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Herbicide application is a critical component of modern horticulture. Misuse of

herbicides can result in damage to economically important plants. Currently, such

damagecan bedetectedonly at symptomatic stages by subjective visual inspection

of plants, which requires substantial biological expertise. In this study, we

investigated the potential of Raman spectroscopy (RS), a modern analytical

technique that allows sensing of plant health, for pre-symptomatic diagnostics of

herbicide stresses. Using roses as a model plant system, we investigated the extent

to which stresses caused by Roundup (Glyphosate) and Weed-B-Gon (2, 4-D,

Dicamba and Mecoprop-p (WBG), two of the most commonly used herbicides

world-wide, can be diagnosed at pre- and symptomatic stages. We found that

spectroscopicanalysisof rose leavesenables~90%accuratedetectionofRoundup-

and WBG-induced stresses one day after application of these herbicides on plants.

Our results also show that the accuracy of diagnostics of both herbicides at seven

days reaches 100%. Furthermore, we show that RS enables highly accurate

differentiation between the stresses induced by Roundup- and WBG. We infer

that this sensitivityandspecificityarises fromthedifferences inbiochemical changes

in plants that are induced by both herbicides. These findings suggest that RS can be

used for a non-destructive surveillance of plant health to detect and identify

herbicide-induced stresses in plants.
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Highlights
• We report an innovative laser-based approach for non-invasive diagnostics of

herbicide damage in plants.

• Our Raman-based technique enables ~90% accurate detection of Roundup- and

WBG-induced stresses one day after application of these herbicides on plants.

• Our results also show that the accuracy of diagnostics of both herbicides at seven

days reaches 100%.
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Introduction

Application of herbicides is a cornerstone of modern

horticulture. However, many ornamental plant species are

sensitive to herbicides and are commonly damaged from non-

target exposure by mechanisms such as drift (Henry et al., 2004;

Mehdizadeh et al., 2021). Moreover, herbicide-induced damages in

some plant species, such as roses (Rosa spp.), have visual similarities

with the symptoms induced by biotic stresses. For instance,

chlorosis of leaves and shortened internodes caused by herbicide

application on roses is often misdiagnosed as Rose Rosette Disease

(RRD), a devastating disease that affects plants in Europe and the

U.S (Farber et al., 2019a). Substantial biological and horticultural

expertise is required to detect and identify symptoms of herbicide

exposure; such expertise typically requires years of experience and

training. Therefore, it becomes very important to develop a

confirmatory analytical method that can be used to detect

symptoms of herbicide exposure, as well as disentangle biotic and

abiotic stresses in ornamental plants (Tataridas et al., 2022).

Roundup and WBG are some of the most used herbicides

worldwide. In the US alone, between 1974 and 2014, the use of

herbicides with glyphosate as their active ingredient, such as

Roundup, increased almost 200-fold, from 635,000 kg to 125

billion kg (Benbrook, 2016). Glyphosate acts by inhibiting 5-

enolpyruvylshikimate-3-phosphate (EPSP) synthase, a key enzyme

in the shikimate pathway, which is responsible for synthesis of

aromatic amino acids in plants (Sherwani et al., 2015). The effect of

glyphosate is primarily evident at the sites of new growth (root and

shoot meristem). Symptoms of glyphosate exposure, such as

chlorosis and necrosis of tip tissues, can be observed across the

entire plant at about 5 to 10 days after the herbicide application.

Because products of the shikimate pathway are closely associated

with a host defense, glyphosate also increases plant susceptibility to

pathogens (Hammerschmidt, 2018)

While glyphosate has generic targeting, WBG is highly specific

for dicots. WBG is a formulation of three different synthetic auxins:

2,4-dichlorophenoxyacetic acid (2,4-D), mercoprop-p acid

(MCPP), and dicamba acid. Auxins are a family of plant

hormones which are associated with regulating plant growth

(Teale et al., 2006). The mechanisms of auxinic herbicides are not

well understood (Kelley and Riechers, 2007; Mithila et al., 2011).

Previous studies of these herbicides’ modes of action found that

they trigger buildup of abscisic acid and ethylene, which enables

accumulation of hydrogen peroxide, and subsequently, reactive

oxygen species (ROS) (Romero-Puertas et al . , 2004).

Consequently, ROS are closely associated with the activity of

WBG in plants (Gleason et al., 2011). A growing body of

evidence suggests that several methods could be used detect

herbicide stresses in plants, including hyperspectral imaging

(Henry et al., 2017; Lu et al., 2020; Yan et al., 2021).

Our group previously showed that Raman spectroscopy (RS), a

non-destructive, non-invasive analytical method that reveals the

chemical structure of analyzed samples, can be used to detect and

identify biotic and abiotic stresses in plants (Mandrile et al., 2019;

Farber et al., 2020c; Gupta et al., 2020; Farber et al., 2021; Payne and

Kurouski, 2021). The efficacy of this method has been demonstrated
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for the rapid detection of: viral diseases in roses, tomatoes, wheat,

and ornamental shrubs; fungal diseases in corn, wheat, and

sorghum; and bacterial diseases of orange (Yeturu et al., 2016;

Egging et al., 2018; Farber and Kurouski, 2018; Farber et al., 2019a;

Mandrile et al., 2019; Sanchez et al., 2019b; Farber et al., 2020a).

Additionally, our group has demonstrated RS-based detection of

insect larva developing within beans (Sanchez et al., 2019a) and the

detection of zebra chip disease in potato (Farber et al., 2021). It was

also reported that RS could be used for pre-symptomatic

diagnostics of nutritional deficiencies in rise caused by the lack of

nitrogen, phosphorus, and potassium (Sanchez et al., 2020).

Expanding upon this, we investigated the accuracy of RS-based

confirmatory diagnostics of herbicide stresses in the ‘Pink Double

Knock Out©’ roses that are caused by Roundup and WBG

herbicides. Our findings suggest that RS can be used for a fast

and accurate diagnostics of herbicide stresses in plants prior to the

symptom development. Timely detection of such stresses can be

used for timely elimination of the herbicides or adjustment of

their concentrations.
Materials and methods

Plants

Twenty-one plants of the rose cultivar ‘Pink Double Knock

Out©’ were used in this experiment. Plants were received as small

tissue culture plants and were acclimated indoors for one month.

After plants were actively growing, they were placed in a greenhouse

to continue growing for 2 months before the experiment. The

substrate used in the greenhouse was Jolly Gardener® Pro-Line C/

20, which consisted of 80% Canadian Sphagnum peat moss and

20% coarse perlite. We used neither fertilization nor pesticides

before or during the experiments. The temperatures in the

greenhouse were approximately 29°C during the day (6 am to 6

pm) and 21°C night (6 pm to 6 am). All plants involved in the

experiment were screened for rose rosette virus (RRV), as well as for

other rose viruses utilizing National Clean Plant Network-Rose

screening protocols. All plants were free of the targeted pathogens

(Farber et al., 2019a). Seven plants of uniform size and health were

selected as replicates for each of the herbicide treatments.
Herbicide treatments

The herbicides used for this experiment were Roundup and

WBG; reverse osmosis (RO) water was used as the negative control

application. The two herbicides were chosen due to the prevalence

of those brands being used on lawns and in landscapes. To simulate

herbicide drift damage, all herbicides were diluted to 1/10th of the

Ready To Spray (RTS) amounts. This concentration was chosen to

model appearance of symptoms that visually resembled RRD since

such herbicide-induced stresses are often misdiagnosed as RRD in

roses. Herbicide calculations were done based on a six-inch pot size.

Roundup and WBG were diluted from the RTS at a rate of 1-part

spray to 9 parts water. Application was performed by soaking all
frontiersin.org
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leaves to the point upon which solution droplets appeared on the

plant surfaces.
Raman spectroscopy

For each measurement, thirty leaflets were sampled randomly

from each group of plants with an average of four leaves per plant.

Leaflets were collected from both new, fully emerged leaves and

mature leaves to represent the entire plant canopy. We avoided

collection of leaflets that had any mechanical damage, signs of

wilting, or leaves exhibiting visual signs of herbicide damage to

demonstrate robustness of this sensing approach. All leaflets looked

healthy without any changes in coloration or chlorosis symptoms.

Sampling time intervals were: 1, 7, 14, and 30 day post-treatment.

The experiment was repeated twice.

Raman spectra were acquired from leaves using an Agilent

Resolve spectrometer equipped with an 830 nm source with a

spectral resolution of 15 cm-1. Laser beam size was around 2 mm.

For each measurement, the spectrometer was positioned next to the

leaf surface. On average 2-3 spectra were collected form one leaf. All

scans were taken in the ‘surface’ mode with a 1-second integration

time and 490 mW of power. We found that as the experiment

proceeded, the overall intensity of spectra acquired from herbicide-

treated plants was much lower than that of the control plants. To

address this, we normalized our spectra to the 1440 cm-1 peak. All

spectral interpretation is based on these normalized spectra. All

acquired spectra were baselined by the Agilent Resolve

spectrometer. For the data analysis, Raman spectra were extracted

using Agilent Resolve software and treated using MATLAB equipped

with PLS-Toolbox ((Eigenvector Research Inc.). Reference Raman

spectra of round-up and WBG are shown in the Figure S1.
Statistical analysis

After spectra were imported into MATLAB and assigned a class

based on their health or herbicide status, Partial Least Squares

Discriminant Analysis (PLS-DA) was conducted to differentiate the

spectra based on spectral changes associated with their

experimenter-assigned classes. Spectra were first split into

calibration (66%) and validation (34%) sets using the Kennard-

Stone method before building all models, unless otherwise noted

(Kennard and Stone, 1969). Spectra were normalized to a total

spectral area of 1 then mean centered. All tables reporting PLS-DA

results are for the validation of these models. All datasets used for

model calibration and validation in this study are summarized in

Tables S1–S3.

Results

Description of visual symptoms

At day 7 post-treatment, we observed proliferation of small

shoots on Glyphosate-treated plants (Figure 1) (Karlik and Flint).

These plants began to exhibit leaf chlorosis at day 30 post-treatment.

Roses exposed to WBG produced tiny leaves with abnormal margins
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at day 7 post-treatment (Figure 2). At day 30, WBG-exposed plants,

had leaves of normal size, however, leaf margins remained abnormal.

It should be noted that roses exposed to WBG did not change leaf

color throughout the experiment.

Herbicide treatment

At day 1 post-treatment, differences in the spectra of control

and herbicide-treated plants were observed primarily in the 1610 to

1720 cm-1 region, Figure 3 and Table 1. At this timepoint, the

control spectra showed greater intensity in 1610 cm-1 and 1720 cm-1

peaks. The herbicide-treated plant spectra, conversely, had greater

intensity than the control at 1669 cm-1 peak.

At day 7 post-treatment, the spectra of plants treated with each

herbicide began to diverge. In the spectra of Roundup-treated

plants, numerous changes throughout the spectrum were

observed. Specifically, a new peak appeared at 476 cm-1.

Additionally, small variations in intensity relative to the control

spectrum were observed from 747 to 1526 cm-1 region. In the 1610

to 1720 cm-1 region, the spectra collected from Roundup-treated

plants showed greater intensity than the spectra collected from both

the control and WBG plants, whereas the spectra collected from

WBG-treated plants exhibited the greatest intensity at 1669 cm-1.

These same patterns were observed at day 14 post-treatment.

At day 30 post-treatment, while the general intensities

throughout the spectra showed little relative changes, more

alterations were observed in 1610 to 1720 cm-1 region.

Specifically, all three treatments, Roundup, WBG and control,

showed the same intensity of 1720 cm-1 peak. Additionally, the

intensities of Roundup, WBG and control spectra changed relative

to each other at the 1610 cm-1 peak. While Roundup-treated spectra

continued to show the highest intensity at this band, the WBG and

control spectra showed more similar intensities. Finally, the average

quality of the Roundup spectra deteriorated to the point where the

476 cm-1 peak, previously observed at day 7 and day 14 post-

treatment, was no longer distinguishable from the noise.

We then sought to determine whether Raman spectra acquired

from control and herbicide-treated plants could be distinguished

using multivariate methods. First, for the control and Roundup

spectra, we built one PLS-DA model for each timepoint to

distinguish these two categories from each other, Table 2. We

found that these models enabled accurate identification of both

WBG and Roundup-stresses (Chicco, 2017). We also found that

PLS-DA enabled 92% accurate identification of control plants. These

results demonstrated the RS could be used for the rapid, non-invasive

detection of Roundup-associated changes to rose plants.

Next, we repeated this procedure to differentiate control and

WBG spectra. It was found that developed PLS-DA models did not

perform as well as the models discussed above. We obtained on

average76% accuracy in differentiation between control and WBG

spectra, Table 3. Furthermore, day 14 model performed very poorly,

showing on average 59% accurate classification. However, models at

day 7 and day 30 post-treatment performed significantly better

showing 82% and 86% accuracy, respectively. These findings

showed that RS could be used for the detection of WBG-

associated stress in roses in a time-dependent manner.
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One may question the need for Raman diagnostics when it is not

necessary to identify the specific herbicide that caused the damage. To

answer this question, we combined spectra collected form WBG and

Roundup treated plants at different stages of the plant vegetation and

question the accuracy with which such spectra can be differentiated

from the spectra collected from control plants at the same vegetation

state, Table 4. We found that overall, such model demonstrates less

accurate prediction on the healthy status of plants (control) compared
Frontiers in Plant Science 04
to the herbicide damage. For instance, average accuracy of control

plants ranges ~78%, whereas the accuracy of herbicide stress

identification is within 85%, on average. We infer that the combined

model (Table 4) provides lower accuracies due to different mechanisms

of action of WBG and Roundup on plants. Although reported by this

model accuracies (78% for control and 85% for the herbicide stress) are

likely to be satisfactory for farmers, our data show that if higher

accuracy is expected, herbicide-specific models should be used.
FIGURE 1

Herbicide induced symptoms on Roundup treated plants observed 21 days post treatment. This included proliferated shoots at nodes and chlorosis
on new and old growth. Symptomatic damaged plant parts will not recover. Additionally, some necrosis was observed on new growth up to 30 days
after treatment. Plants resumed normal appearing growth patterns about 30 days after the initial application (Shires, 2020).
FIGURE 2

Typical symptoms caused by Weed-B-Gon include small, strapped leaves with abnormal leaf margins. Symptoms are visible, on the new growth,
starting seven days post application. Plants appeared to resume normal new growth 30 days after treatment (Shires, 2020).
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Discussion

In plants, glyphosate concentrates in the meristems where it

disrupts the shikimic pathway the prohibition of EPSP synthase

(Sherwani et al., 2015). This decelerates plant growth and lowers

protein expression. Roundup application also facilitates plant

infection by soil-borne pathogens.

We found that spectra acquired from glyphosate-treated plants

exhibited an increase in the intensity of ~1610 cm-1 peak at day 7,

14 and 30 post-treatment. We previously demonstrated that an

increase in intensity of this peak was associated with plant infection

by bacterial pathogens (Farber et al., 2019a; Sanchez et al., 2019b).

Upon such infection, plants enhance production of p-coumaric acid

that inhibits bacterial growth (Dou et al., 2021). This molecule is

also used for lignin biosynthesis. Thus, producing p-coumaric acid

species enhance lignification to limit bacterial propagation thought

the plant. The observed in our current study increase in the

intensity of ~1610 cm-1 peak suggest that glyphosate facilitated

plant infection by pathogens present in soli (Hammerschmidt,

2018). This resulted in an increase in the synthesis of p-coumaric

acid or similar aromatic compounds. Further experiments including

mass spectrometry would be required to determine the exact

biological origin of observed spectroscopic changes.

We also found that after day 1 post-treatment, the intensity of the

1669 cm-1 peak in the spectra acquired form glyphosate-treated plants

was lower compared to the intensity of this peak in the spectra
Frontiers in Plant Science 05
acquired from control or WBG-treated plants. This peak originates

from amide I, a vibration of the backbone of proteins (Kurouski et al.,

2015). A decrease in intensity of the 1669 cm-1 peak suggests that the

total concentration of proteins is reduced in glyphosate-treated roses.

These results are in a good agreement with the discussed above

glyphosate-induced suppression of protein expression in plants.

Next, we found an increase in the intensity of 1720 cm-1 peak in

the spectra collected from glyphosate-treated plants compared to the

spectra acquired from control plants. This peak can be assigned to

compounds with carboxyl groups, such as salicylic acid (Farber et al.,

2019b; Farber et al., 2020b). This important signaling molecule is a

product of the shikimate pathway (Gao et al., 2015). Thus, out results

point on the accumulation of salicylic acid in plant leaves.

Unlike glyphosate, 2,4-D causes uncontrolled cellular division

in plants that are exposed to this herbicide (Teale et al., 2006). This

uncontrolled division is caused by cell wall plasticity, biosynthesis of

proteins, and production of ethylene. MCPP is similar to 2,4-D,

however, it targets auxin pathways causing elongated stems (Kelley

and Riechers, 2007; Mithila et al., 2011).

We found that in the spectra collected WBG-treated plants, the

intensity of the 1610 cm-1 peak was consistently lower compared to

the intensity of this peak in the spectra acquired from control plants.

These findings suggested that WBG lowered the concentration of p-

coumaric acid or similar aromatic compounds in roses. Since p-

coumaric acid is used in lignin biosynthesis (Amarowicz and Pegg,

2019), one can expect that uncontrolled cellular division in plants
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FIGURE 3

Raman spectra acquired from rose plants treated with RO water (control), Roundup, or Weed-B-Gon at (A) one day; (B) seven days; (C) 14 days; (D)
30 days after application. Inset: The spectral region 1580 cm-1 to 1750 cm-1 zoomed in for clarity. All spectra are normalized to the 1440 cm-1 peak.
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should drastically lower the concentration of such molecular analytes

in plant tissues.

We also observed an increase in the intensity of 1669 cm-1 peak

in the spectra acquired from WBG-treated plants compared to the

intensity of this peak in the spectra acquired from control plants. As

previously described, one effect for auxinic herbicides is

dysregulation of auxin-regulated genes from said regulation,

leading to an increase of gene products. Examples of these auxin-

regulated genes include Aux/IAA family genes, GH3 proteins, and

small auxin up RNAs (SAURs), which themselves are thought to
Frontiers in Plant Science 06
code other short-lived small proteins (Kelley and Riechers, 2007).

Increased intensity at this peak in the WBG spectra suggests that

plants express more proteins, potentially due to WBG-associated

gene dysregulation.

Finally, we found that at day 7, 14 and 30 post-treatments, the

intensity of the 1720 cm-1 peak was weaker in WBG spectra

compared to control spectra. These findings suggest that

carboxyl-containing compounds could be metabolized by plants

Application of this Raman spectroscopy-based sensing

approach could be limited due to the high capital cost of the
TABLE 1 Vibrational peak assignments for the Raman spectra of Rose leaves.

Peak (cm-

1)
Vibrational mode Assignment

476 Glycosidic ring Carbohydrates (Kizil et al., 2002; Almeida et al., 2010)

520 n(C-O-C) glycosidic cellulose (Edwards et al., 1997)

740-747 g(C–O-H) of COOH pectin (Synytsya et al., 2003)

905-918 n(C-O-C) in plane, symmetric cellulose, lignin (Edwards et al., 1997)

1000 in-plane CH3 rocking of polyene carotenoids (Schulz et al., 2005)

1048 n(C-O)+n(C-C)+d(C-O-H) cellulose, lignin (Edwards et al., 1997)

1118 Sym n(C-O-C), C-O-H bending cellulose (Edwards et al., 1997)

1157 C-C Stretching; v(C-O-C), v(C-C) in glycosidic linkages, asymmetric ring
breathing

carotenoids (Schulz et al., 2005), carbohydrates (Wiercigroch et al.,
2017)

1186 n(C-O-H) Next to aromatic ring+s(CH) lignin (Mary et al., 2012; Agarwal, 2014)

1216 d(C-C-H) aliphatics (Yu et al., 2007), xylan (Agarwal, 2014)

1264 Guaiacyl ring breathing, C-O stretching (aromatic) lignin (Cao et al., 2006)

1287 d(C-C-H) aliphatics (Yu et al., 2007)

1327 dCH2 Bending aliphatics, cellulose, lignin (Edwards et al., 1997)

1354 d(CH2)+d(CH3) aliphatics (Yu et al., 2007)

1386 dCH2 Bending aliphatics (Yu et al., 2007)

1441 d(CH2)+d(CH3) aliphatics (Yu et al., 2007)

1488 d(CH2)+d(CH3) aliphatics (Yu et al., 2007)

1526 -C=C- (in plane) carotenoids (Adar, 2017; Devitt et al., 2018)

1610 n(C-C) Aromatic ring+s(CH) lignin (Agarwal, 2006; Kang et al., 2016)

1669 C=O Stretching, amide I proteins (b-sheet) (Devitt et al., 2018)

1720 C=O Stretching Esters, aldehydes, carboxylic acids and ketones (Colthup et al., 1990)
TABLE 2 Summary of model validation for the control vs. Roundup differentiation.

Days post-treatment Validation Sample
Size

True positive rate of control prediction True positive rate of Roundup prediction

Control Roundup

Day 1 35 38 85% 92%

Day 14 53 20 100% 100%

Day 14 24 53 70% 100%

Day 30 44 40 100% 97%
frontiersin.org

https://doi.org/10.3389/fpls.2023.1121012
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Farber et al. 10.3389/fpls.2023.1121012
spectrometers ($30,000 to $70,000). However, operational costs are

very low. Therefore, if most cases, such testing can be implemented

as the service provided to a farmer.

Finally, it is important to determine variability of the observed

vibrational peaks in the spectra collected from different cultivars of

roses. Such variabilities originate from differences in biochemical

profiles of cultivars. Consequently, if biochemical changes among

cultivars are greater that the magnitude of changes in plant

biochemistry induced by herbicides, individual spectroscopic

libraries will be required for each cultivar. At the same time, if

the magnitude of changes in plant biochemistry induced by

herbicides is greater than differences in biochemical profiles of

different cultivars, the discussed above results can be used for all

rose cultivars. Additional experiments are needed to disentangle

these two possibilities. This work is currently in progress in

our laboratory.
Conclusions

Our results show that RS can be used to detect plant exposure to

herbicides with high accuracy. We also found that RS could be used

to differentiate between WBG and Roundup. We infer that this

sensitivity arises from drastically different mechanisms of action of

these two herbicides. These findings demonstrate that RS can be a

powerful tool for detecting herbicide misuse on ornamental plant.
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TABLE 3 Summary of model validation for the control vs. WBG differentiation.

Days post-treatment Validation Sample Size True positive rate of control prediction True positive rate of WBG prediction

Control WBG

Day 1 46 30 84% 70%

Day 14 40 33 72% 93%

Day 14 48 26 45% 73%

Day 30 38 38 84% 89%
TABLE 4 Summary of model validation for control vs herbicides models.

Days post-treat-
ment

Validation Sample
Size

True positive rate of control prediction True positive rate of herbicide prediction

Control Herbicides

Day 1 109 49 73% 71%

Day 14 113 43 78% 86%

Day 14 75 86 76% 86%

Day 30 58 103 82% 89%
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