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Exploring the potential of
mapped soil properties,
rhizobium inoculation, and
phosphorus supplementation for
predicting soybean yield in the
savanna areas of Nigeria
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Rapid and accurate soybean yield prediction at an on-farm scale is important for

ensuring sustainable yield increases and contributing to food security

maintenance in Nigeria. We used multiple approaches to assess the benefits of

rhizobium (Rh) inoculation and phosphorus (P) fertilization on soybean yield

increase and profitability from large-scale conducted trials in the savanna areas

of Nigeria [i.e., the Sudan Savanna (SS), Northern Guinea Savanna (NGS), and

Southern Guinea Savanna (SGS)]. Soybean yield results from the established trials

managed by farmers with four treatments (i.e., the control without inoculation

and P fertilizer, Rh inoculation, P fertilizer, and Rh + P combination treatments)

were predicted using mapped soil properties and weather variables in ensemble

machine-learning techniques, specifically the conditional inference regression

random forest (RF) model. Using the IMPACT model, scenario analyses were

employed to simulate long-term adoption impacts on national soybean trade

and currency. Our study found that yields of the Rh + P combination were

consistently higher than the control in the three agroecological zones. Average

yield increases were 128%, 111%, and 162% higher in the Rh + P combination

compared to the control treatment in the SS, NGS, and SGS agroecological

zones, respectively. The NGS agroecological zone showed a higher yield than SS

and SGS. The highest training coefficient of determination (R2 = 0.75) for yield

prediction was from the NGS dataset, and the lowest coefficient (R2 = 0.46) was

from the SS samples. The results from the IMPACT model showed a reduction of
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10% and 22% for the low (35% adoption scenario) and high (75% adoption

scenario) soybean imports from 2029 in Nigeria, respectively. A significant

reduction in soybean imports is feasible if the Rh + P inputs are large-scaled

implemented at the on-farm field and massively adopted by farmers in Nigeria.
KEYWORDS

bradyrhizobium inoculation, foresight IMPACT model, Nigeria savanna agroecologies,
participatory on-farm experiment, random forest model
1 Introduction

Soybean [Glycine max (L.) Merr.] is an important component in

smallholder cropping systems due to its rich source of edible

proteins, amino acids, and micronutrients, which are

indispensable to addressing food insecurity and quality problems

(Chigeza et al., 2019; Siamabele, 2021; Alabi et al., 2022). In Africa,

soybeans are grown over more than 2.5 million hectares, and

Nigeria is the second-largest producer after South Africa

(FAOSTAT, 2022). Its cultivation confers several environmental

benefits, such as biological nitrogen fixation (BNF) that converts

atmospheric nitrogen gas (N2) into soil nitrogen (N) for plant

uptake (Thilakarathna and Raizada, 2018; Herridge et al., 2022;

Ladha et al., 2022). This process contributes to alleviating N

deficiencies and improving soil health, soil fertility, and crop

productivity (Grönemeyer and Reinhold-Hurek, 2018). In Africa,

the promotion of BNF can significantly increase soybean yield,

where it is the lowest (only 1.2 t ha−1) as compared to the world

average (2.8 t ha−1), the Americas (3.2 t ha−1), Europe (2.0 t ha−1),

and Asia (1.4 t ha−1) (FAOSTAT, 2022).

Seed inoculation with Bradyrhizobium japonicum elite strain is

a proven strategy to improve soybean yield (Hungria et al., 2017).

However, higher biological N fixation and yield response are

reported when the legume plants are fertilized with a moderate

phosphorus (P) rate, particularly in many soils and climatic

conditions in Africa where available P in the soil is low (Jemo

et al., 2010). The use of an appropriate strain of Rh inoculant and P

fertilization practices to improve BNF legume production has been

the subject of numerous studies in Sub-Saharan Africa (Ronner

et al., 2016; Ulzen et al., 2018; van Heerwaarden et al., 2018; Buenor

et al., 2022). Those studies have reported yield increases ranging

from 452 to 815 kg ha−1 and a net economic benefit of about 400

USD ha−1 through the combined application of Rh inoculants and P

fertilizer. Despite the above-mentioned advantages from the

combined application of Rh inoculants and P supplementation to

soybeans, there are obstacles to achieving higher yields due to the

divergent impacts of many abiotic and biotic factors like drought,

nutrient availability, and crop genotypes (Alves et al., 2003; Jemo

et al., 2006; Ulzen et al., 2018; Khaki et al., 2020).

In Africa, the import of soybean products has witnessed an

exponential increase, with more than 14 million USD spent on

soybean imports in 2020 alone for Nigeria (FAOSTAT, 2022). As a

consequence, the country is highly dependent on international
02
soybean trade, which places pressure on household resources and

negatively impacts food security and nutrition. Therefore, it is

imperative to increase the yield of the crop per hectare of land to

meet national and regional food demands with minimal

environmental damage (Helfenstein et al., 2020). Yield prediction

is complex, but accurate prediction provides timely import and

export decisions to policymakers and provides year-to-year

management and financial decisions to farmers (Smidt et al.,

2016; Khaki and Wang, 2019). Yield prediction of crops,

including soybeans, has been the subject of studies, but the

prediction results, in general, are often challenging due to the

interactions among numerous complex factors such as crop

genetics, weather, soil input and crop management, and socio-

economic conditions (Smidt et al., 2016; Khaki et al., 2020; Alabi

et al., 2022; Bebeley et al., 2022). When using soil properties to

predict soybean yield, soil available P, organic matter, soil available

water supply in the upper 100 cm, and soil K were the major yield

determinants (Smidt et al., 2016). In sub-Saharan Africa, using

multispectral high-resolution unmanned aerial vehicles, Alabi et al.

(2022) estimated soybean grain yield in on-station trials, focusing

on varietal evaluation approaches and rapid high throughput

phenotypic workflows. Another recent modeling study evaluated

the CROPGRO−soybean model for assessing optimum sowing

windows of soybean in the Nigeria Savannas and found that

sowing dates between 15 June and 5 July accurately predicted the

yields of genotypes TGX1951−3F and TGX1835−10E (Bebeley

et al., 2022). However, limited studies have accounted for

integrated soil properties, weather, and crop management

practices for soybean yield prediction across Nigerian

agroecology. Public availability of prediction datasets, the

associated high costs, time consumption for analyses, and the

sample size curtail acute prediction in such studies (Hengl et al.,

2021; Wang et al., 2022). Thanks to a recent Soil Information

System for Africa (iSDAsoil) mapped at 30 m resolution that is now

making it possible to integrate them into models for predictions of

African crops. The iSDAsoil platform provides detailed pan-african

soil macro and mincronutrients maps at fine spatial resolutions

(Hengl et al., 2021). However, for crops like soybeans, an important

food security crop that has rapidly expanded in Africa, yield

prediction is yet to be implemented.

Ensemble learning, which is a combination of several machine

learning models, has made it feasible to combine several factors for

predicting yields with robust results. Various techniques of
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ensemble learning, such as regression, decision trees, association

rule mining, artificial neural networks, and random forest (RF)

models, provide results by combining several base models and

datasets. Multivariate regression and random forest machine

learning approaches have been recently applied to crop yield

prediction (Khaki and Wang, 2019; Khaki et al., 2020). A salient

feature of machine learning models is the holistic assessment of the

input variables, which are often non-linear and complex functions

of the output variable, such as crop yield (Khaki and Wang, 2019;

Khaki et al., 2020). Machine learning techniques such as RF

regression have been previously used to quantify the predictors of

importance to outputs and identify the optimal input ranges as an

entry point for closing the yield gap sustainably (Breiman, 2001;

Devkota et al., 2021).

Furthermore, global food security is challenged by rapid

changes in population, income, and climate change. Achieving

and maintaining these threats and designing possible solutions

requires a robust multidisciplinary approach (Robinson et al.,

2015; Islam et al., 2016). The International Model for Policy of

Agricultural Commodities Trade (IMPACT) model was developed

by the International Food Policy Research Institute (IFPRI) links

economic, water, and crop modules to simulate domestic and

international agricultural markets and support needs under

changing biophysical and socio-economic conditions and

provides in-depth analysis and decision-making support to

policymakers (Mason-D’Croz et al., 2016).

The adoption of Rh + P fertilizer technology can sustainably

increase soybean yield per hectare at the national and regional

scales, aid in reducing dependency on the international market for

soybean products and contribute to food security maintenance.

Therefore, the objectives of the present study were to: (a) examine

the soybean yield variation as affected by Rh + P application across

three agroecological zones of northern Nigeria; (b) predict soybean

yield change using digitalized soil properties data and machine

learning techniques; and (c) explore the scenarios of adoption of the
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combination Rh + P impacts on soybeans, reducing imports

by 2050.
2 Materials and methods

2.1 Experimental site

On-farm demonstration trials were conducted for two years

(2012–2013) in three agroecological zones of northern Nigeria (9°

05’ to 11° 54’ N and from 6° 38’ to 8° 17’ E), particularly covering

the Sudan Savanna (SS), northern Guinea Savanna (NGS), and

southern Guinea Savanna (SGS) regions (Figure 1). Long-term

rainfall ranges from 600 to 1,000 mm (mean of 744.5 mm) in the

SS, from 1,000 to 1,300 mm (mean of 1,179 mm) in the NGS, and

from 1,100 to 1,400 mm (mean of 1,270 m) in the SGS (Ishaku and

Majid, 2010; Umar and Bako, 2019). The extracted cumulative

precipitation, average minimum, and maximum temperature are

reported in Table 1.
2.2 Experimental design, treatments, and
crop management practices

A total of 350 on-farm demonstration experiments were

conducted across three agroecological zones in Nigeria. Those on-

farm experiments were conducted using a randomized complete

block design (RCBD), considering each farmer’s field as a replicate.

Each plot measured 6 × 4 m2, and 350 experimental fields were

established in the three agroecological zones. The seeds of a soybean

variety were hand-drilled at 2 cm depth at 0.75 m between rows and

0.05 m within rows, recovered with soil, and thinned to 5 cm

distance between plants after 15 days to maintain a uniform

population density of 266,667 plants per hectare. Four treatments

(Trt) were evaluated: Trt 1: Control (farmer practice) without
D

A B

C

FIGURE 1

Map of Africa (A) and the different agroecological zones in Nigeria (B), on-farm demonstrations areas (C), and different field operations (D) field
Rhizobia + P fertilizer combination and non-inoculated plots.
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inoculation and no P application (non-treated); Trt 2: P-fertilizer

application at 20 kg P ha−1 (P) in the form of triple superphosphate

(TSP) (Ronner et al., 2016); Trt 3: Rh inoculation at 5 g kg−1 seed;

and Trt 4: Combined application of Rh and P. Soybean seeds were

treated with a commercial Rh inoculant (legume-fix) containing

1010 bacteria cells of B. japonicum strain 532c per gram of solid

before sowing. The Rh inoculant was coated onto the seeds with

gum arabic as a sticker and air-dried for 30 min under shade before

sowing. The P fertilizer was applied by hand-broadcast within rows

at sowing. The trained extensionists and farmers managed the

experimental plots subsequently. Weed management was carried

out through regular hand weeding every 30 days at intervals in

consultation with the extensionist. Farmer groups and rural

community members regularly visited the experimental plots

during field days organized at the vegetative growth stage to

demonstrate the treatment differences with the support of Village

Promoter Agents (VPAs).
2.3 Pre-campaign training of village
promoter agents and farmers groups
for on-farm experimentation

Village promoter agents (VPAs) were recruited by the area

manager staff of the Notore Limited group in Nigeria to monitor the

trials. The VPAs were local farmers based in the villages with

previous working experience in monitoring demonstration trials,

good communication skills in Hausa local language with farmers,

and an interest in participatory technology dissemination to rural

farmers. Notore Limited is an established private sector company

based in Nigeria with a recruited area manager who daily supervises

the work of VPAs in the deployed areas. Each VPA received

adequate training at the early stages before the on-farm

demonstration establishment of trials regarding the handling of
Frontiers in Plant Science 04
rhizobial inoculants, coating seeds, and P applications in the

respective areas. Twenty-five (25) VPAs were trained for handling

rhizobial inoculants, P fertilizer applications, and general

monitoring of the trials. Collaborative farmer groups and

community contact persons for participatory research were

registered and trained. Identified fields to establish the

demonstration trials were delimited, and the geographical

coordinates of each field were recorded (Figure 1). Thereafter,

farmer groups were subsequently trained to handle rhizobium

inoculant for seed coating techniques in the respective locations,

ensuring limited risks of cross-contamination. The sowing order

was control, P treated, Rh inoculated, and Rh + P fertilizer plots,

respectively. Farmers’ groups and VPA regularly visited the

demonstration plots at various growth stages, from sowing

to harvest.
2.4 Soybean varieties and
rhizobium inoculant

Three improved soybean varieties of different maturity groups

developed by the International Institute of Tropical Agriculture

(IITA) in Nigeria and released by the Nigeria National Research

System (https://www.seedportal.org.ng) were used for the trials. The

varieties were derivatives of a tropical G. max (TGx) series of

cultivars bred for their promiscuous nodulation in a wide range of

environments. The soybean varieties TGx 1987-62F (reg.: NGGM

10-19) and TGx 1987-10F (reg. NGGM 10-18) were released in

2010 and are resistant to Cercospora leaf spot and bacteria pustules.

The TGx 1987-62F variety is a medium maturity group (90–110

days to maturity) and was used in demonstration plots in NGS

agroecology. This variety had an average grain yield of 2.1 t ha−1 in

on-station rainfed trials in Nigeria (https://www.seedportal.org.ng).

The soybean variety TGx 1987-10F is also highly resistant to
TABLE 1 Minimal (min), median, and maximum (max) of cumulative monthly precipitation (mm), average of minimal and maximal temperature, and
covered administrative local governments of studies in the Sudan, Northern Guinea, and Southern Guinea Savannas of Nigeria recorded for 2012 and
2013 growing seasons.

Agroecological
zones

Cumulative
annual pre-
cipitation
(mm)

Average
minimum

temperature
(°C)1

Average
maximum

temperature
(°C)

Covered administrative local governments

2012 2013 2012 2013 2012 2013

Sudan Savanna

Min 320.2 358.6 16.6 16.8 35.2 35.6 DANJA, GEZAWA, GWARZO, KARA, KARAYE, KURA, RANO,
SOBA, and UNGOGO

Median 390.3 413.6 18.0 19.5 37.9 37.5

Max 420.0 580.1 19.0 20.4 39.1 39.1

Northern Guinea
Savanna

Min 569.6 437.7 16.3 16.3 33.7 34.1 GIWA, IGABI, JEMA’A, KUDAN, Sabon GARI, and Zango KATAF

Median 659.8 597.4 17.1 16.9 35.5 35.4

Max 712.5 754.1 18.0 18.0 35.8 36.1

Southern Guinea
savanna

Min 390.3 580.1 16.6 16.5 32.9 33.5 ABAJI, AGAIE, BOSSO, GURARA, IGABI, KATCHA, MUYA,
SHIRORO, SULEJA, TUFA, and WUSHISHI

Median 1252.1 680.6 18.5 18.0 33.9 33.8

Max 1629.5 717.2 19.7 20.7 37.9 35.5
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Cercospora leaf spot and bacterial pustules, with a yield range of

1.5–2 t ha−1 under rainfed conditions. It is an early maturity variety

(90–95 days to maturity) and was used in the experimental plots in

the SS agroecology. The third variety, TGx 1448-2E, was released in

1992 and registered in 1996 under the Nigerian national code

NGGM-96-15. It has an average grain yield of 2.4 t ha−1, is frog-

leaf resistant and belongs to the late maturity group (115–120 days);

this variety was used in the SGS agroecology.
2.5 Data acquisition, preparation,
and random forest and IMPACT
models implementation

2.5.1 Grain yield
The soybean plants were harvested at maturity 90 to 110 days

after sowing. Dried plants were harvested from the entire plot (24

m2). Grains were separated from pods and sun-dried, and the dry

weight of the seeds was recorded. The grain yield expressed in kg

ha−1 was computed using Equation 1 (Eq. 1).

Yield (kg=ha)  =  ½(Net plot yield (g)  ∕  1, 000 (g) 

�  ((Area (ha) 10, 000 (m2)=Net plot area (m2) 

�  ((100 −MC)=88)�

where MC is moisture content (%). (Eq. 1) (Awuni et al., 2020).
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2.5.1 Soil properties and weather data for
predicting yield

Soil properties for each experimental site at 30 m spatial

resolution were extracted from the iSDAsoil (https://www.isda-

africa.com/isdasoil/) platforms using the “raster,” “rgeos,”

“maptools,” “rgdal,” “shapefiles,” and “PBS mapping” functions of

the R packages (R version 4.2.1). The minimum median and

maximum values of the extracted soil properties are given in

Table 2. Specifically, soil pH, organic carbon (C), and total

nitrogen (N), total carbon, effective cation exchange capacity

(ECEC), available phosphorus (P), exchangeable potassium (K),

exchangeable calcium (Ca), exchangeable magnesium (Mg), sulfur

(S), sodium (Na), iron (Fe), zinc (Zn), silt, clay, and sand variables

were extracted for each experimental site (Table 2). Monthly

precipitation, temperature, and solar radiation for each site

during the crop-growing season were extracted from the NASA

platform (https://power.larc.nasa.gov/data-access-viewer/).
2.6 Random forest machine learning for
yield prediction

A logical framework for the model’s implementation,

calibration, and training is displayed in Figure 2. A conditional

inference regression RF machine learning approach was

implemented for predicting yield variability from each
TABLE 2 Maximum (Max), median and minimum (Min) of soil properties from all sampled sites, Sudan, northern Guinea, and southern Guinea
Savannas of Nigeria.

All sites Sudan Savanna Northern Guinea
Savanna

Southern Guinea
Savanna

Min Median Max Min Median Max Min Median Max Min Median Max

Effective Cation Exchange
Capacity [cmol (+) kg−1]

7.4 12.2 16.4 9.0 13.5 16.4 7.4 13.5 14.9 7.4 9.0 16.4

Exchangeable Ca [cmol (+) kg−1] 0.90 3.0 7.3 2.7 2.7 6.02 2.0 4.5 7.3 1.0 3.6 5.4

Fe content (mg kg−1) 27.1 33.1 54.6 27.1 27.1 40.4 27.1 32.7 40.4 30.0 3.6 54.6

Exchangeable Mg [cmol (+) kg−1] 0.49 1.0 2.0 0.66 0.99 1.34 0.60 0.90 2.00 0.45 0.98 1.64

Av-Pi content (mg P kg−1) 6.0 7.4 10.0 6.0 6.6 10. 6.0 7.4 9.0 6.0 7.4 10.0

Exchangeable K [cmol (+) kg−1] 0.48 0.6 0.74 0.49 0.66 0.74 0.49 0.60 0.74 0.45 0.54 0.67

Su content (mg kg−1) 3.7 4.95 6.7 3.7 4.9 6.0 4.1 5.0 5.0 3.7 4.5 6.7

Zn content (mg kg−1) 1.5 2.2 4.1 1.5 2.2 2.7 1.5 2.4 3.3 1.5 1.8 4.1

Organic carbon content (g kg−1) 4.1 5.5 13.5 4.1 5.5 10.0 4.1 4.9 10.0 4.5 4.9 13.5

Total Nitrogen content (g kg−1) 1.3 1.7 2.2 1.4 1.6 2.2 1.3 1.7 2.1 1.4 1.7 2.2

pH (H2O) 5.1 5.7 6.1 5.5 5.7 6.0 5.3 5.7 6.1 5.1 5.6 5.8

Clay content (%) 16.0 24.0 32.0 18.0 22.6 26.0 16.0 25 30.0 19.0 23 32.0

Silt content (%) 43.0 54.0 67. 45.0 54.0 60.0 43.0 52 67.0 46.0 56 61.0

Sand content (%) 15.0 20.0 26.0 18.0 23.4 24.0 18.0 22.4 26.0 15.0 18 23.0
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agroecological zone. The conditional RF captures the linear and

non-linear effects of the estimator variables (soil, weather, and

factor variables) on the yield response and quantifies the marginal

effect of individual inputs. The inference regression RF is a powerful

non-parametric decision ensemble learning method for regression

classification that operates by constructing multiple artificial trees

to predict and fit response variables without overfitting during the

training process. To assess the model’s performance, the root mean

square error (RMSE), training coefficient of determination (R2), and

validation RMSE were computed for the datasets of each

agroecoregion. The predicted values against the actual and

variables of importance for each model were visualized. The

normalized RMSE (NRMSE) was calculated using the formula:

NRMSE ( % )  =  ½RMSE=(ymax − ymin)� � 100

(Eq. 2, Alabi et al., 2022),

where ymax and ymin are the maximum and minimum yield.

2.6.1 Screening variables of importance for the
better prediction

Variables with low importance were discriminated from the

principal component analysis check to reduce dimensionality in the

number of input variables in the training dataset. A forward

selection of explanatory variables for yield was performed, and

predicted variables with a P-value below<0.05 were retained and

included in the training dataset. Twenty-eight estimators from a

total of 66 variables aggregated as predictors were retained for yield

prediction of datasets from all agroecological zones, whereas 26

estimators were screened for model training for each agroecological

zone dataset.

2.6.2 Training, testing, and model fitting
The training dataset was built with 70% of the dataset (by

dividing the 1,400 observations by 0.7) and tested on 30% of the

remaining dataset in the R package (version 4.2.1). The “cforest”

functions of the partykit package in R were used for the model fit

using unconditional subclasses, 200 as a number of trees, and 5

input variables randomly sampled as candidates at each node.
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2.7 Application of IMPACT model

2.7.1 Model framework
The foresight IMPACT model (https://www.ifpri.org/project/

ifpri-impact-model) was used to explore soybean marketing and

import scenarios during 2017–2050 through the adoption of

rhizobium inoculation and supplemental application of P

fertilizer. The IMPACT model framework considers components

of climate models (Earth System Models), crop models (Decision

Support System for Agrotechnology Transfer, DSSAT), water

models (hydrology, water basin management, and water stress

models), land-use models (pixel-level land use) and integrates

them into the multi-market model. The IMPACT model

computes the effects of national and international demand and

prices and is designed for scenario analysis rather than forecasting

(Robinson et al., 2015).

2.7.2 Model integration, model inputs, and
scenario analysis

In the IMPACT model, crop yield is a function of commodity

price, input prices, available water, climate, and market variables.

The model integrates five modules (climate, crop, water, land use,

and market) to assess changes in yields. The model assumes a

scenario of underlying improvements in yields due to the adoption

of technology and simulates crop yields in specific areas as functions

of the introduction of technology (Eq. 2).

Yieldit =  o(Soy _ adtechit � Soytech _Yieldit)

Eq. 2. (Robinson et al., 2015)

Where, Soy_adtech = Soybean adoption technology for a

country i at the period t, and Soy_tech = Soybean inoculation

technology for a country i at the period t and under no climate

change effect.

Two future scenarios were assessed in this study:
• a moderate adoption scenario where the adoption rate of

the Rh + P fertilizer combination among farmers stops at

35%, and
FIGURE 2

Framework of the model implementation approach. ANOVA, Analysis of variance; SGS, southern Guinea Savanna; NGS, northen Guinea Savanna; SS,
Sudan Savanna; AEZs, Agroecological zones.
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Fron
• a more extensive scenario in which the adoption rate of the

Rh + P fertilizer combination reaches 75%.
For both scenarios, it was assumed that the adoption of the Rh +

P fertilizer technology would happen gradually between 2017 (the

first year of beginning adoption) and 2050 (the year in which the

model is calibrated for inputs). The effect of improved soybean

inoculation technology and P fertilization was simulated by

reducing imports and saving currency in Nigeria.
2.8 Statistical analysis

General statistical analysis was carried out for the three

agroecological zones), and yield prediction using machine

learning with 68 constructed explanatory variables and a single

yield response variable was carried out. The extracted soil properties

used to predict yield were tested for normality, skewness, and the

kurtosis test, which reported a P value of<0.05. Descriptive statistics

(maximum, median, and minimum) were computed for the yield

variable. A one-way analysis of variance (ANOVA) was carried out

to assess the effect of treatment on grain yield change using the JMP

statistical software (JMP, 2019). The treatment mean differences

were analyzed using the least significant difference (LSD) at 5% and

1% of the level of significance when the Fischer (F) value was

significant from the ANOVA (P<0.05). Levels of significance are

given by “ns” (not significant, P >0.05), *P<0.05, **P<0.01, and

***P<0.001. The RF analysis was computed using R Studio version

2022.12.0 (R version 4.2.1).
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3 Results

3.1 Soil properties

Descriptive statistics of extracted soil properties used for model

training and validation are presented in Table 2. Averaged across

the agroecological zones, the available P ranged from 6.0 to 10.0 mg

kg−1 and from 6 to 9 mg kg−1 in the NGS, with a right skew data

distribution range (Table 2 and Table S1). Similarly, for the three

agroecological zones, the pH ranged from 5.1 to 6.1, 5.5–6.0 in SS,

5.3–6.1 in NGS, and 5.1–5.8 in SGS, with a left (negative) skew data

distribution (Table S1). The range of clay contents varied from 16%

to 32% for all agroecological zones: 18%–30% in SS, 16%–30% in

NGS, and 19%–32% in SGS. Similarly, the silt contents ranged from

43% to 67% across the three agroecological zones: 45%–60% in the

SS, 43%–67% in the NGS, and 46%–61% in the SGS agroecology.

Other extracted soil property summary statistics, such as their

skewness and kurtosis values are reported in Table 2 and Table S1.
3.2 Soybean yield response as affected by
Rh inoculation and P application

A one-way ANOVA testing the effect of the treatment on grain

yield was highly significant for the SS (F = 65.4, P<0.001), NGS (F =

86.6, P<0.001), and SGS (F = 127.3, P<0.001) agroecological zones,

respectively (Figure 3). The yield data for the combined application

of Rh + P fertilizer was normally distributed in the SS, right-skewed

in the NGS, and left-skewed in the SGS agroecological zones
A B

C

FIGURE 3

Boxplots of the soybean yield (kg ha−1) for the control, phosphorus (P) fertilizer, rhizobia (Rh) inoculants, and the Rh + P combination in the
(A) Sudan Savanna (SS), (B) Northern Guinea Savanna (NGS), and (C) Southern Guinea Savanna (SGS) of agroecology of Nigeria. Mean and ±95%
confidence intervals are presented. Mean values appended by a different letter indicate significant differences at P<0.05.
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(Figures 3A–C). The soybean yield of the Rh + P fertilizer treatment

was always higher than that of the control treatment in the three

agroecological zones of northern Nigeria (Figure 3). Average across

all on-farm demonstration yield increments of 128%, 111%, and

162% were observed under the Rh + P combination compared to

the control in SS, NGS, and SGS, respectively, and the overall

increment for all agroecological zones of the established

demonstration trial was 134% (Figures 3A–C). The average grain

yield for the control treatment was the lowest in SGS compared to

the SS and NGS agroecologies (Figures 3A–C). When inoculated

with Rh alone, soybean yield was always higher in the Rh treatment

than in the control treatment in the respective agroecological zones

(Figures 3A–C). Similarly, the yield of the P fertilized treatment was

higher than the control in the SS, NGS, and SGS agroecological

zones, respectively (Figures 3A–C).
3.3 Soybean yield prediction using random
forest machine learning

The results from RF models of data from the three

agroecological zones and separately from each agroecological

zone are presented in Table 3 and Figure 4 with their NRMSE

and R2 values. Among the three agroecological zones, NGS

provided the highest trained R2 value of 0.74 (Table 3). The

trained NRMSE for NGS samples was 8.8 (Table 3). The validated

R2 and NRMSE were 0.52 and 6.0 (Table 3). For the SGS, the trained

R2 was the lowest (0.58) and the trained NRMSE was the highest

(12.7) compared to the SS, NGS, and overall samples (Table 3). The

validated R2 and NRMSE were 0.53 and 8.9, respectively (Table 3).

For the overall dataset, we found trained RMSE and R2 values of 8.8

and 0.64, while the validated NRMSE and R2 were 6.2 and 0.57,

respectively (Table 3). The highest trained NRMSE was observed in

SGS samples, and the reported R2 was 0.58 (Table 3). The validated

NRMSE and R2 for SGS samples were 9.9 and 0.56 (Table 3). The
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biplots of the predicted and observed samples showed more dense

points in the overall datasets and the NGS samples (Figures 4A, C).

The input variables of importance to predicting yield in the

three agroecological zones are presented in Figure 5. For the three

agroecological zones, the top five variables (based on importance)

for predicting yield include the combined application of Rh + P

fertilizer, year-to-year growing conditions, silt content in the soil,

rhizobium inoculation, and the minimal temperature in the month

of August (Figure 5A). The top five predicting variables of

importance to soybean yield in the Sudan Savanna were crop

management practices, combined application of Rh and P

fertilizer, rhizobium inoculation, sand content in the soil, and soil

available P (Figure 5B). The top six predictor variables for yield in

the NGS were Rh + P combination, P fertilizer, year-to-year

soybean cultivation, crop management practices, P fertilizers, and

silt content in the soil (Figure 5C). Similarly, the RF model found

crop management practices, Rh + P combination, P fertilizer, year-

to-year cultivation, and effective cation exchange capacity as the top

five yield predictor variables in SS (Figure 5D).
3.4 Food security and import through the
adoption of rhizobium and P fertilizers

The simulation using the IMPACT model showed that soybean

yield increases through the combined application of Rh and P fertilizer

will reduce national trade through the less imports and result in

currency savings in Nigeria by 2050. We implemented the model

using an average yield increase of 134% (all agroecological zones) and

111% in the NGS and two scenarios of adoption rates: low (35%

adoption rate) and high (75% adoption rate) (Figure 6A). The model

was implemented using the dataset from the NGS agroecological zone

because it had the highest prediction and accuracy from the RFmodel.

Considering the average yield increase performance of 134%(averaged

across three agroecological zones), results from the IMPACT model
TABLE 3 Training normalized root mean square error (NRMSE) and coefficient of determination (R2), validated NRMSE, validated R2, sample size, and
number used estimators that predicting yield response of soybean from all sample sets, Sudan, Northern Guinea, and Southern Guinea Savannas of Nigeria.

Dataset

Training normalized root
mean square error

(NRMSE)

Training
coefficient of
determination

(R2)

Normalized
validation
(NRMSE

Validation
coefficient of
determination

(R2)

Sample size Number of
estimators

Training Tested

All
agroecological
zones 8.8 0.64 6.2 0.57 980 420 28

Sudan
Savanna 10.1 0.46 8.9 0.53 258 110 26

Northern
Guinea
Savanna 8.0 0.75 6.0 0.52 419 179 26

Southern
Guinea
Savanna 12.7 0.58 9.9 0.56 304 130.2 26
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scenario showed that the quantity of soybeans imported in the country

can be reduced by −10% (35% maximum) and by −22% (75%

maximum adoption scenario) if the combined application of Rh and

P fertilizer technology is adopted (Figure 6B). With an average yield
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increase of 111% fromthe combined applicationofRh+P (observed in

NGS), importation can be reduced by 8.4% (under a low adoption

scenario) and by 18% (under a high adoption scenario) by 2030 in the

country (Figure 6C).
D

A B

C

FIGURE 5

Best inputs variable of importance from soil, weather, and factorial estimators used to predict soybean yields from all sample sets (A), Sudan (B), Northern
Guinea (C), and Southern Guinea (D) Savannas of Nigeria.
D

A B

C

FIGURE 4

Scatter plots of the soybean predicted and reported yields validation from all sample sets (A), Sudan (B), Northern Guinea (C), and Southern Guinea
(D) Savannas of Nigeria. The validated coefficient of determination (R2) of each sample set is indicated.
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4 Discussion

Agricultural technologies focusing on increasing productivity,

improving farmers’ profitability, and enhancing sustainability are

urgently needed to enhance the household food security of

smallholders, particularly in SSA countries (Helfenstein et al.,

2020). Such technologies are to be market-oriented, affordable,

adapted to smallholder needs, and help to bridge gaps by

integrating proper delivery mechanisms. This study demonstrated

that on-farm improved soybean rhizobia inoculation technologies

tested in collaboration with extension agents can help improve yield

and profit, reduce soybean imports, and contribute to food security

maintenance in Nigeria. Our results, in accordance with previous

studies (Ronner et al., 2016), also demonstrated that yield

increments from the combined application of Rh + P fertilizer

were always higher than the control (farmer practice) in all three

areas of Nigeria. Soybean yield at NGS sites was well predicted by

the RF compared to the SS and SGS agroecological zones. A

significant reduction in soybean imports in Nigeria could be

made through yield increments from the combined application of

Rh inoculant and P fertilizer. However, a rapid implementation

strategy and massive adoption by farmers are required.
4.1 Yield response of soybean as affected
by rhizobium inoculation and P application

A series of on-farm demonstration experiments showed soybean

yield increased through the combined application of Rh + P (always

higher in under-treated conditions than in non-treated conditions),
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irrespective of the agroecological zones and soil types. In the absence

of Rh inoculation, P fertilizer, or Rh + P combination, the average

yield in control was 1,084 kg ha−1 in the NGS sites, while the yield

increased in the Rh + P inoculated plants by 2.3-, 2.1-, and 2.6-fold as

compared to the non-treated plants (Figure 1). Earlier work

demonstrated increased soybean yields with the combination of Rh

inoculants and P fertilizer in West African soils. The observed higher

yields of 1,188 kg ha−1 in SS, 1,203 kg ha−1 in NGS, and 1,397 kg ha−1

in SGS for the Rh + P application in West Africa (Ronner et al., 2016;

Ulzen et al., 2018; Buenor et al., 2022). The authors reported an

average yield increment of 815 kg ha−1 from the combined

application of Rh + P, along with an increment in farmers’ net

profit. Several factors accounted for the higher yield under the Rh + P

application, such as regular field monitoring by Notore extension

agents, high-performing rhizobia microbes, and careful crop

management by the engaged farmers during the implementation of

the project activities. It is indicated that education, research, and

extension in agriculture remain the vehicles to achieve sustainability

in the modern food system. The NGS agroecological zone showed a

favorable niche for rapidly increase of soybean yield using

appropriate management interventions for food security in Nigeria

and the sub-region. This high yield can be explained by suitable

rainfall and soil fertility conditions. Suitable conditions for optimal

soybean production require about 1,000 mm of water in rainfall-

based production systems. The SS agroecological zone is a more

drought-prone area that often limits yield. The SGS agroecology is the

domain of acidic soils and low-P in Nigeria, which are limiting

conditions to a high soybean yield (Jemo et al., 2015).

Farmer-managed participatory interventions and extension

agents’ engagement certainly facilitated the timely establishment of
A B

C

FIGURE 6

Scenario outlooks (2010–2050) of adoption of the combined rhizobia and phosphorus fertilizers technology based on average yield increase by
133.7% from the Nigeria savannas and by 111% in the Northern Guinea Savanna on-farm demonstrations plots (A) adoption profile by 35% and by
75% with with projectd impact under scenario, (B) for all sample sets and (C) Northern Guinea Savanna.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1120826
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Jemo et al. 10.3389/fpls.2023.1120826
on-farm demonstrations and weeding at critical crop developmental

stages, inter alia. Thus, investments in information/knowledge

dissemination, input fertilizers, and other technologies are crucial

for the sustainable intensification of SSA.

Rhizobia inoculants are perishable commercial products, and

this project secured standard and high-quality Rh inoculum with

stable self-life from Legume Tech, UK. The inoculant was

formulated with bacterial cell concentrations above 1010 cells g−1

with lyophilized B. japonicum that was kept in the Notore stores

and delivered to VPAs only a few days before soybean sowing. It is

worth mentioning policy decisions aiming to accelerate the

manufacturing units, the marketing of high-quality rhizobia

inoculants with a satisfying minimum of bacteria cell

concentration of 109 cells g−1, and the longer shelf-life of

rhizobium to accelerate soybean production in Africa, as shown

in the success study developed in Brazil (Bomfim et al., 2021). Other

incentive measures to increase soybean production in SSA are the

institutionalization of P fertilizers and their dissemination to

rapidly address pressing food security issues.
4.2 Soybean yield prediction using random
forest machine learning

Accurate yield prediction is of great importance to global food

production. Using digitally soil-mapped properties and extracted

weather and management variables, we predicted yield for the three

agroecological zones using the RF machine-learning algorithm

tools. The highest training R2 (0.74) was achieved using samples

from the NGS sites (Table 3). Alabi et al. (2022) predicted soybean

yield using the vegetation index and soil texture information in the

RF model. We lacked a comparable study on predicting soybean

yield using soil properties in Nigerian Savanna conditions. The

results of this study showed that NGS is the predominant

agroecology for soybean production in terms of the required soil

properties for growth. A better yield prediction in NGS can be

explained by symmetrical data distribution (−0.42–0.58) of the

extracted soil properties in the NGS agroecological (Table S1).

The implications are that the soil and climatic conditions of NGS

are favored for better growth and less drought effect during the

growth stage. Bebeley et al. (2022) evaluated long−term seasonal

analysis of soybean yield among the same three agroecological

zones for deriving optimal sowing times for different soybean

varieties, where yields were simulated in the NGS sites compared

to other agroecological zones. In this study, the low R2 values of the

training dataset from SS and SGS agroecological zones could be

attributed to normal data distributions of yield variables, making

the yield data from SS and SGS less reliable for their good prediction

using soil properties and extracted variables.

Predictions of soybean yield using datasets from the three

agroecological zones (i.e., SS, NGS, and SGS) reported that the Rh

+ P combination has the topmost importance to increase yield

under challenging environmental conditions. Also, P-fertilizer and

Rh inoculation alone were also among the top variables in

importance, but their relative importance varied depending on

the agroecology. The available P of the soils was revealed as an
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important variable for soybean yield in the SS. The results imply

that the supply of P fertilizers is largely required if farmers are to

grow soybeans in the SS, SGS, and NGS soils. Other important soil

properties, such as silt and sand contents and ECEC, were also

predictors of soybean yield (Figure 5). The present study extracted

an average silt content of 53.3% and a sand content of 19.9%

(Table 2). Apart from precipitation, temperature, and macro- and

micronutrients, crop yields are also dependent on soil properties

such as soil texture that influence water retention at the root zones

and improve nutrient diffusion and crop yield (Huang et al., 2021).

Fine-textured or silty loam soil provides a higher water holding

capacity and more resistance to plant water uptake in wet

conditions compared to sandy soils and can be poorly drained

and susceptible to waterlogging, which can lead to denitrification

and yield loss (Huang et al., 2021). The interactions between

physical soil properties and soybean yields are not well quantified

across the agroecological zones of Nigeria and deserve further

research and investigation. Such information is necessary to

design key indicators to improve soil structure and carbon stocks

to increase soil availability for water storage and nutrient retention

and promote energy conservation around the soybean root zones.

The minimum air temperature recorded in August was among

the top five predictors of importance to soybean yield. These

temperatures correlated with the soybean pod filling stages and

were in the range of 17–20°C, which was above the air temperature

(15°C) reported to inhibit seed filling. The optimum temperatures

for soybean are 15–22°C at the emergence stage, 20–25°C at the

flowering stage, and 15–22°C at the maturity stage, and seed yield

and yield formation of soybean are frequently reduced by

temperatures below 15°C and above 30°C (Zhang et al., 2016).

In the present study, we observed that the R2 for actual and

predicted yields was less than 60% (Table 3 and Figure 3). The

results imply that all the aggregated soil and weather variables partly

explained the observed yield variation. Other biotic or abiotic

factors that were not aggregated in the independent variables,

such as competitions with native species that were incompatible

with the introduced rhizobia, impaired the nodulation and affected

yield. On the other hand, the rate of P applied was only 20 kg ha−1,

which was insufficient to achieve optimal soybean yield. Future

studies to address the “non-compatible hypothesis” and the optimal

P rate for each agroecological zone will deserve further

research investigations.
4.3 Soybean import reduction through the
adoption of Rh inoculant and P fertilizers

Linking biophysical and economic models is important in a

world facing the complexities of increasing crop production under

pressing climate change threats (Islam et al., 2016). We conducted a

two-scenario analysis of the Rh + P combination treatment, evaluated

the possibility of adoptions that could take place in the future, and

assessed the impacts on Nigerian food security and soybean trade.

Results from the IMPACT model showed that the Rh + P

combination has the potential to reduce the current soybean

importation demand by a maximum and reverse the importation
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trend from 2029 if maximally adopted. The scenario analysis through

the adoption of promising agricultural technology on yield by 2050

has been implemented in several commodities, including rainfed

maize in Africa, irrigated rice in South Asia, rainfed potato in rainfed

sorghum in India, and rainfed groundnut in Africa and Southeast

Asia (Islam et al., 2016). In many of these studies, the authors

observed that promising technologies tested in many regions/or

ecologies showed a partial to complete offset of the deleterious

impacts on yield through the adoption of technology (Islam et al.,

2016). In the present study, we have opted for large adoption as many

demonstrations, including many participating farmers, in various

steps of soybean production and training in inoculation technology

with the goal of rapid adoption, were implemented to increase

soybean production and improve food security.

Possible gaps and limitations in the modeling for agricultural

systems as presently conducted in this work are the bias generated

from the model tools and environmental conditions such as soil and

climate that are heterogeneous, especially in Sub-Saharan Africa.

These gaps certainly decrease statistical robustness and bias upward

the values obtained for decision variables, which could often be

unachievable in the real world. To avoid these aggregated biases

resulting from the model, the natural conditions of the independent

variables were tested for data homogeneity. To minimize the biases

from human heterogeneity at on-farms, we trained the engaged

farmers to use Rh inoculant and P fertilizer technology, and VPs

supervised their work regularly before trial establishments in the

respective areas. Overall, the present results underscore the fact that

innovative interventions should be tested across a wide range of

AEZ, capturing all possible variables for wider adoption. Our results

strongly suggest that the application of rhizobium inoculation is

affordable, and represents a low-cost agricultural intensification

strategy when combined with P fertilization and VPA

technical assistance.
5 Conclusions

This study used a comprehensive mix-methodological approach

integrating large-scale on-farm demonstrations and the

engagement of local extension agents and farmers, as well as a

machine learning approach, to identify the major determinants of

yield variability in three savanna agroecological zones in Nigeria.

The IMPACT model simulates the effect of the adoption of Rh + P

on food security and imports to develop sustainable soybean

production technology. Our result demonstrates a superior

benefit from the combination of Rh inoculant and P fertilizer to

improve soybean yield in the farmer field conditions of northern

Nigeria. Soybean yield was well predicted from the combination of

soil, climate, inputs, and crop management parameters in the

northern Guinea Savanna agroecological zone, implying that the

NGS offers a suitable production environment for soybean

production among the three agroecological zones. If the

combination of Rh inoculation and P fertilization demonstrated

by this study as best practices and promoted by policymakers and

maximally adopted by farmers in Nigeria, the country will reverse
Frontiers in Plant Science 12
its dependency on soybean trade to about 21% by 2029 and become

a self-sufficient producer by 2050 in the absence of climate

change threats.
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