Lin et al., 2006) (Table 2).
Conclusion and prospects

In the present study, it has been explored that modulation of

physiological and biochemical mechanisms is necessary for

sustainable production of vegetable crops growing under drought

and salinity stresses. Exogenous application of phytohormones is

necessary for the improvement of vegetable growth, yield,

photosynthetic pigments, minerals nutrient content, and defense-

related characteristics. It has been concluded that phytohormones are

necessary for the sustainable production of vegetable crops.
FIGURE 3

Impact of phytohormones on different vegetable crops growing under drought and salinity stresses.
TABLE 2 The role of exogenous phytohormones against drought and salinity stresses in vegetable production.

Stress
type

Phytohormones Vegetable
crop

Key findings References

Salinity Salicylic acid Pea 0.4 mM of salicylic acid enhances growth by improving the defense system Jangid and
Dwivedi (2016)

Salinity Ascorbic acid Lettuce 0, 100, 200, 300, and 400 mg/L improved lettuce performance with improved yield Jangid and
Dwivedi (2016)

Drought Osmoprotectants Tomato 50%–57% of field capacity also increased the level of salts in plants. Germination was very
poor in seeds

Jangid and
Dwivedi (2016)

Drought Salicylic acid Tomato 10–5 M improved seedling growth under 10 days of water-holding capacity Hayat et al. (2008)

Drought Melatonin Cucumber 100 mM significantly improved growth, yield, and defense mechanism Zhang et al. (2013)

Salinity Polyamines
(spermidine)

Cucumber Adverse effects due to 50 mM of NaCl can be regulated by the application of polyamines
such as spermidine

Duan et al. (2008)

Drought Methyl jasmonate Sweet potatoes 13 µM/L of jasmonates improved growth, yield, and quality characters Yoshida et al.
(2020)

Drought Jasmonic acid Potato Overexpression of StJAZ1 resulted in decreased relative leaf water potential in the plants
MDA and lipid peroxidation were enhanced. Jasmonic acid is effective to reduce the
production of MDA and lipid peroxidation

Jing et al. (2022)

Drought Mannitol and methyl
jasmonate

Pepper Regulates signaling and antioxidant defense potential in plants Ma et al. (2021)
MDA, malondialdehyde.
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Fron
* Climate change, urbanization, and industrial zones are

depleting and polluting water resources. Water shortage is

going to worsen. To feed a huge population, it is necessary to

develop management approaches to obtain higher vegetable

production with limited water resources.

* Elevated drought and salinity conditions severely affect the

productivity of vegetable crops. In this situation,

phytohormones are considered a supportive strategy for the

sustainable production of vegetable crops in the current scenario.

* To achieve zero hunger, it is necessary to elevate drought and

salinity tolerance in vegetables. Moreover, the development of

tolerant landraces is also a present need.

* Exploration of molecular basis, i.e., genome characterization,

QTL mapping, marker-assisted selection (MAS), genome

editing, genetic transformation, and genome sequencing are

also imperative for the development of tolerant germplasm of

vegetable crops.
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