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Visible and near-infrared (Vis-NIR) spectroscopy has been widely applied in many

fields for the qualitative and quantitative analysis. Chemometric techniques including

pre-processing, variable selection, and multivariate calibration models play an

important role to better extract useful information from spectral data. In this

study, a new de-noising method (lifting wavelet transform, LWT), four variable

selection methods, as well as two non-linear machine learning models were

simultaneously analyzed to compare the impact of chemometric approaches on

wood density determination among various tree species and geographical locations.

In addition, fruit fly optimization algorithm (FOA) and response surfacemethodology

(RSM) were employed to optimize the parameters of generalized regression neural

network (GRNN) and particle swarm optimization-support vector machine (PSO-

SVM), respectively. As for various chemometric methods, the optimal chemometric

method was different for the same tree species collected from different locations.

FOA-GRNNmodel combined with LWT and CARS deliver the best performance for

Chinese white poplar of Heilongjiang province. In contrast, PLS model showed a

good performance for Chinese white poplar collected from Jilin province based on

raw spectra. However, for other tree species, RSM-PSO-SVM models can improve

the performance of wood density prediction compared to traditional linear and

FOA-GRNN models. Especially for Acer mono Maxim, when compared to linear

models, the coefficient of determination of prediction set (R2
p) and relative prediction

deviation (RPD) were increased by 47.70% and 44.48%, respectively. And the

dimensionality of Vis-NIR spectral data was decreased from 2048 to 20.

Therefore, the appropriate chemometric technique should be selected before

building calibration models.

KEYWORDS

visible and near infrared spectroscopy, lifting wavelet transform, variable selection,
response surface methodology, wood density
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1 Introduction

Visible and near-infrared (Vis-NIR) spectroscopy, which

contains the visible and NIR regions, has been widely applied in

agriculture, petroleum, pharmaceuticals, and life sciences, such as

soil particle size determination (Gozukara et al., 2022), propane

content prediction of liquefied petroleum gas (Dantas et al., 2013),

polymorphic forms of fluconazole identification (Mansouri et al.,

2021), plant stress detection (Liang et al., 2018), and examination of

Zika virus (Fernandes et al., 2018). The visible region (380-750 nm)

contains the information of the pigments such as anthocyanin and

chlorophyll based on their specific absorption bands (Zahir et al.,

2022). Meanwhile, the near-infrared light records the vibration of

the hydrogen bonds, for instance, C-H, N-H, and O-H, which are

the main components of samples. Therefore, when the Vis-NIR

light strikes samples, the light absorbed by samples includes the

information of pigments and hydrogen bonds, which can be used to

predict samples’ components.

Wood density is an essential indicator for the assessment of

wood qualities due to the relationship between the mechanical,

optical, and chemical properties (Resquin et al., 2019). The

traditional measurement of wood density is laboratory test based

on the density formula (r=m/v, where r is wood density, m and v

are the mass and volume of wood samples, respectively), such as

China National Standards (GB/T 1933-2009), which is challenging

because they require burdensome sample processings, meaning that

it is a destructive behavior and difficult to measure numerous

samples in a short time. In addition, wood properties are

influenced by the tree species and geographical origins (climate,

moisture, soil, etc.). Even within the same tree, there exist

differences between juvenile and mature wood for density (Krajnc

et al., 2021). These differences in wood properties have effect on end

use and economic benefits. For example, the yellow rosewood (the

raw material of classical Chinese furniture) grown in Hainan

province is expensive than other locations due to its great quality

(Huang et al., 2018). Therefore, it is necessary to analyze wood

properties among different geographical locations and tree species,

especially for native tree species and the Convention on

International Trade in Endangered Species (CITES) listed species.

Many studies (Zhao et al., 2010; Zhao et al., 2012; Tigabu et al.,

2020; Toscano et al., 2022) have demonstrated that Vis-NIR or NIR

spectroscopy can be used to determine physical and chemical

compositions, mechanical properties, wood microstructure, and

seed quality over the years with the advantages of rapid, simple,

and non-destructive detection for numerous samples. For the

prediction of wood density using spectroscopy, various wood

samples and chemometric techniques or the combination of these

two sections are the main research directions. In terms of wood

science, Schimleck et al. (2003) estimated air-dry density of green

Pinus taeda radial samples with NIR spectroscopy, the coefficient of

determination (R2) are 0.85 and 0.87 for green and dry wood,

respectively. Additionally, in another study, Schimleck et al. (2018)

found that air-dry density of Pinus taeda L increased from pith to

bark at all heights based on NIR spectroscopy technology. As for

chemometric techniques, Zhang et al. (2022) proposed a deep

transfer learning hybrid method with automatic calibration
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capability (Resnet1D-SVR-TrAdaBoost.R2) to predict larch wood

density in different moisture contents. Fernandes et al. (2013)

compared the effect of two calibration methods (neural networks

and partial least squares) on Pinus pinea density, the results

demonstrated that neural networks was better than PLS

technique. In addition, considering spectra quality and model

accuracy, Li et al. (2022) analyzed various spectral pre-processing

and multivariate calibration methods in the prediction of Chinese

White Poplar density, the results showed that the best prediction

was obtained by GRNN models combined with LWT and CARS

method. These studies displayed that chemometric techniques are

essential for NIR spectra analysis to better explore the relationship

between spectra and properties.

The original spectra contain irrelevant information due to the

interference of background and environment, therefore,

chemometric methods are needed for Vis-NIR spectral analysis.

The essence of Vis-NIR spectral data analysis is to extract useful

information of components using the appropriate chemometric

methods, which include pre-processing, feature variable selection,

and multivariate calibration models. Pre-processing is an essential

step for improving model prediction accuracy through converting

raw spectral data into a new data set without interferences (Bian

et al., 2020). The common used pre-processing techniques are

multiplicative scatter correction (MSC), the first derivative,

Savitzky-Golay (SG) filtering, detrending (DT), wavelet transform

(WT) and standard normal variate (SNV) (Dotto et al., 2018; Li

et al., 2020; Bian et al., 2022; Carvalho et al., 2022; Ling et al., 2022).

Different results will be obtained using various pre-processing

methods or their combinations due to the different mechanism

and functions, thus, it is important to select the most useful method

and prevent the phenomena of over-fitting.

A Vis-NIR spectrum of a sample with the region from 350 to

2500 nm includes 2151 spectral variables, the high-dimensional

spectral data results in the “curse of dimensionality”. Therefore,

feature wavelengths selection techniques should be employed to

address the problem. Uninformative variable elimination (UVE),

competitive adaptive reweighted sampling (CARS), genetic

algorithm (GA), iteratively retains informative variables (IRIV),

and successive projections algorithm (SPA) are among the feature

variable selection methods that have been analyzed in recent studies

(Centner et al., 1996; Araújo et al., 2001; Ielpo et al., 2017). In

addition to these mentioned techniques, a hybrid method that

combing two or more methods were made to simplify high-

dimensional spectral data. For example, Yun et al. proposed a

hybrid strategy based on variable combination population

analysis (VCPA), IRIV, and GA to optimize key variables (Yun

et al., 2015; Yun et al., 2019).

Multivariate calibration models are employed to analyze the

relationship between the selected feature wavelengths and targeted

properties. Generally, modeling approaches are divided into linear

and non-linear models such as partial least-squares (PLS), principal

component regression (PCR), artificial neural network (ANN), and

support vector machine (SVM). Regarding the performance of

linear and non-linear models, there may exist differences in

prediction accuracy for the same sample because of the different

strategies. According to the Beer-Lambert’s Law (A = ϵ× l × c, where
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A is absorbance,ϵ, l, and c are the molar absorption coefficient, path

length, and concentration, respectively), there is a linear

relationship between absorbance spectra and concentrations

(Wang et al., 2011). However, the relationship between spectra

and properties are complex or non-linearity due to the interference

of environment, such as light scattering (Geladi et al., 1985). As for

NIR spectra analysis, a linear method of PLS is usually used to

model. If the residuals of the predicted model are normally

distributed around zero then the PLS model is accurate. If the

residuals will not be equally distributed around zero but will follow

perhaps a”banana shaped” curve around zero or some unbalanced

pattern, another calibration method or non-linear model will be

employed to analyze the relationship between spectral data and

properties. It is worth mentioning that non-linear calibration

models have ability to perform linear analysis. What’s more, non-

linear relationships between spectra and concentrations can be

handled by the linear calibration models, but at the cost of the

increasing of the multivariate complexity. However, the linear

models are not always effective in the spectral data analysis when

the noises are multiplicative. Additionally, spectral differences as

different unknown samples or growing environment are complex.

In this case, it is not enough to deliver the optimal solution only

using linear techniques for such complex problem.

Recently, some new algorithms, such as random forest (RF)

(Marta et al., 2022) and fruit fly optimization algorithm (FOA) (Li

et al., 2019), were applied in the analysis of spectral data. Modeling

methods are the same as pre-processing and feature variables

selection techniques, they can be combined by two or three

approaches to obtain the most suitable model. The limitations of

modeling methods (linear and non-linear models) are the

optimization of modeling parameters. For instance, the principal

component number (PCS) and the selection of radial basis function

(RBF) are the key step of PLS and SVM models, respectively.

In this study, various chemometric methods including a new

spectral data de-noising (Lifting wavelet transform, LWT), four

feature variables selection techniques (SPA, UVE, IRIV, and

CARS), and two hybrid multivariate calibration models, i.e.,
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generalized regression neural network (GRNN) optimized by FOA

(GRNN-FOA), and PSO-SVM model optimized by response surface

methodology (RSM-PSO-SVM), were compared simultaneously to

obtain the most suitable chemometric technique for wood density

prediction among different tree species. In addition to, the effect of

geographical location on wood Vis-NIR spectra was investigated to

predict wood density based on Vis-NIR spectroscopy.
2 Materials and methods

2.1 Study area and wood sampling

A total of 37 trees were collected from two physiographic

regions of China (Figure 1). The main tree species comprising

Populus davidiana, Ulmus pumila L., Acer mono Maxim., and Tilia

tuan Szyszyl. were obtained from Jilin province. Populus davidiana

and Larixgmelinii were simultaneously made from Heilongjiang

province to analyze the influence of locations on wood density

determination. The study area have east Asian monsoon climate

and temperate continental monsoon climate, respectively. Wood

disks with five-centimeter-thick were made from the stump up to

the top at 1 m intervals. In total, 530 wood samples with the

dimensions of 2×2×2 cm3 (tangential, radial, and longitudinal) were

generated and then air-dried in laboratory for three months.
2.2 Vis-NIR spectra collection and wood
density measurement

The reflectance spectra of wood were measured from the cross-

section using a portable spectrometer (LabSpec, Analytical Spectral

Devices, Inc., Boulder, USA). The wavelength range and spectral

resolution are 350-2500 nm and 3 nm @700 nm, 10 nm @1400/

2100 nm, respectively. A white panel was used for instrumental

calibration every fifteen min. Three random spectra were collected

from each sample and the average spectrum was regarded as the raw
FIGURE 1

Geographical location of wood samples.
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spectrum. Wood density was measured according to China

National Standards (GB/T 1933-2009).
2.3 Chemometric techniques

2.3.1 Spectral pre-processing
Wavelet transform (WT) is a powerful signal analysis technique

in data compression and spectral de-noising (Mojsilovic et al.,

2000). Lifting wavelet transform (LWT), the second-generation

wavelet, can conquer the weakness of traditional WT. The

inconspicuous information are magnified by LWT with the

advantages of high computation speed and small memory.

Wavelet function, wavelet order, and decomposition level (k) are

essential for spectral de-noising using LWT and WT. Wood spectra

with the bands ranging from 350 to 2397 nm (No. of wavelengths =

2048) were used to analyze in this study. Assuming that

decomposition level and wavelet order are 8 and 3, respectively,

four wavelet function including Haar, sym3, bior1.3 (biorNrNd, Nr:

the wavelet order in decomposition process, Nd: the wavelet order

of reconstruction wavelet), and db3 were compared in this study.

The optimal wavelet function was determined by the performance

of partial least squares (PLS) models. Then the optimal wavelet

order and decomposition level were obtained based on the best

wavelet function.

In order to better analyze the suitability of LWT, wood spectra

were processed by three traditional pre-processing methods

including WT, SNV, and MSC. The main parameters of WT were

the same as LWT. LWT and WT were implemented in Matlab

R2010b (MathWorks, Natick, USA). MSC, SNV, and PLS were

performed with Unscrambler V10.4 (CAMO Software AS,

Oslo, Norway).

2.3.2 Feature variables selection
After the optimal de-noising technique was determined, four

regular variable selection algorithms (i.e., UVE, CARS, IRIV, and
Frontiers in Plant Science 04
SPA) were used to select the feature wavelengths of wood density.

The selection strategy of UVE and CARS are filter-based and MPA-

based, respectively. SPA is based on extreme value search and forward

selection. In contrast with SPA, backward selection andMPA-based are

employed by IRIV (Yun et al., 2014). These four variables selection

methods were implemented with Matlab R2010b. The performance of

these methods was analyzed by the PLS models according to the values

of the coefficient of determination (R2), root mean square error

(RMSE), relative prediction deviation (RPD), and relative standard

deviation (RSD). Generally, a higher R2, RPD and lower RMSE, RSD

value indicates a good predictive ability (Yan et al., 2013).

2.3.3 Machine learning models
Linear modeling method, namely PLS model, was used for

determining the optimal pre-processing and variable selection

method. Additionally, non-linear deep learning techniques

including GRNN and PSO-SVM were performed using Matlab

based on the selected variables. The parameter of Spread is of great

importance for GRNN model. As FOA was applied to select the

optimal Spread value. As for PSO-SVM model, PSO was used to

optimize the parameters of penalty factor (C) and kernel function

(g) in the radial basis function (RBF) kernel. Furthermore, in order

to improve the accuracy of PSO-SVM model, three parameters of

PSO-SVM, namely cross-validation number, maximum generation,

and population, were optimized by Box-Behnken design of RSM

method. GRNN and PSO-SVM models were established in Matlab.

RSM was performed in Design-Expert Software 11 (Stat-Ease,

Minneapolis, Minnesota, USA) (Figure 2).
3 Results

3.1 Wood density analysis

For evaluation the performance of various chemometric

methods on different tree species, the calibration set and
FIGURE 2

The respective work flow of chemometric methods.
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prediction set for each tree species were divided using random

sampling method. The statistical descriptive of wood density is

demonstrated in Figure 3. Wood density values ranged from 0.576

to 1.124 g/cm3 among these tree species. The mean density value

was different. Japanese elm from Jilin and Heilongjiang province

presented a large mean value (1.047 and 1.058 g/cm3, respectively)

and a higher standard deviation. In terms of data set, the range of

density in the prediction set was within the corresponding

calibration set. Additionally, regardless of the type of tree species,

a similar mean value and standard deviation were obtained for a

determined tree species between calibration and prediction set.
3.2 Comparison of various spectral
de-noising methods

The selection of wavelet function is the first step of de-noising

based on LWT or WT. Table 1 depicts the PLS models accuracy of

four wavelet functions when the wavelet order and decomposition

level were assumed to be 3 and 8, respectively. The overall accuracy

of calibration set is higher than 0.7, regardless of the wavelet

function used. For the precision of a determined tree species,

various performance were obtained among these four wavelet

functions. For example, different values of cross-validation set

were achieved for Tilia tuan Szyszyl. when sym3 and bior1.3

functions were used. In contrast, db3 performs good with respect

to the high R2, RPD value and lower RMSE, RSD value for Tilia tuan

Szyszyl., Acer mono Maxim, Japanese elm, and Dahurian larch.

However, the same tree species of Chinese white poplar from Jilin

and Heilongjiang province are not identical, with the optimal

wavelet function of sym3 and bior1.3, respectively. In addition,

the parameters of PLS models are different among these two

locations. These demonstrated that geographical origin has

impact on the prediction of density and spectral pre-processing

based on Vis-NIR spectroscopy and LWT.
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Figure 4 displays the variation of PLS models using the optimal

wavelet function in relation to the increasing wavelet orders from 2

to 8. The results show that a non-obvious trend was received with

the enhance of wavelet orders. This is consistent with the results of

Zhang et al. (Zhang et al., 2009). In contrast, the performance is

relatively good for Tilia tuan Szyszyl., Acer mono Maxim, Japanese

elm, and Dahurian larch when the wavelet order equals 4. In terms

of Chinese white poplar from Jilin and Heilongjiang province,

similar to the results of wavelet function, the optimal wavelet

order is different with the values of 5 and 6, respectively.

Additionally, for Tilia tuan Szyszyl., Acer mono Maxim, and

Dahurian larch, the RMSE values of calibration and cross-

validation set are similar, but the R2 and RPD values slightly

outperform the other orders when the order is 4.

When the optimal wavelet function and order were

determined for these tree species, the performance of PLS

models using various decomposition level (1-8) was analyzed.

Unlike the results of wavelet order, Figure 5 illustrates that despite

the similar RMSE values for a determined tree among various

decomposition levels, the R2 and RPD reach the largest value when

the decomposition level increases from 1 to 8. This can be

explained that the noise were removed from spectra with the

increasing of decomposition level, while the useful information

were regarded as noise when the decomposition level is too large.

Considering the performance of calibration set and cross-

validation set, the optimal decomposition level is 4 for Chinese

white poplar (Jilin province), Japanese elm, and Dahurian larch.

Acer mono Maxim and Chinese white poplar performed well

when the decomposition level equals 5. For Tilia tuan Szyszyl., the

optimal decomposition level is 6. As for Chinese white poplar

harvested from two locations, the results of the optimal

decomposition levels were similar to wavelet orders.

Considering the feasibility of LWT, the performance of the

three traditional pre-processing techniques was further compared.

Only the data of Chinese white poplar from Heilongjiang was

shown in Figure 6. The results show that the LWT performs

better with respect to the R2 and RPD values in the calibration

and cross-validation dataset. The RMSE and RSD values were

smaller than that of corresponding raw model. In contrast, the

performance of WT, MSC, and SNV was worse than LWT with a

lower R2 and RPD of cross-validation model, especially for the latter

twomethods. These results demonstrated that the PLS models using

MSC and SNV approaches involve the overfitting problem in the

prediction of wood density.
3.3 Feature variable selection of
wood density

Figure 7 illustrates two dimensional (2D) correlation

spectroscopy between wavelengths of various wood spectra.

Regardless of tree species, the high correlation values (r) indicate

that more redundant information or collinearity were exhibited,

especially for Chinese white poplar (Jilin) (Figure 7C), Japanese elm

(Figure 7D), and Dahurian larch (Figure 7F). Additionally, the

correlation of adjacent spectral variables was higher than other
FIGURE 3

Statistical descriptive of wood density. (a–f) are Tilia tuan Szyszyl., Acer
mono Maxim, Chinese white poplar (Jilin), Japanese elm, Chinese
white poplar (Heilongjiang), and Dahurian larch, respectively.
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TABLE 1 The PLS model results of wood density with different wavelet functions.

Location Tree species Models Indicators
Wavelet function

Haar db3 sym3 bior1.3

Jilin province

Tilia tuan Szyszyl.

Calibration

R2 0.812 0.823 0.814 0.814

RMSE 0.012 0.011 0.012 0.012

RPD 2.306 2.377 2.319 2.319

RSD 1.820% 1.668% 1.820% 1.820%

Cross-validation

R2 0.800 0.801 0.803 0.812

RMSE 0.012 0.012 0.012 0.012

RPD 2.236 2.242 2.253 2.306

RSD 1.820% 1.820% 1.820% 1.820%

Acer mono Maxim

Calibration

R2 0.755 0.740 0.759 0.748

RMSE 0.018 0.019 0.018 0.018

RPD 2.02 1.961 2.037 1.992

RSD 2.031% 2.144% 2.031% 2.031%

Cross-validation

R2 0.639 0.654 0.705 0.665

RMSE 0.022 0.022 0.021 0.021

RPD 1.664 1.7 1.841 1.728

RSD 2.483% 2.483% 2.370% 2.370%

Chinese white poplar

Calibration

R2 0.763 0.780 0.761 0.769

RMSE 0.017 0.017 0.017 0.017

RPD 2.054 2.132 2.046 2.081

RSD 2.228% 2.228% 2.228% 2.228%

Cross-validation

R2 0.652 0.650 0.679 0.657

RMSE 0.021 0.021 0.020 0.021

RPD 1.695 1.69 1.765 1.707

RSD 2.753% 2.753% 2.622% 2.753%

Japanese elm

Calibration

R2 0.843 0.857 0.854 0.825

RMSE 0.020 0.020 0.020 0.022

RPD 2.524 2.644 2.617 2.39

RSD 1.910% 1.910% 1.910% 2.101%

Cross-validation

R2 0.826 0.829 0.823 0.807

RMSE 0.022 0.022 0.022 0.023

RPD 2.397 2.418 2.377 2.276

RSD 2.101% 2.101% 2.101% 2.196%

Heilongjiang province Chinese white poplar

Calibration

R2 0.760 0.749 0.749 0.758

RMSE 0.022 0.022 0.022 0.022

RPD 2.041 1.996 1.996 2.033

RSD 3.140% 3.140% 3.140% 3.140%

Cross-validation
R2 0.705 0.689 0.726 0.730

RMSE 0.024 0.025 0.024 0.024

(Continued)
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regions, which increases the computation time and complexity in

modeling. Therefore, four variable selection approaches, SPA, UVE,

CARS, and IRIV, were employed to select the feature variable

related to wood density and decrease the redundant information.

Table 2 displays the prediction accuracy of four variable

selection approaches on wood density using PLS models. For the

number of selected variables, different numbers were obtained for

UVE, CARS, and IRIV among these tree species, except for SPA.

When using the SPA, 60 wavelengths were selected for Tilia tuan

Szyszyl. and Chinese white poplar (Jilin), Chinese white poplar

(Heilongjiang) and Dahurian larch also have the same numbers of

selected variables (64). However, the indicators of PLS models were

different, for example, the R2 values of calibration set are 0.839 and

0.775 for Tilia tuan Szyszyl. and Chinese white poplar (Jilin),

respectively. In terms of precision, the performance of cross-

validation set was worse than that of calibration set for SPA. This

demonstrated that despite a dimensionality reduction in the

spectral matrix, SPA method has a overfitting problem for the
Frontiers in Plant Science 07
density prediction among these tree species. In contrast, CARS and

IRIV have stable and better results for calibration and validation set.

The optimal variable selection method of Tilia tuan Szyszyl. and

Chinese white poplar (Jilin and Heilongjiang) is CARS, and IRIV

performed better than other methods for Acer mono Maxim,

Japanese elm, and Dahurian larch.

The distributions of selected variables for these tree species

using the optimal method are shown in Figure 8. The selected bands

of CARS and IRIV, 1157, 1171, 1370, 1597, 1811, 1830, 2200, and

2353 nm, are associated with hemicellulose, cellulose, and lignin

(Ali et al., 2001; Sandak et al., 2011; Schwanninger et al., 2011;

Yonenobu and Tsuchikawa, 2003). This results are consistent with

our previous studies (Li et al., 2020), indicating that the

determination of wood density are related to chemical

compounds. Additionally, comparing of the raw spectra and de-

noising spectra with LWT for these tree species (Figure 8), it can be

found that the LWT makes the wood spectra smooth and has a

similar trend with the corresponding raw spectra.
TABLE 1 Continued

Location Tree species Models Indicators
Wavelet function

Haar db3 sym3 bior1.3

RPD 1.841 1.793 1.91 1.925

RSD 3.425% 3.568% 3.425% 3.425%

Dahurian larch

Calibration

R2 0.720 0.734 0.735 0.716

RMSE 0.021 0.021 0.021 0.022

RPD 1.89 1.939 1.943 1.876

RSD 2.605% 2.605% 2.605% 2.729%

Cross-validation

R2 0.684 0.684 0.653 0.659

RMSE 0.023 0.023 0.024 0.024

RPD 1.779 1.779 1.698 1.712

RSD 2.853% 2.853% 2.977% 2.977%
fron
FIGURE 4

Results of PLS models for wood density with different wavelet orders. (a–f) are Tilia tuan Szyszyl., Acer mono Maxim, Chinese white poplar (Jilin),
Japanese elm, Chinese white poplar (Heilongjiang), and Dahurian larch, respectively.
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3.3.1 The optimization of non-linear
calibration models

When the wood spectra were pre-processed by the optimal de-

noising and variable selection methods, GRNN and SVM were used

to build non-linear models based on these selected variables. In

addition, FOA and PSO were employed to optimize the parameter

of GRNN (Spread value) and SVM (penalty factor and kernel

function), respectively. Regardless of tree species, the prediction

accuracy resulting from LWT dataset was higher than that of raw

prediction set. Considering four indicators, Chinese white poplar

(Heilongjiang) delivers the best performance based on LWT dataset

with R2, RMSE, RPD, and RSD value of 0.867, 0.013, 2.742 and

1.904%, respectively (Figure 9). Compared to FOA-GRNN models,

four indicators are better, regardless of the pretreatment of
Frontiers in Plant Science 08
prediction set, when using the P SO-SVM, apart from Japanese

elm and Chinese white poplar (Heilongjiang) (Table 3). These

results show that tree species have affect on the selection of the

optimal chemometric method.

As for PSO-SVM model, although the PSO was used to optimize

the parameters of penalty factor and kernel function, three

parameters, including population size, maximum generation, and

the No. of cross-validation, also have influence on the performance of

modeling. This may be the reason of low accuracy of Japanese elm

and Chinese white poplar (Heilongjiang). Therefore, the Box-

Behnken design with a three-factor and three-level of RSM was

used to analyze the relationship between these three parameters and

model performance. According to the experimental values and coded

levels of these three factors (Table 4), the relationship between three
A B

D E F

C

FIGURE 5

Results of PLS models for wood density with different decomposition levels. (A–F) are Tilia tuan Szyszyl., Acer mono Maxim, Chinese white poplar
(Jilin), Japanese elm, Chinese white poplar (Heilongjiang), and Dahurian larch, respectively.
FIGURE 6

The comparison analysis of various de-noising methods for Chinese white poplar (Heilongjiang).
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parameters and mean squared error of cross-validation (CVmse) for

Dahurian larch are shown in Figure 10.

Figure 10 displays the response surface plot between three

parameters and CVmse. The optimal parameter was determined

when the CVmse has the lowest value. In terms of Dahurian larch,

the CVmse value first reduced and then increased with the cross-

validation number increasing from 5 to 15, when the maximum

generation is a certain value. The lowest value of CVmse was

achieved with the No. of cross-validation, maximum generation,

and population size at 10, 75, and 40, respectively. According to the

ANOVA results of Dahurian larch (data not shown), the CVmse

was significantly influenced by cross-validation number (p<0.01)
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than by population size and maximum generation. For Tilia tuan

Szyszyl. (data not shown), the minimum CVmse was obtained when

the No. of cross-validation, maximum generation, and population

size were 5, 50, and 20, respectively.

Figure 11 shows the wood density accuracy of RSM-PSO-SVM

models based on the Box-Behnken design. In terms of accuracy,

Japanese elm delivers the best performance with the R2 of 0.955

and 0.862 for calibration and prediction set, respectively. For Acer

mono Maxim, the improvement of R2
p value slightly outperforms

corresponding R2
c value. This indicates that RSM-PSO-SVM

models are more stable than that of PSO-SVM models.

However, RSM-PSO-SVM had a poor performance for Chinese
D

A B

E F

C

FIGURE 7

2-D correlation spectra of wavelength variables for each tree species with log(1/R) spectra. (A–F) are Tilia tuan Szyszyl., Acer mono Maxim, Chinese
white poplar (Jilin), Japanese elm, Chinese white poplar (Heilongjiang), and Dahurian larch.
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TABLE 2 The comparison of various variable selection methods for each tree species.

Tree species No. of Variables R2c RMSE RSD RPD No. of Variables R2c RMSE RSD RPD

Full-PLS LWT-PLS

Tilia tuan Szyszyl. 2048 0.812 0.012 1.820% 2.306 2048 0.831 0.011 1.668% 2.433

Acer mono Maxim 2048 0.762 0.018 2.031% 2.05 2048 0.777 0.017 1.918% 2.118

Chinese white poplar 2048 0.768 0.017 2.228% 2.076 2048 0.809 0.016 2.097% 2.288

Japanese elm 2048 0.838 0.021 2.005% 2.485 2048 0.865 0.019 1.184% 2.722

Chinese white poplar 2048 0.749 0.022 3.140% 1.996 2048 0.809 0.019 2.711% 2.288

Dahurian larch 2048 0.724 0.021 2.605% 1.903 2048 0.738 0.021 2.605% 1.954

SPA-PLS UVE-PLS

Tilia tuan Szyszyl. 60 0.839 0.011 1.668% 2.492 1249 0.825 0.011 1.668% 2.39

Acer mono Maxim 69 0.782 0.018 2.301% 2.142 800 0.745 0.018 2.031% 1.98

Chinese white poplar 60 0.775 0.017 2.228% 2.108 733 0.679 0.020 2.622% 1.765

Japanese elm 73 0.840 0.021 2.005% 2.5 1139 0.841 0.021 2.005% 2.508

Chinese white poplar 64 0.765 0.022 3.140% 2.063 410 0.679 0.026 3.710% 1.765

Dahurian larch 64 0.682 0.023 2.853% 1.773 418 0.729 0.021 2.605% 1.921

CARS-PLS IRIV-PLS

Tilia tuan Szyszyl. 992 0.828 0.011 1.668% 2.411 5 0.806 0.012 1.820% 2.27

Acer mono Maxim 62 0.777 0.017 1.918% 2.118 20 0.819 0.016 1.805% 2.351

Chinese white poplar 35 0.800 0.016 2.097% 2.236 10 0.779 0.021 2.753% 2.127

Japanese elm 47 0.874 0.018 1.719% 2.817 25 0.901 0.012 1.146% 3.178

Chinese white poplar 23 0.783 0.021 2.997% 2.147 16 0.755 0.022 3.140% 2.02

Dahurian larch 13 0.767 0.020 2.481% 2.072 15 0.800 0.018 2.232% 2.236
F
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FIGURE 8

The distributions of selected variables by the optimal method for each tree species. (A–F) are Tilia tuan Szyszyl., Acer mono Maxim, Chinese white
poplar (Jilin), Japanese elm, Chinese white poplar (Heilongjiang), and Dahurian larch, respectively.
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FIGURE 9

The optimization process of FOA-GRNN models for Chinese white poplar (Heilongjiang).
TABLE 3 The results of PSO-SVM models for prediction sets with different pretreatment.

Dataset Location Tree species Variables
Calibration model Prediction model

R2 RMSE RPD RSD R2 RMSE RPD RSD

Prediction set with raw
spectra

Jilin province

Tilia tuan
Szyszyl.

992 0.908 0.008 3.297 1.213% 0.785 0.012 2.157 1.875%

Acer mono
Maxim

20 0.815 0.016 2.325 1.805% 0.725 0.015 1.907 1.703%

Chinese white
poplar

35 0.767 0.017 2.072 2.228% 0.721 0.018 1.893 2.355%

Japanese elm 250 0.876 0.018 2.840 1.719% 0.815 0.022 2.325 2.082%

Heilongjiang
province

Chinese white
poplar

23 0.784 0.021 2.152 2.997% 0.738 0.018 1.954 2.637%

Dahurian larch 15 0.802 0.018 2.247 2.232% 0.733 0.017 1.935 2.130%

Prediction set with LWT de-
noising

Jilin province

Tilia tuan
Szyszyl.

992 0.915 0.008 3.430 1.213% 0.787 0.012 2.167 1.875%

Acer mono
Maxim

20 0.817 0.016 2.338 1.805% 0.727 0.015 1.914 1.703%

Chinese white
poplar

35 0.773 0.017 2.099 2.228% 0.734 0.018 1.939 2.355%

Japanese elm 250 0.889 0.017 3.002 1.623% 0.830 0.021 2.425 1.987%

Heilongjiang
province

Chinese white
poplar

23 0.784 0.021 2.152 2.997% 0.746 0.018 1.984 2.637%

Dahurian larch 15 0.811 0.018 2.300 2.232% 0.747 0.017 1.988 2.130%
F
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TABLE 4 Experimental values and coded levels of variable using Box–Behnken design.

Factor Levels

Variable

No. of cross-validation
(A)

Maximum generation
(B)

Population size
(C)

-1 5 50 20

0 10 75 40

1 15 100 60
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white poplar (Heilongjiang) (R2
p=0.752, RMSEP=0.018,

RPD=2.008, RSD=2.637%) when comparing with FOA-GRNN

model (R2
p=0.867,RMSEP=0.013, RPD=2.742, RSD=1.904%).

These results demonstrated that there is not a universal

chemometric method that works for all scenarios.
4 Discussions

Researchers pay more attention to spectral de-noising or feature

variable selection to reduce the influence of irrelevant or

interference information in the spectral analysis. A comparison of

various chemometric methods including spectral pre-processing,

feature variable selection, and the optimization of non-linear

calibration models in the wood density prediction among
Frontiers in Plant Science 12
different tree species and geographical origins simultaneously

were first analyzed using Vis-NIR spectroscopy in this study. The

results demonstrated that LWT outperform WT, MSC, SNV, and

raw spectra among these tree species for wood spectra optimization.

There are few studies on LWT and WT de-noising in NIR spectra

analysis. Abasi et al. (2019) employed WT to optimize Gala apple

Vis-NIR spectra in the determination of quality parameters. The R2

values were higher than 0.85 for soluble solids content, moisture

content, and pH. In the forestry field, WT (Daubechies-5, db5) and

LWT (db2) were used to optimize Populus davidiana and larch

spectra, respectively in our previous studies (Li et al., 2018a; Li et al.,

2018b). In this study, LWT with four wavelet functions including

Haar, sym3, db3, and bior1.3 were compared simultaneously

among various tree species from two locations. The results

demonstrated that there has differences in the optimal de-noising
FIGURE 10

Response surface plot for interactions between three variables on CVmse for PSO-SVM models of Dahurian larch.
D
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C

FIGURE 11

The scatter plots of predicted and measured values for RSM-PSO-SVM models. (A–F) are Tilia tuan Szyszyl., Acer mono Maxim, Chinese white poplar
(Jilin), Japanese elm, Chinese white poplar (Heilongjiang), and Dahurian larch, respectively.
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parameters of LWT among these tree species. Therefore, an

appropriate pre-processing technique should be selected before

building models.

As for feature variable selection. compared to full spectra de-

noised by LWT, CARS and IRIV achieved the best results, and the

spectral dimensionality was reduced by 51.56%, 99.02%, 98.29%,

98.78%, 98.88%, and 99.27% for Tilia tuan Szyszyl., Acer mono

Maxim, Chinese white poplar (Jilin), Japanese elm, Chinese white

poplar (Heilongjiang), and Dahurian larch, respectively. In terms of

non-linear models, RSM-PSO-SVM delivers the best performance

than corresponding FOA-GRNN models, except for Chinese white

poplar harvest from Heilongjiang province. In order to better

analyze the performance of these chemometric methods, two

traditional linear models, i.e., PLS and PCR, were employed to

build signal and combined models using raw spectra, respectively.

Signal model is a model that includes one tree species. And

combined model is a model that includes all tree species and

geographical locations simultaneously. The results of these two

kinds of models are shown in Table 5, respectively.

Comparison of the accuracy of PLS and PCR method based on

raw spectra (Table 5), the calibration set outperforms the cross-

validation set with a higher R2, RPD and smaller RMSE, RSD value,

regardless of signal and combined models. In addition, PLS model
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provides high accuracy on various wood density prediction than

that of PCR model. However, the performance of combined models

was worse than signal model, especially for PCR method.

Table 6, 7 show the prediction accuracy of signal models and

combined models, respectively. Similar to the results of calibration

set, the PLS method achieved a higher prediction accuracy than

PCR model. Additionally, the combined model delivers the worst

performance on prediction dataset. Compared to the optimal model

of RSM-PSO-SVM, the PLS approach is relatively bad except the

Chinese white poplar from Jilin province.
5 Conclusions

This study demonstrates the feasibility of using Vis-NIR spectra

combined with various chemometric methods including spectral

de-noising, feature variables selection, and the optimization of

modeling parameters, to predict wood density. LWT is excellent

for spectral de-noising when comparing traditional methods. CARS

and IRIV outperforms in the feature variables selection among these

tree species. In terms of linear and non-linear calibration models,

RSM-PSO-SVM delivers the best performance except for Chinese

white poplar. The optimal model of Chinese white poplar from Jilin
TABLE 5 The results of PLS and PCR signal and combined models for various tree species.

Models Indicators

Signal models Combined
models

Jilin province Heilongjiang province /

Tilia tuan
Szyszyl.

Acer mono
Maxim

Chinese white
poplar

Japanese
elm

Chinese white
poplar

Dahurian
larch /

PLS

R2
c 0.812 0.762 0.768 0.838 0.749 0.724 0.660

RMSEC 0.012 0.018 0.017 0.021 0.022 0.021 0.080

RPD 2.306 2.05 2.076 2.485 1.996 1.903 1.715

RSD 1.820% 2.031% 2.228% 2.005% 3.140% 2.605% 9.771%

R2
cv 0.799 0.722 0.685 0.825 0.715 0.690 0.561

RMSECV 0.012 0.020 0.020 0.022 0.024 0.023 0.091

RPD 2.23 1.897 1.782 2.39 1.873 1.796 1.509

RSD 1.820% 2.257% 2.622% 2.101% 3.425% 2.853% 11.115%

PCR

R2
c 0.785 0.751 0.752 0.836 0.725 0.703 0.546

RMSEC 0.013 0.018 0.018 0.021 0.023 0.022 0.092

RPD 2.157 2.004 2.008 2.469 1.907 1.835 1.484

RSD 1.972% 2.031% 2.360% 2.005% 3.282% 2.729% 11.237%

R2
cv 0.770 0.712 0.668 0.813 0.699 0.685 0.507

RMSECV 0.013 0.020 0.021 0.022 0.024 0.023 0.097

RPD 2.085 1.863 1.736 2.312 1.823 1.782 1.424

RSD 1.972% 2.257% 2.753% 2.101% 3.425% 2.853% 11.847%
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TABLE 7 The prediction results of combined models for each tree species.

Location Tree
species Indicators

Combined models with PLS Combined models with PCR

All tree
species Jilin Heilong

jiang
Chinese

white poplar
All tree
species Jilin Heilong

jiang
Chinese

white poplar

Jilin province

Tilia tuan
Szyszyl.

R2
p – – – –

RMSEP – – – –

RPD –

RSD –

Acer mono
Maxim

R2
p – – – –

RMSEP – – - –

RPD –

RSD –

Chinese
white poplar

R2
p – – 0.496 – – 0.445

RMSEP – – 0.159 – – 0.167

RPD – 1.409 1.342

RSD – 20.807% 21.854%

Japanese elm

R2
p – – – –

RMSEP – – – –

RPD –

RSD –

Heilongjiang
province

Chinese
white poplar

R2
p – 0.402 0.714 – 0.386 0.463

RMSEP – 0.165 0.114 – 0.167 0.156

RPD – 1.293 1.870 1.276 1.365

RSD – 24.170% 16.699% 24.463% 22.851%

Dahurian
larch

R2
p – – – –

RMSEP – – – –

RPD –

RSD –
F
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Blank indicates that no experiment is scheduled, “-” indicates that the prediction result is negative.
TABLE 6 The prediction results of signal models for each tree species.

Models Indicators

Jilin province Heilongjiang province

Tilia tuan
Szyszyl.

Acer mono
Maxim

Chinese white
poplar

Japanese
elm

Chinese white
poplar

Dahurian
larch

PLS

R2
p 0.771 0.522 0.758 0.855 0.797 0.714

RMSEP 0.107 0.144 0.110 0.076 0.096 0.114

RPD 2.090 1.446 2.033 2.626 2.219 1.870

RSD 16.722% 16.352% 14.395% 7.191% 14.062% 14.282%

PCR

R2
p 0.648 0.520 0.736 0.838 0.714 0.644

RMSEP 0.133 0.144 0.115 0.081 0.114 0.127

RPD 1.685 1.443 1.946 2.485 1.870 1.676

RSD 20.785% 16.352% 15.049% 7.664% 16.699% 15.911%
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and Heilongjiang province are PLS and FOA-GRNN model,

respectively. These results indicate that the geographical location

has an effect on the selection of chemometric methods in wood

density determination. Additionally, in order to overcome the

difference of the optimal model, model transfer will be used to

predict wood properties of different locations in future studies.
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