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Introduction: Current detection methods for apple leaf diseases still suffer some

challenges, such as the high number of parameters, low detection speed and poor

detection performance for small dense spots, which limit the practical applications

in agriculture. Therefore, an efficient and accurate model for apple leaf disease

detection based on YOLOv5 is proposed and named EADD-YOLO.

Methods: In the EADD-YOLO, the lightweight shufflenet inverted residual module is

utilized to reconstruct the backbone network, and an efficient feature learning

module designed through depthwise convolution is proposed and introduced to the

neck network. The aim is to reduce the number of parameters and floating point of

operations (FLOPs) during feature extraction and feature fusion, thus increasing the

operational efficiency of the network with less impact on detection performance. In

addition, the coordinate attention module is embedded into the critical locations of

the network to select the critical spot information and suppress useless information,

which is to enhance the detection accuracy of diseases with various sizes from

different scenes. Furthermore, the SIoU loss replaces CIoU loss as the bounding box

regression loss function to improve the accuracy of prediction box localization.

Results: The experimental results indicate that the proposed method can achieve

the detection performance of 95.5% on themean average precision and a speed of

625 frames per second (FPS) on the apple leaf disease dataset (ALDD). Compared

to the latest research method on the ALDD, the detection accuracy and speed of

the proposed method were improved by 12.3% and 596 FPS, respectively. In

addition, the parameter quantity and FLOPs of the proposed method were much

less than other relevant popular algorithms.

Discussion: In summary, the proposed method not only has a satisfactory

detection effect, but also has fewer parameters and high calculation efficiency

compared with the existing approaches. Therefore, the proposedmethod provides

a high-performance solution for the early diagnosis of apple leaf disease and can

be applied in agricultural robots. The code repository is open-sourced at https://

github.com/AWANWY/EADD-YOLO.
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1 Introduction

Apple has rich nutritional and medicinal values and is cultivated

worldwide. In addition, apples are used in China as a critical crop to

promote poverty alleviation and prosperity among farmers because of

their high comparative efficiency. In 2019, China produced more than

41 million tons of apples, accounting for 54.07% of the global total,

making it the largest apple producer in the world (HU et al., 2022).

Due to environmental impact and bacterial infection, various leaf

diseases will occur during apple growth. If these diseases cannot be

identified and prevented in time, they can easily cause a sharp decline

in apple yield and quality, resulting in substantial economic losses

(Bansal et al., 2021; Yogeshwari and Thailambal, 2021). Therefore, the

timely diagnosis and treatment of foliar diseases are of great relevance

to the sustainable and healthy development of the apple industry.

Traditionally, growers identify the type of disease spots by visual

inspection. However, the method of manual discrimination has high

work intensity and a considerable risk of misjudgment (Dutot et al.,

2013; Lin et al., 2022). With the development of computer technology,

machine learning-based methods have been widely applied to

recognize disease leaves (Guru et al., 2011; Majumdar et al., 2015;

Xie et al., 2016; Pantazi et al., 2019; Hamdani et al., 2021; Ngugi et al.,

2021; Pallathadka et al., 2022). For example, Pallathadka et al. (2022)

performed histogram equalization on the image, applied the principal

component analysis algorithm to extract features, and then utilized

the support vector machine to classify leaf diseases. Majumdar et al.

(2015) extracted the characteristics of wheat diseases by Fuzzy C-

Means and then identified disease spots employing the artificial

neural network. Guru et al. (2011) obtained the diseased area

features by contrast stretching transformation with an adjustable

parameter and morphological operation and classified seedling

diseases such as anthracnose and frog-eye spots on tobacco using

the product-based neural network. However, the image preprocessing

and feature extraction of these machine learning-based methods

require much computing work and rely heavily on expert

experience (Xie et al., 2016; Ngugi et al., 2021), which limits the

migration ability and practicability of these methods.

Recently, deep learning-based methods have made significant

breakthroughs in crop leaf disease identification because of their

excellent feature extraction and model migration ability. Liu et al.

(2022) and Bhujel et al. (2022) investigated lightweight disease

classification networks with good accuracy based on the cucumber

and tomato leaf disease datasets, respectively. Moreover, Zhu et al.

(2022) have attempted to deploy the lightweight apple early leaf

disease recognition model on the mobile end. With the emergence of

target detection models, such as Faster-RCNN (Ren et al., 2015), SSD

(Liu et al., 2016), and YOLO series (Redmon et al., 2016; Redmon and

Farhadi, 2017; Redmon and Farhadi, 2018; Bochkovskiy et al., 2020;

Wang et al., 2022a), they can provide accurate location information

alongside identifying disease spots, thus attracting an increasing

number of researchers to employ them in agriculture for precise

classification and localization of diseased areas on crop leaves

(Shrestha et al., 2020; Pan et al., 2022). However, most disease spot

detection methods have a large model size, which is not convenient

for deployment on mobile devices, making them difficult to meet

practical applications in agriculture (Jiang et al., 2019; Ozguven and

Adem, 2019; Temniranrat et al., 2021). For instance, Jiang et al. (2019)
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devised the INAR-SSD to detect five common apple leaf diseases. The

method improves the detection performance of the SSD network for

various disease spots through the inception module and the rainbow

connections. Due to the stacking of the extensive inception modules

and complex skip connections, INAR-SSD has a high parameter

quantity and is not suitable for the mobile end. In recent years, more

attention has been focused on reducing the complexity of the model

to enhance the practicality of the network (Atila et al., 2021; Wu et al.,

2021; Naik et al., 2022). Nalepa et al. (2020) exploited quantization-

aware training with additional fine-tuning to save memory and

energy-frugal and make deep convolutional neural networks easier

to deploy on resource-constrained mobile or hardware devices. In

addition, many scholars working in smart agriculture have studied the

structural optimization of deep convolutional neural networks and

applied them to the task of crop leaf disease detection. For example,

Sun et al. (2021) utilized the mobile end applenet (MEAN) block with

the group convolutions in the backbone network of MEAN-SSD to

increase the speed of detecting early apple leaf diseases. Although this

approach has made some attempts to optimize the network structure,

its high computational cost and low detection accuracy on small spots

caused by the heavy use of the group convolution still limit

applications in practical scenes. Because of the efficiency, flexibility,

and good generalization performance of YOLO networks, YOLO-

based disease detection algorithms have become a research hotspot

(Khan et al., 2022). For instance, Liu and Wang (2020) applied the

lightweight classification network MobileNetv2 as the feature

extractor in the MobileNetv2-YOLOv3 to improve operational

efficiency. However, the large number of convolution and

bottleneck modules in the neck network results in the model still

having many parameters. Wang et al. (2022b) introduced the BiFPN

structure to alleviate the low detection accuracy of the modified

YOLOv5 but inevitably raised computational costs, which led to

higher complexity. Although these crop leaf disease detection

methods have attempted to optimize the structure of the network

to improve computational efficiency, they do not make efficient

measures to cope with the reduction in precision, resulting in low

detection performance or only a slight decrease in model complexity.

To address these problems, an efficient and accurate spot detection

model EADD-YOLO is proposed in this study to compress the model

size while maintaining the precision required for practical

applications. The superior performance of the proposed method has

been demonstrated on apple leaf disease images. The main

contributions are as follows:
• The backbone network of EADD-YOLO consists of several

lightweight shufflenet inverted residual modules to reduce the

parameter quantity and FLOPs, making feature extraction

more efficient.

• The lightweight DWC3 module designed employing

depthwise convolution is proposed to replace the original

C3 module in the neck network, which is to further decrease

the model complexity and enhance the detection speed of the

network while maintaining the expression ability of features.

• The coordinate attention module is embedded at critical

locations in the network to highlight crucial spot

information, which can improve detection accuracy without

significantly increasing computational costs.
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Fron
• SIoU loss with introducing an angle cost is utilized as the

regression loss function of the bounding box to alleviate the

low regression accuracy of the prediction boxes during

training.
The rest of the paper is arranged as follows: Section 2 shows the

details of the dataset. In addition, the principle of YOLOv5 and the

design of the proposed EADD-YOLO are introduced in Section 2.

Then, Section 3 presents and analyzes the experimental results. Next,

the comparison and discussion of the proposed method with the

relevant popular methods are demonstrated in Section 4. Finally,

Section 5 summarizes the work of this study and prospects for the

future research direction.
2 Materials and methods

2.1 Dataset

The apple leaf disease dataset (ALDD) used in this study was from

Northwest A&F University. The dataset adopts manual photography

to obtain the disease images of apple leaves in indoor and outdoor

scenes. The images of outdoor scenes were collected on sunny days,

cloudy days, rainy days, and other weather conditions. Five common

apple leaf diseases were covered in the dataset: Alternaria blotch

(caused by Alternaria alternata f. sp mali), brown spot (caused by

Marssoninacoronaria), grey spot (caused by Phyllosticta pirina Sacc.

and Coryneum foliicolum), mosaic (caused by Papayaringspot virus),

and rust (caused by Pucciniaceae glue rust). The other four disease

images include indoor and outdoor scenes except for the brown spot.

In addition, the images in the dataset were enhanced by folding,

rotation, brightness, and contrast changes. Finally, there are 26377

images in the dataset, with a size of 512 × 512. Figure 1 shows

representative images of five types of apple leaf diseases, and the

specific number of images for each category is provided in Table 1.

In this work, LabelImg is applied to mark the location and

category of disease spots in all images in ALDD. Each annotated

original image generates a corresponding annotation file in XML

format. It contains information such as the file name of the

corresponding original image, the image size, the disease type, and
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the location of the annotation box for each spot. The location of the

annotation boxes for several representative images is presented in

Figure 1, and the corresponding annotation files for these images are

provided in the supplementary material. The annotation results were

repeatedly verified and corrected to avoid the impact of manual

limitations on the experimental results.

As illustrated in Figure 1, there are many challenges in apple leaf

spot detection: 1) the shape, size and other features of different types

of disease spots are diverse, which increases the difficulty of feature

extraction. 2) Most spots are small and densely distributed, making

localization more difficult. 3) Light spots and raindrops in images

from outdoor conditions can interfere with disease identification.
2.2 Design for EADD-YOLO

To reduce the model complexity and improve the detection

efficiency while maintaining the accuracy of apple leaf disease

identification, an efficient and accurate detection network EADD-

YOLO based on YOLOv5, is proposed in this study. Figures 2A, B

display the exact structure of the YOLOv5 and the proposed EADD-

YOLO, respectively.

As presented in Figure 2, YOLOv5 and the proposed EADD-

YOLO contain four main components: the input layer, the backbone

network, the neck network, and the prediction head. From

Figure 2A, CBS is the basic unit in YOLOv5,consisting of
A B D EC

FIGURE 1

Representative images of five types of apple leaf disease spots. (A) Alternaria blotch. (B) Brown spot. (C) Grey spot. (D) Mosaic. (E) Rust. The red rectangle
indicates the annotation box (ground truth).
TABLE 1 The number of images of five types of apple leaf disease spots.

Disease Number

Indoor Outdoor Total

Alternaria blotch 1755 3588 5343

Brown spot 5655 0 5655

Grey spot 2288 2522 4875

Mosaic 2782 2093 4810

Rust 5486 208 5694

Total 26377
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ordinary convolution and batch normalization (BN) and the

activation function SiLU. The backbone network of YOLOv5 is

composed of a large number of CBS modules and C3 modules

stacked from CBS modules to reduce feature dimensionality and

extract semantic information. The fast spatial pyramidal pooling

(SPPF) module obtains rich multi-scale features through max-

pooling with three different kernel sizes and transports them to

the neck network. In addition to the CBS and C3 and upsampling

modules, concat is utilized in the neck network to aggregate deeper

and shallower features, thus reducing information loss. The

prediction layer contains three prediction heads at different scales,

which can output detection results at different scales.

Due to the large number of CBS and C3 modules in the backbone

and neck networks, the original YOLOv5 is challenging to deploy on

resource-constrained mobile devices, which limits its application in

agriculture. Therefore, a simple and efficient EADD-YOLO is

proposed in this work to detect apple leaf disease, as illustrated in

Figure 2B. The main improvements are as follows: 1) several efficient

shufflenet inverted residual (SNIR) modules (light blue) are adopted

to replace the stacked CBS and C3 modules to devise the backbone

network of the proposed EADD-YOLO. The aim is to reduce the

number of parameters and FLOPs generated in the feature extraction

process, thus compressing the model size. 2) Moreover, the novel

DWC3 module (light green) is designed to replace the original C3

module in the neck network to enhance the efficiency of the feature

fusion. 3) In addition, the lightweight coordinate attention (CA)
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module (light purple) is embedded in the backbone and neck

networks to improve the precision of the compressed model on

various diseases by highlighting the critical information of spots

while introducing less computational cost.

The structure of the SNIRmodule is given in subsection 2.2.1. The

implementation process of the DWC3 module is shown in subsection

2.2.2. In addition, the principle of the CAmodule is described in detail

in subsection 2.2.3.

2.2.1 Lightweight backbone network establishment
The original backbone network of the YOLOv5 contains many

CBS and C3 modules, which are mainly composed of ordinary

convolution and residual connections with high parameter

quantities and FLOPs. To compress the model size and improve its

portability with less loss of detection accuracy, the efficient SNIR

module is utilized to design the lightweight backbone network of

EADD-YOLO.

The SNIR module comes from the basic block of the lightweight

classification network ShuffleNetv2 (Ma et al., 2018). It can reduce the

number of parameters and calculations in the feature extraction

process and achieve a good balance between speed and accuracy.

According to the different functions performed, the SNIR module can

be divided into the SNIR-1 and the SNIR-2. The former halves the

height and width of the input feature map and expands the number of

channels to four times the original, and the latter only extracts

features without changing the size and the number of channels of
A

B

FIGURE 2

The framework of YOLOv5 and EADD-YOLO. (A) The structure of YOLOv5. (B) The architecture of the proposed EADD-YOLO.
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the input feature map. The working principles of SNIR-1 and SNIR-2

are demonstrated in Figures 3A, B, respectively.

As shown in Figure 3A, SNIR-1 first transports the input feature

map into two branches. Both branches apply depthwise convolution

(DWConv) with a step size of 2 to extract semantic information and

reduce the height and width of the feature map. Then, the outputs of

the two branches are joined to obtain the feature map with the

number of channels quadrupled and the size halved than the input.

Finally, the channel shuffle operation is performed to integrate

the features.

Figure 3B illustrates the implementation flow of the SNIR-2.

SNIR-2 first divides the input feature map equally by the number of

channels and transports them into two separate branches. Then,

different operations are performed on the feature map entering the

two branches. Specifically, the feature map of one branch remains

unchanged (identity mapping). In contrast, the feature map of the

other branch will undergo three convolutions (including DWConv)

with a step size of 1 to recode the features. Next, the output of the two

branches is concatenated. Finally, the features are fused through

channel shuffle operation. The principle of channel shuffle

operation is displayed in Figure 3C.

As shown in Figure 3C, the channel shuffle operation breaks up and

regroups the channels of the feature map by reshaping and transposing

them, which can quickly complete the fusion of information between

channels without increasing the computational cost, freeing up the

channel information constraints due to convolution operations.

In addition, the channel splitting and branching operations in the

SNIR-2 module significantly reduce the computational cost, thus

allowing for more efficient feature encoding and transmission.
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Suppose that the size of the feature map input to the SNIR-2

module is h × w and the number of channels is c. Then, the

number of parameters generated by the two branches of the SNIR-2

module is 12·c/2·c/2+ 32·c/2+12 and 0, respectively. In comparison, the

number of parameters incurred by simultaneously manipulating all

channels of the input feature map is 12·c·c + 32·c + 12·c·c. As illustrated

in equation (1), the parameter quantities generated by applying the

channel splitting operation is about 1/4 of that generated by not using

this operation. Moreover, the FLOPs generated employing channel

splitting are about 1/4 of those caused by the conventional operation

when assuming that the feature map does not change in size or the

number of channels during every convolution operation, as shown in

equation (2). This demonstrates the superiority of the SNIR-2 module

in terms of computational cost.

rParams =
12 · c2 ·

c
2 + 32 · c2 + 12 · c2 ·

c
2 + 0

12 · c · c + 32 · c + 12 · c · c
=

1
2 · c · c +

9
2 :c

2 · c · c + 9 · c
≈
1
4

(1)

rFLOPs =
12 · c2 · h · w · c2 + 32 · c2 · h · w + 12 · c2 · h · w · c2 + 0

12 · c · h · w · c + 32 · c · h · w + 12 · c · h · w · c

=
1
2 · c · c +

9
2 · c

2 · c · c + 9 · c
≈
1
4

(2)

In summary, the SNIR module has three advantages compared to

the CBS and C3modules: 1) channel splitting and branching operations

in the SNIR module allow for more efficient model training. 2) The

channel shuffle operation enables channels to be quickly disrupted and

reallocated, exchanging information and enriching features, which can

effectively enhance feature representation, thus making the SNIR

module balance computational efficiency and detection accuracy. 3)
A

B

C

FIGURE 3

The structure of the SNIR module. (A) SNIR-1. (B) SNIR-2. (C) The channel shuffle operation. Conv represents the ordinary convolution, and the DWConv
denotes the depthwise convolution in the depthwise separable convolution. The channel shuffle consists of three steps: (1) reshape: reshape the input
channel from one dimension into two dimensions. One is the number of convolution groups, and the other is the number of channels contained in each
convolution group. (2) Transpose: swap the two dimensions. (3) Flatten: flatten the transposed channel back as the input of the next layer.
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The DWConv with a lower computational cost is introduced to replace

ordinary convolution in the SNIRmodule, thus reducing the number of

parameters while maintaining the performance of the network. The

superiority of DWConv compared to ordinary convolution will be

illustrated when the novel DWC3 module is proposed in

subsection 2.2.2.

Therefore, the SNIR-1 and the SNIR-2 modules are alternately

connected in series to design the lightweight backbone network of the

proposed EADD-YOLO to accomplish fast feature extraction and

transmission, as presented in Figure 2. Compared to the original

backbone network consisting of ordinary convolution, the designed

lightweight backbone not only significantly reduces the parameter

quantity and computational costs, but also has little impact on the

detection accuracy.
2.2.2 Efficient neck network design
To further compress the model size, the novel DWC3 module

employing DWConv is proposed and embedded in the neck network

to replace the original C3 module, thus improving the efficiency of the

model in the feature fusion stage.

DWConv is a convolution strategy in depthwise separable

convolution (Chollet, 2017). It has lower parameters and

computational costs than ordinary convolution, which can enhance

the efficiency of feature extraction and maintain accuracy. The

implementation process of ordinary convolution and DWConv is

demonstrated in Figure 4.

As displayed in Figure 4A, in the ordinary convolution, each

kernel must operate on each channel of the input picture at the same

time. Then the convolution results of each channel are weighted sum

to generate a feature map. While in the DWConv, as shown in

Figure 4B, each channel of the input image is performed by only one

kernel, which then generates a corresponding feature map. The height

and width of the input feature map are denoted by h and w,

respectively. The number of channels is c, and k × k represents the
Frontiers in Plant Science 06
size of the convolution kernel. Therefore, the ratios of parameter

quantity and FLOPs between the DWConv and the ordinary

convolution are calculated as follows:

rParams =
ParamsDWConv

ParamsOrdinaryConvlution
=

k2 · c
k2 · c · c 0

=
1
c 0

(3)

rFLOPs =
FLOPsDWConv

FLOPsOrdinaryConvlution
=

k2 · c · h 0 ·w 0

k2 · c · h 0 ·w 0 ·c 0
=

1
c 0

(4)

where h’ and w’ denote the height and width of the output feature

map, respectively, and c’ indicates the number of channels of the

output feature map. From Equation (3) and Equation (4), it can be

concluded that the parameter quantity and FLOPs of DWConv are

only 1/c’ of that of ordinary convolution, which shows the superiority

of DWConv in computational efficiency.

Therefore, we proposed an efficient basic block by applying

DWConv, as illustrated in Figure 5A. In the basic block, the input

feature map first goes through DWConv to extract features and is

then transported into two branches. One of the branches performs

DWConv on the feature map to obtain detailed information. The

other branch does not perform any operations. Finally, the results of

the two branches are summed for feature aggregation. Compared to

the CBS module including only one ordinary convolution, the basic

block with the simpler DWConv has less computational cost in

extracting features. In addition, the branched convolution

introduces more detailed information to ensure the effectiveness of

feature extraction in the basic block.

Due to its simplicity and effectiveness, the proposed basic block is

utilized to replace the ordinary convolution in the original bottleneck

block to form a lightweight DW-Bottleneck, as shown in Figures 5B,

C. Then, the novel DW-Bottleneck is introduced in the original C3

module, and the CBS module is replaced by DWConv, thus devising

the efficient DWC3 module, as illustrated in Figure 5D. The proposed

DWC3 module is embedded into the neck network to enhance the
A

B

FIGURE 4

The comparison between the ordinary convolution and the DWConv. (A) The ordinary convolution. (B) DWConv.
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efficiency of the feature fusion. In this way, the computational cost of

the neck network can be decreased while maintaining the

expressiveness of the features, thus reducing the impact on

detection accuracy.

2.2.3 Coordinate attention module
The lightweight improvement of the backbone and neck network

can remarkably reduce the number of parameters and FLOPs of the

model and increase the detection speed of the network while

inevitably causing some loss in detection accuracy. So, it is

necessary to optimize the network further to enhance the detection

performance of the model for different diseases. Therefore, the CA

modules are introduced in the critical positions of the network to

increase the sensitivity of the model to the characteristics of disease

spots, thus enhancing the ability of the network to identify and locate

small spots without significantly affecting computational efficiency.

The CA applies a flexible and lightweight coordinate attention

mechanism, which can improve the efficiency and accuracy of image

information processing (Hou et al., 2021). By embedding the location
Frontiers in Plant Science 07
information into the channel attention, the CA module can make the

network obtain the information of a larger area and avoid incurring a

high computational cost. The implementation flowchart of the CA

module is displayed in Figure 6.

As shown in Figure 6, the coordinate attention mechanism can be

summarized into coordinate information embedding (CIE) and

coordinate attention generation (CAG). In the stage of CIE, features

are gathered. All channels of the input feature map are operated by

the average pooling along the horizontal and vertical coordinates to

obtain features with accurate location information. The dimensions

are C × H × 1 and C × 1 × W, respectively. In the stage of CAG, the

two feature maps with accurate coding information are concatenated.

Next, 1 × 1 Conv is utilized to compress its channel dimension from

the C to the C/r dimensions. Then, the h_wish function is used to

perform nonlinear activation, thus obtaining the intermediate feature

representing the encoded information. Subsequently, the

intermediate feature is decomposed along the spatial dimension

into a vertical attention tensor (C/r × 1 × W) and level attention

tensor (C/r × H × 1). After that, two sets of 1 × 1 Conv are applied to
A B

D

C

FIGURE 5

(A) Basic module. (B) DW-Bottleneck(True). (C) DW-Bottleneck(False). (D) DWC3.
FIGURE 6

The implementation process of the coordinate attention module. Conv indicates convolution operation, Concat represents a fusion of feature maps by
channel stitching, and permute denotes matrix transposition operation.
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increase the channel dimension of the obtained two tensors from C/r

to C. Then, the sigmoid function is utilized for nonlinear activation to

generate attention weight. Finally, the obtained attention weights in

the two directions are multiplied by the input feature map to complete

the application of coordinate attention.

The embedded location information allows the network access to

a more extensive information area, thus improving prediction

accuracy. In addition, the implementation of the CA module only

uses convolution operations with the kernel size of 1 × 1, and a few

matrix transposition operations except for two average pooling

operations, leading to less computational cost. So, it has a low

impact on the operational efficiency of the network.

Therefore, the lightweight CA module is embedded in the

backbone network and the information intersection of the neck

network of the EADD-YOLO to increase the identification ability of

the model for diseases with various characteristics. The improvement

can benefit the network in selecting the critical information for the

disease spot detection task, and improve the effectiveness and

accuracy of the neck network in processing feature information,

thus alleviating the loss of accuracy due to model compression

without incurring high computational costs.
2.3 Loss function improvement

The original YOLOv5 utilizes CIoU loss (Zheng et al., 2021)

to calculate the difference between the prediction and target

boxes, since it takes the aspect ratio of the bounding boxes into

the loss function, effectively improving the regression accuracy.

However, ignoring the problem of directional mismatch between

the target box and the prediction box, CIoU loss is prone to the

phenomenon that the prediction box wanders around the target

box during the training process, which results in low accuracy of

the network.

Therefore, SIoU loss (Gevorgyan, 2022) is employed as a

regression loss function of the detection box in this work. It

introduces an angle cost that considers the relationship between the

orientation of the predicted box and the true box, thus enhancing the

localization accuracy of the prediction box.

SIoU loss consists of IoU cost, shape cost, and distance cost

defined by introducing an angle cost. It is calculated as:

LossSIoU = 1 − IoU +
W + D
2

(5)

where (1−IoU) refers to the IoU cost, W indicates the shape cost,

and D represents the distance cost with an angle cost introduced. The

definition and calculation formulae for IoU, the shape cost, the

distance cost and the angle cost are explained in turn in the

following text.

IoU refers to the intersection over union ratio between the true

box and the predicted box, which describes their coincidence degree.

It is defined as:

IoU =
B ∩ Bgt

B ∪ Bgt (6)

where B and Bgt represent the prediction box area and the real box

area, respectively.
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The shape cost considers the aspect ratio between the target box

and the predicted box to make their shapes more similar. It is

calculated as:

W = o
t=w,h

(1 − e−wt )q (7)

ww =
w − wgtj j

max(w,wgt)
,wh =

h − hgtj j
max(h, hgt)

(8)

where (w,h) and (wgt, hgt) denote the width and height of the

predicted box and the true box, respectively. q controls the degree of

attention of the loss function to shape cost. To avoid reducing the

movement of the prediction box by paying too much attention to the

shape cost, the value of q is set to 4 in this work within the suggested

range of values (q ∈ [2,6] according to Gevorgyan (2022)).

The distance cost describes the distance between the central

points of the prediction and the target boxes. It is defined as:

D = o
t=x,y

(1 − e−grt ) (9)

where,

rx = (
bgtcx − bcx

dw
)2, ry = (

bgtcy − bcy
dh

)2, g = 2 − L (10)

Where (bgtcx , b
gt
cy ) denotes the coordinate of the central point of the

target box, while (bcx,bcy) refers to the coordinate of the center point of

the predicted box. dw and dh represent the width and height of the

minimum closure bounding box of the prediction box and the target

box, respectively. D indicates the angle cost that considers the

magnitude of the angle between the central points of the true and

the predicted boxes. The angle cost is calculated as:

L = 1 − 2*sin
2( arcsin  ( sin  (a)) −

p
4
) (11)

sin  (a) =
ch
s

(12)

where a ∈ [0,p/2] means the angle between the horizontal line

and the line connecting the central points of the prediction box and

the real box. ch refers to the height difference between the central

points of the target box and the predicted box. s denotes the distance

between the central points of the target box and the prediction box.

Their calculations are as follows:

s =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(bgtcx , bcx )

2 + (bgtcy , bcy )
2

q
(13)

ch = max(bgtcy , bcy ) −min(bgtcy , bcy ) (14)

From Equation (11), it can be found that when a = 0 or p/2, the
value of the angle cost is 0. It means that the prediction box is on the

same horizontal (or vertical) line as the real box, and no further

optimization is needed. When a∈ (0,p/4), it indicates that the

prediction box is nearer to the horizontal line where the real box is

located. At this time, the angle cost increases as a increases. So, the

angle cost prefers to optimize a so that the prediction box is closer to

the horizontal on which the true box is located. Conversely, when a∈
(p/4,0), the angle cost decreases as a increases. Thus the angle cost
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tends to optimize the complementary angle of a so that the prediction

box is closer to the vertical line on which the real box lies. In this way,

the prediction box is quickly brought to the horizontal or vertical line

where the target box is located, which can reduce the freedom of the

prediction box to wander, thus enhancing the location accuracy.

The angle cost is introduced into the distance cost, as illustrated in

Equation (9). From Equations (9) and (11), it is evident that when a
approaches 0, the contribution of distance loss decreases as the angle

cost reduces. In contrast, the closer a is to p/4, the greater the distance
cost, and then the overall loss becomes more significant. In other

words, the problem becomes more complex as the angle between the

prediction box and the real box increases, and the accuracy will be

negatively affected. It demonstrates the necessity and importance of

introducing and optimizing angle cost.

Compared with CIoU loss, SIoU loss considers the direction

matching between the predicted and target boxes. The angle cost can

quickly pull the prediction box onto the axis closest to the target box

by minimizing the angle between them, which can reduce the

phenomenon of the predicted box wandering around the target

box, thus significantly improving the positioning accuracy of the

prediction box. Therefore, SIoU loss is introduced in this study to

replace CIoU loss as the localization loss of the bounding box, thus

enhancing the performance of the proposed EADD-YOLO on the

disease detection task.
3 Results

In this section, the experimental environment and hyperparameter

settings are described detailed in subsection 3.1. In addition, the

partitioning of the dataset is shown in subsection 3.1. Then,

subsection 3.2 provides the evaluation metrics used in this study and

their principles and calculation formulas. Finally, the experimental

results are presented and analyzed in subsection 3.3 and subsection 3.4,

including the lightweight of the backbone network and ablation studies.
3.1 Implementations and settings

The experiments are carried out on a 64-bit Windows operating

system. The hardware configurations are as follows: Intel(R) Core

(TM) i9-10900K CPU @ 3.70GHz, 64G memory, NVIDIA GeForce

RTX3090. The version of PyTorch is 1.9.1.

In terms of training strategies, the hyperparameters are

determined as follows: the number of epochs is 300, the batch size

is 16, the initial learning rate is 1e-2, the weight decay is 0.0005, the

momentum is 0.937, and the optimizer is SGD.

All the data are firstly divided into the initial training set and test set

in the proportion of 8:2. Then, the initial training set is separated into the

final training set and validation set for cross-validation in a ratio of 9:1

during training. The specific composition of the training set, validation

set, and test set can be checked in the supplementary material.
3.2 Evaluation indicators

To evaluate the detection performance of the proposed EADD-

YOLO, precision (P), recall (R), and mean average precision (mAP)
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are employed as evaluation indicators. Precision indicates the

proportion of the number of positive samples correctly predicted to

the number predicted as positive samples by the model. Recall

denotes the proportion of correctly identified positive samples out

of all positive samples. The former measures the precision of the

network in identifying positive samples, and the latter represents the

ability of the model to find positive samples. The mAP refers to the

average value of the average precision of all classes, with higher values

indicating higher detection accuracy of the model on the given

dataset. They are calculated as follows:

P =
TP

TP + FP
(15)

R =
TP

TP + FN
(16)

AP =
Z 1

0
P(R) dR (17)

mAP = o
n
i=1APi
n

(18)

where TP represents the number of positive samples that are

correctly classified. TN is the number of negative examples that are

correctly identified. FP denotes the number of negative examples that

are misclassified as positive examples. FN indicates the number of

positive samples that are incorrectly classified as negative examples.

Furthermore, parameter quantity and FLOPs are utilized to

evaluate the size and computational cost of the model. The smaller

number of parameters and FLOPs means less memory usage and

faster computational efficiency of different networks. In addition,

frames per second (FPS) is used to measure the detection speed of the

model, i.e., the number of images that can be processed per second,

with high values indicating faster inference speed.
3.3 Comparison of lightweight backbone

Before conducting the experiments, the performance of YOLOv5

with different sizes is compared on the ALDD test set, and the objective

metric results are provided in the supplementary material. The results

show that YOLOv5s has the advantage of high detection speed and

small model size while maintaining good detection accuracy. As this

study aims to propose a fast and easily deployable method for apple leaf

disease detection with low loss of accuracy, YOLOv5s is selected as a

benchmark model for subsequent experiments.

In this subsection, the backbone network of YOLOv5s is

reconstructed by applying the basic module of several of the best-

performing lightweight classification networks at the present stage.

YOLO-GN represents that the backbone network of YOLOv5s is built

utilizing the basic unit of GhostNet (Han et al., 2020). YOLO-ENL

denotes applying the main module of EfficientNet-Lite (Tan and Le,

2019) to reconstruct the backbone network of YOLOv5s. YOLO-

MN3s and YOLO-PPLCN indicate that their backbone networks are

designed by employing the basic modules of MobileNetv3small

(Howard et al., 2019) and PP-LCNet (Cui et al., 2021), respectively.

The lightweight network using SNIR as the basic unit of the backbone
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network is denoted as YOLO-SNIR. The evaluation results of the

YOLO model with different reconfigured backbone networks on the

ALDD test set are displayed in Table 2.

As seen from Table 2, introducing the basic modules of different

lightweight networks to construct backbone networks can reduce the

number of parameters and FLOPs, despite causing the inevitable

accuracy loss. Compared to YOLO-GN, YOLO-ENL, YOLO-MN3s

and YOLO-PPLCN, YOLO-SNIR has a faster detection speed and

smaller model size. In other words, the reconstruction of the

backbone network of YOLOv5s employing the SNIR module has

the most apparent enhancement in the network detection speed and

compression of model size. Specifically, the mAP of YOLO-SNIR

decreases by only 1.1% compared with YOLOv5s, while the parameter

quantity and FLOPs of YOLO-SNIR are reduced by 54.56% and

62.66%, respectively. Moreover, the detection speed of YOLO-SNIR is

43.68% faster than that of YOLOv5s. In summary, introducing the

efficient SNIR module to design the backbone of YOLOv5s is most

appropriate for compressing the model size and improving

detection speed.
3.4 Ablation studies

In this subsection, ablation experiments are conducted in two

separate stages. In the first stage, the impact of lightweight

improvements in network structure on detection performance is

verified. In the second stage, the performance changes induced by

methods of accuracy enhancement are demonstrated based on the

lightweight model.

First, the impact of different lightweight improvement methods

on the network performance is verified on the ALDD test set. Test 1 is

the benchmark model YOLOv5s. Test 2 represents the reconstruction

of the backbone network of the originalYOLOv5s employing the

SNIR module. Test 3 denotes replacing the original C3 module with

the proposed DWC3 module in the neck network of the original

YOLOv5s. Lightweight-YOLO in Test 4 combines improvements

from Tests 2 and 3. The evaluation results of the influence of the

different improved structures on the network performance are

displayed in Table 3.

As shown in Table 3, comparing Test 1 and Test 2, the mAP of

YOLO-SNIR is 1.1% lower than that of YOLOv5s, but the detection

speed is increased by 190 FPS. In addition, the number of parameters

and FLOPs of YOLO-SNIR have decreased by 54.56% and 62.66%

compared to YOLOv5s, respectively. The results illustrate that the
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backbone network composed of SNIR modules can significantly

reduce the computational cost and improve the processing speed of

the network with less influence on detection accuracy. From Tests 1

and 3, YOLO-DWC3 decreases the parameter quantity and FLOPs by

1.02 M and 2.1 G with only a 0.4% reduction in mAP, respectively. It

indicates that introducing the proposed DWC3 module into the neck

network not only compresses the model size but also almost

maintains the detection performance of the network. The reason is

that the novel DWC3 module allows for faster processing of input

features by applying the proposed basic blocks while maintaining the

ability of the network to understand them. From Test 4, compared

with YOLOv5s, the detection accuracy of Lightweight-YOLO, which

employs the SNIR module as the basic unit of the backbone network

and introduces the proposed DWC3 module in the neck network, is

decreased by 2.3%. The detection speed reaches 667 FPS, which is 1.53

times that of the original YOLOv5s. In addition, the parameter

quantity and FLOPs of Lightweight-YOLO are only 27.92% and

22.78% of those for YOLOv5s, respectively. The results demonstrate

the effectiveness of the proposed lightweight improvement methods.

From Table 3, it is clear that the lightweight of the network

structure can significantly compress the model size and improve

detection speed at the expense of reducing the accuracy of the

network. Therefore, some improvement methods that can enhance

accuracy without introducing high computational costs are essential.

Next, the changes in model performance caused by the

introduction of the CA module and SIoU loss are verified using the

Lightweight-YOLO as the base network. Test 4 is the Lightweight-

YOLO with the introduction of SNIR and DWC3 modules. Test 5

introduces the CA module based on Test 4, while Test 6 replaces the

original CIoU loss with SIoU loss based on Test 4. Test 7 is the

proposed EADD-YOLO in this study, which represents introducing

both CA and SIoU loss in Lightweight-YOLO. The impact of different

improvement methods on the performance of Lightweight-YOLO is

shown in Table 4, respectively. Moreover, the comparison of

detection performance of different improved structures presented as

Pareto frontier and the curves of changes in different metrics,

including mAP, precision and recall during training, are provided

in the supplementary material to further validate the results displayed

in Tables 3, 4.

As demonstrated in Table 4, Tests 4 and 5 indicate that the

introduction of the CA module in Lightweight-YOLO can effectively

enhance the detection accuracy of the network. The mAP is increased

by 0.8%, and the detection speed of the network is only decreased by

42 FPS. The results illustrate that embedding CA modules can
TABLE 2 Comparison of experimental results of improved YOLOv5s with different lightweight backbones.

Model P/% R/% mAP/% Parameters/M FLOPs/G FPS

YOLOv5s 93.6 93.7 96.4 7.02 15.8 435

YOLO-GN 93.5 93.3 96.2 5.37 8.2 417

YOLO-ENL 93.2 91.6 95.5 3.78 7.2 455

YOLO-MN3s 92.2 91.5 95.2 3.54 6.1 588

YOLO-PPLCN 93.3 92.7 95.7 3.29 6.0 588

YOLO-SNIR 92.7 92.1 95.3 3.19 5.9 625
frontiers
The bold font is to highlight the advantages of YOLO-SNIR in terms of the number of parameters, calculation, and inference speed.
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improve the accuracy of the model by highlighting information

helpful for disease spot detection while suppressing useless

information. Although this approach incurs some computational

costs, it only slightly impacts the running speed of the network.

The conclusion could be drawn from comparing Test 4 and Test 6

that replacing the location loss from CIoU loss with SIoU loss

enhances the accuracy of the network by 0.6% in mAP. In addition,

it does not affect the model size or the detection speed. Since the SIoU

loss with introducing an angle cost can quickly pull the prediction box

to the axis where the target box is located, reducing the wandering of

the predicted box around the target box and improving the regression

accuracy. From Tests 4 and 7, the detection accuracy of the proposed

EADD-YOLO is 1.4% higher than that of the Lightweight-YOLO,

while the number of parameters and FLOPs only increase by 0.05 M

and 0.1 G, respectively. Compared with the original YOLOv5s (as

shown in Test 1 in Table 3), the detection accuracy of the EADD-

YOLO is only decreased by 0.9%, while the parameter quantity and

FLOPs are reduced by 71.37 and 76.58%, respectively, and the

detection speed is enhanced to 1.44 times.

In summary, the proposed EADD-YOLO, with its low number of

parameters and FLOPs, significantly improves the speed of disease

spot detection while having a negligible impact on detection accuracy.

Therefore, the proposed EADD-YOLO is more suitable for

deployment on resource-constrained mobile devices and with the

detection performance required for practical applications.

Table 5 shows the AP results of the single disease category of

EADD-YOLO, Lightweight-YOLO and YOLOv5s on the ALDD test

set. It can be observed that the single-type AP values of the proposed

method are significantly higher than that of Lightweight-YOLO in all

five types of disease images. Compared with YOLOv5s, EADD-YOLO

has a better detection accuracy on rust images, and the detection

accuracy on mosaic images is the same as that of YOLOv5s. For the

other three disease images, the detection accuracy of the proposed

method is just slightly lower than YOLOv5s. Overall, the proposed

EADD-YOLO still performs satisfactorily in the detection task for

multiple diseases compared with YOLOv5s. Therefore, it is verified

that the proposed EADD-YOLO can maintain good detection
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accuracy while significantly compressing the model size and

increasing the detection speed.

To visualize the detection performance of the proposed method, the

results of the disease spot images in different scenes are provided in

Figures 7 and 8. More detection results are added in the supplementary

material. Figures 7A-C display the detection results of YOLOv5s,

Lightweight YOLO, and EADD-YOLO on five typical spot images in

simple scenes, respectively. The Alternaria blotch, brown spot, grey spot,

mosaic, and rust images are displayed from left to right. The predicted

results in Figure 7 are rendered to enhance readability by employing

specific letters instead of disease-type names. It should be noted that the

letter A indicates Alternaria blotch. The brown and grey spots are

denoted by the letters B and G, respectively. In addition, the letters M

and R represent mosaic and rust, respectively. As shown in Figure 7, for

images in simple scenes and large spots, the detection performance of the

proposed EADD-YOLO for different kinds of disease spots is higher than

that of Lightweight-YOLO, and there is almost no difference compared

with YOLOv5s. In particular, EADD-YOLO outperforms the original

YOLOv5s in detecting rust. Because the proposed EADD-YOLO, which

introduces the coordinate attention mechanism, has a better recognition

ability for rust with distinct features.

To better demonstrate the superiority of the proposed method,

Figure 8 compares the detection performance of YOLOv5s,

Lightweight-YOLO, and EADD-YOLO in special scenes. Because

most of the spots are small and dense, labels and confidence levels

are omitted to show the location of the predicted boxes more clearly.

For the convenience of distinguishing, the disease spot categories

represented by the prediction boxes of different colors are explained

as follows: red indicates Alternaria blotch, pink denotes brown spot,

orange and yellow represent grey spot and mosaic, respectively, and

green refers to rust. From top to bottom are images of the dark light

scene, the rainy scene, small spots, and images with multiple diseases.

As illustrated in Figure 8, for the disease image in the dark scene,

Lightweight-YOLO mistakenly recognizes the dried area at the leaf tip

as an Alternaria blotch, whereas EADD-YOLO does not. For the image

from the rainy scene, EADD-YOLO can accurately detect the grey spot

that is difficult to be identified due to rain reflection, but both YOLOv5s
TABLE 4 The results of introducing different improvements on the Lightweight-YOLO.

Test.No Model P/% R/% mAP/% Parameters/M FLOPs/G FPS

4 Baseline (Lightweight-YOLO) 91.2 89.3 94.1 1.96 3.6 667

5 Lightweight-YOLO-CA 92.7 90.8 94.9 2.01 3.7 625

6 Lightweight-YOLO-SIoU 91.8 91.6 94.7 1.96 3.6 667

7 EADD-YOLO 92.8 91.9 95.5 2.01 3.7 625
frontiers
The bold font is to highlight the advantages of EADD-YOLO in terms of the detection accuracy.
TABLE 3 The results of different lightweight improvement methods on the YOLOv5s.

Test.No Model P/% R/% mAP/% Parameters/M FLOPs/G FPS

1 Baseline (YOLOv5s) 93.6 94 96.4 7.02 15.8 435

2 YOLO-SNIR 92.7 92.1 95.3 3.19 5.9 625

3 YOLO-DWC3 93.6 92.4 96.0 6.00 13.7 454

4 Lightweight-YOLO 91.2 89.3 94.1 1.96 3.6 667
The bold font is to highlight the advantages of Lightweight-YOLO interms of the number of parameters, calculation, and inference speed.
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and Lightweight-YOLO miss the spot. Moreover, in the detection

results for the image containing many dense and small spots, the

clustered multiple diseases are recognized as one spot by YOLOv5s and

Lightweight-YOLO, while EADD-YOLO can distinguish them

separately. The results show that the lightweight of the network

structure can undermine the detection effect, thus leading to the low

detection performance of Lightweight-YOLO. In addition, EADD-

YOLO, with the introduction of the coordinate attention mechanism,

enhances the focus on spot information and thus performs better in

detecting disease images in special scenes.

In summary, the detection results of the different models for

disease images in various scenes in Figures 7, 8 are consistent with the

pattern of objective indicators in Table 5. The comparison of the

detection results demonstrates that EADD-YOLO offers excellent

detection effects with low computational costs. Therefore, the

proposed EADD-YOLO has better overall performance than the

original YOLOv5s on the ALDD dataset.

4 Discussion

In this section, the proposed method is compared with the

approaches used in previous studies on leaf spot detection to
Frontiers in Plant Science 12
further verify its performance. Specifically, the INAR-SSD (Jiang

et al., 2019) and MEAN-SSD (Sun et al., 2021) are apple leaf spot

detection models based on the ALDD dataset. YOLOv4 is applied to

detect apple leaf disease by Khan et al. (2022). MobileNetv2-YOLOv3

is a lightweight leaf disease detection network employed by Liu and

Wang (2020). The disease detection method of Wang et al. (2022b) is

an optimized lightweight YOLOv5 (OL-YOLOv5). EADD-YOLO is

the efficient and accurate network for detecting apple leaf disease

proposed in this study. The hyperparameters of different methods are

set according to the original document. The objective evaluation

results of different methods are shown in Table 6. In addition, the

comparison of the detection performance of different methods in

other forms is provided in the supplementary material.

As displayed in Table 6, compared with other relevant popular

methods, the proposed method has remarkable advantages in detection

speed and model size with good detection accuracy. Specifically,

compared with INAR-SSD and MEAN-SSD, the detection accuracy

of EADD-YOLO is 16.7% and 12.3% higher, and the detection speed is

602 FPS and 596 FPS faster, respectively. In addition, the proposed

method has only 0.08%, 0.04%, 0.09% and 0.04% of the number of

parameters and FLOPs of INAR-SSD and MEAN-SSD, respectively.

From the comparison of the results of YOLOv4, MobileNetv2-
A

B

C

FIGURE 7

(A–C) Comparison of the detection effects of different models on five typical apple leaf disease images in simple scenes. The letters A, B, G, M, and R
indicate Alternaria blotch, brown spot, grey spot, Mosaic, and rust, respectively.
TABLE 5 AP results for the single-type of different models on the ALDD test set.

Category YOLOv5s Lightweight-YOLO EADD-YOLO

Alternaria blotch 96.3 94.6 95.7

Brown spot 94.0 90.4 92.2

Grey spot 96.6 93.0 94.4

Mosaic 96.2 93.8 96.2

Rust 98.7 98.7 99.1
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YOLOv3, and the proposedmethod, the detection accuracy of YOLOv4

and MobileNetv2-YOLOv3 is 11% and 9.1% lower than that of EADD-

YOLO. Moreover, the detection speed of EADD-YOLO is 10.96 times

and 4.11 times that of them, respectively. Compared with the OL-

YOLOv5, the proposed method is 180 FPS faster in the detection speed,

while the detection accuracy is only 0.8% lower. In addition, the

parameter quantity and FLOPs of EADD-YOLO are only 31.46%

and 24.34% of OL-YOLOv5, respectively. The results indicate that

the proposedmethod has significant superiorities over other leaf disease

detection methods in overall performance.
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Figure 9 demonstrates the results of the different methods in

detecting apple leaf spot images from various conditions, including

the Alternaria blotch image in the dark scene, the brown spot image in

the indoor background, the grey spot image in the rainy scene, the

mosaic image in the outdoor environment and the rust image

containing other diseases. Labels and confidence levels are omitted

to show the location of the predicted boxes more clearly. The different

colors of the prediction boxes indicate the different spot categories:

red represents Alternaria blotch, pink denotes brown spot, orange

indicates grey spot, and yellow and green represent mosaic and rust,
TABLE 6 The results of different leaf spot detection methods on the ALDD test set.

INAR-SSD [15] MEAN-SSD [35] YOLOv4 [16] MobileNetv2-YOLOv3 [19] OL-YOLOv5 [39] EADD-YOLO (ours)

Alternaria blotch 75.56 78.82 81.79 81.7 96.3 95.7

Brown spot 79.70 82.94 82.49 73.7 94.0 92.2

Grey spot 76.50 81.35 83.25 85.8 96.2 94.4

Mosaic 70.63 78.78 78.43 94.2 96.1 96.2

Rust 91.59 93.71 95.15 96.9 98.8 99.1

mAP/% 78.80 83.12 84.5 86.4 96.3 95.5

Parameters/M 24.5 22.4 63.96 65.23 6.39 2.01

FLOPs/G 90.47 85.47 45.3 15.0 15.2 3.7

FPS 23 29 57 152 455 625
The bold font denotes which model has the best performance on a particular metric.
FIGURE 8

Comparison of the detection effects of different models on apple leaf disease images in special scenes.
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respectively. More detection results of these methods are added in the

supplementary material.

As displayed in Figure 9, the detection performance of EADD-

YOLO on the diseased apple leaf images is better than INAR-SSD,

MEAN-SSD, YOLOv4, and MobileNetv2-YOLOv3, while there is

almost no difference from that of the OL-YOLOv5. Specifically, for

the brown spot image in the indoor scene, both INAR-SSD and

MEAN-SSD incorrectly regard the dust on the leaves as a grey spot,

whereas the proposed EADD-YOLO does not. Moreover, INAR-

SSD, MEAN-SSD and OL-YOLOv5 have the issue of repeated

recognition of the brown spot area. EADD-YOLO can clearly

identify every diseased area on the grey spot image from the rainy

scene, while INAR-SSD, MEAN-SSD, and YOLOv4 omit the spot

obscured by raindrops. For the rust image with other diseases,

INAR-SSD, MEAN-SSD, and YOLOv4 ignore the small spot on

the leaf edge. In addition, INAR-SSD, MEAN-SSD, and

MobileNetv2-YOLOv3 have problems with inaccurate positioning

of prediction boxes and duplicate rust spot identification. While the

localization and recognition of the proposed EADD-YOLO for each

disease area on the rust image containing multiple diseases are clear

and accurate. The results illustrate that the ability of the proposed

method to identify and locate the disease area is better than other

leaf disease spot detection methods.

In summary, the proposed method shows satisfactory detection

performance with minimal parameters and FLOPs. It can be

concluded that the proposed method is superior to other popular

methods in the task of leaf disease detection.
Frontiers in Plant Science 14
5 Conclusions

In this work, an efficient and accurate network for apple leaf spot

detection, EADD-YOLO, is proposed to solve the problem of many

parameters and the low efficiency of current disease detection

algorithms. The backbone network of EADD-YOLO consists

mainly of SNIR modules , which s ignificant ly reduces

computational costs during feature extraction. The proposed

DWC3 module is applied in the neck network to enhance the

detection speed of the feature fusion. In addition, the introduction

of the CA module and SIoU loss effectively compensates for the loss

of accuracy caused by the lightweight design of the network. The

experimental results show that the detection accuracy of EADD-

YOLO is 95.5%, and the speed reaches 625 FPS. Compared with

other methods, EADD-YOLO has a smaller model size and higher

computational efficiency with excellent detection performance.

Therefore, the proposed method provides technical support for

the rapid diagnosis of early apple leaf diseases. In subsequent

studies, the focus will be on further optimizing EADD-YOLO to

extend it to more crop and fruit disease detection tasks.
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