
Frontiers in Plant Science

OPEN ACCESS

EDITED BY

Fenghui Yuan,
University of Minnesota Twin Cities,
United States

REVIEWED BY

Yan Ruirui,
Chinese Academy of Agricultural Sciences
(CAAS), China
Marta Chiesi,
National Research Council (CNR), Italy

*CORRESPONDENCE

Fang Wang

wfwgw@126.com

Lijuan Zhang

zhlj@hrbnu.edu.cn

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Functional Plant Ecology,
a section of the journal
Frontiers in Plant Science

RECEIVED 09 December 2022
ACCEPTED 24 February 2023

PUBLISHED 15 March 2023

CITATION

Huang Y, Wang F, Zhang L, Zhao J,
Zheng H, Zhang F, Wang N, Gu J, Zhao Y
and Zhang W (2023) Changes and net
ecosystem productivity of terrestrial
ecosystems and their influencing factors in
China from 2000 to 2019.
Front. Plant Sci. 14:1120064.
doi: 10.3389/fpls.2023.1120064

COPYRIGHT

© 2023 Huang, Wang, Zhang, Zhao, Zheng,
Zhang, Wang, Gu, Zhao and Zhang. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that
the original publication in this journal is
cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

TYPE Original Research

PUBLISHED 15 March 2023

DOI 10.3389/fpls.2023.1120064
Changes and net ecosystem
productivity of terrestrial
ecosystems and their
influencing factors in
China from 2000 to 2019

Yutao Huang1†, Fang Wang1*, Lijuan Zhang1*, Junfang Zhao2†,
Hong Zheng3, Fan Zhang4, Nan Wang1, Jiakai Gu1,
Yufeng Zhao1 and Wenshuai Zhang1

1Heilongjiang Province Key Laboratory of Geographical Environment Monitoring and Spatial
Information Service in Cold Regions, Harbin Normal University, Harbin, China, 2State Key Laboratory
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Changes in net ecosystem productivity (NEP) in terrestrial ecosystems in

response to climate warming and land cover changes have been of great

concern. In this study, we applied the normalized difference vegetation index

(NDVI), average temperature, and sunshine hours to drive the C-FIXmodel and to

simulate the regional NEP in China from 2000 to 2019. We also analyzed the

spatial patterns and the spatiotemporal variation characteristics of the NEP of

terrestrial ecosystems and discussed their main influencing factors. The results

showed that (1) the annual average NEP of terrestrial ecosystems in China from

2000 to 2019 was 1.08 PgC, exhibiting a highly significant increasing trend with a

rate of change of 0.83 PgC/10 y. The terrestrial ecosystems in China remained as

carbon sinks from 2000 to 2019, and the carbon sink capacity increased

significantly. The NEP of the terrestrial ecosystem increased by 65% during

2015–2019 compared to 2000–2004 (2) There was spatial differences in the

NEP distribution of the terrestrial ecosystems in China from 2000–2019. Taking

the line along the Daxinganling-Yin Mountains-Helan Mountains-Transverse

Range as the boundary, the NEP was significantly higher in the eastern part

than in the western part. Among them, the NEP was positive (carbon sink) in

northeastern, central, and southern China, and negative (carbon source) in parts

of northwestern China and the Tibet Autonomous Region. The spatial variation of

NEP in terrestrial ecosystems increased from 2000 to 2009. The areas with a

significant increase accounted for 45.85% and were mainly located in the central

and southwestern regions. (3) The simulation results revealed that vegetation

changes and CO2 concentration changes both contributed to the increase in the
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NEP in China, contributing 85.96% and 36.84%, respectively. The vegetation

changes were the main factor causing the increase in the NEP. The main

contribution of this study is to further quantify the NEP of terrestrial

ecosystems in China and identify the influencing factors that caused

these changes.
KEYWORDS

change, net ecosystem productivity (NEP), influencing factors, terrestrial
ecosystem, China
1 Introduction

The Intergovernmental Panel on Climate Change (IPCC)

Sixth Assessment Work Report states that by 2019, the

concentration of carbon dioxide (CO2) in the atmosphere had

reached 409.9 ( ± 0.4) ppm, an increase of 125 ppm over the

previous 170 years, and its warming effect is causing climate

change and frequent climate disasters (IPCC, 2021). The main

sources of carbon dioxide in the atmosphere are fossil fuel

combustion, cement production, land use changes, biological

respiration, and ocean release. The net ecosystem productivity

(NEP) is used to express the net storage of carbon in large-scale

ecosystems and can indicate the carbon dioxide exchange

between a terrestrial ecosystem and the atmospheric system.

Carbon s inks ma in ly inc lude t e r r e s t r i a l e cosy s t em

photosynthesis, ocean absorption, and organic and inorganic

carbon deposited in the land and ocean (Gunter et al., 1998;

Houghton, 1998). As a carbon sink for CO2, terrestrial

ecosystems have become an important component of the

global carbon cycle and play an important role in global

climate change (Aubinet et al., 2018). Therefore, it is of great

significance to accurately evaluate the exchange of CO2 between

terrestrial ecosystems and the atmosphere in studies of the

terrestrial ecosystem carbon cycle.

Many studies have been conducted on the NEP effect on

terrestrial ecosystems and have mainly focused on the

assessment of the NEP effect, the characteristics, and the

mechanisms of the changes. Regarding the assessment of the

NEP effects on terrestrial ecosystems, many studies have been

conducted on the NEP of terrestrial ecosystems globally and in

different countries and regions. In such studies, the average annual

NEP has mainly been estimated. Some scholars have focused on

the average annual NEP of terrestrial ecosystems per unit area. For

example, Zhang et al. (2021) estimated the NEP of the terrestrial

ecosystem in Central Asia during 2000–2020 using a combination

of the Carnegie Ames Stanford Approach (CASA) model and an

empirical model, and its value was determined to be -53.85–108.49

gC/m2/y; Lu and Zhuang (2010) estimated the NEP in the

midwestern United States from 1948 to 2005 using the

terrestrial ecosystem model (TEM), and the result was 87 gC/

m2/y. Some scholars have focused on the total annual NEP of

terrestrial ecosystems. For example, Chinese scholars used the
02
CEVSA, GOSAT, IBIS, CEVSA2, BEPS, TEC, and other models to

simulate the average annual NEP of the terrestrial ecosystems in

China on different time scales. From 1960 to 2010, the average

annual total NEP in different study periods ranged from 0.07 PgC/

y to 1.89 PgC/y (Cao et al., 2003; Zhang et al., 2014; Wang et al.,

2015; Yang et al., 2016; Yao et al., 2018; He et al., 2019; Zhang

et al., 2020; Wang et al., 2021). Nayak et al. (2015) used the CASA

model to simulate the NEP of the Indian terrestrial ecosystem

from 1981 to 2006 and concluded that the average annual NEP

was 10 TgC. Scholars have also paid attention to changes in the

NEP of terrestrial ecosystems in different regions and have

concluded that the change characteristics of the NEP of

terrestrial ecosystems in different regions are different. Zhang

et al. (2021) concluded that the NEP in Central Asia decreased

at a rate of 6.1 gC/m2/10y during 2000–2020. Holland and Brown

(1999) concluded that the NEP of the terrestrial ecosystems in the

United States and Canada increased from 1987 to 1988; From

1981 to 2006, carbon sources became carbon sinks in India (Nayak

et al., 2015). The carbon sink capacity of China’s ecosystems

increased from 2000 to 2015 (Zhang et al., 2020). He et al. (2019)

revealed the decadal-scale changes in the NEP, that is a decrease of

-5.95 TgC/yr2 (decreasing sink) during 1982–2000 and an increase

of 14.22 TgC/yr2 (increasing sink) during 2000–2010. In addition,

the influencing mechanism of the NEP changes in terrestrial

ecosystems has also attracted the attention of some scholars.

Zhao et al. (2020) found that climate change had a positive

effect on the increase in the vegetation carbon storage of the

global forest ecosystem from 2006 to 2010. However, many

scholars have suggested that climate change has had a negative

impact on the carbon sink capacity of terrestrial ecosystems (Tian

et al., 2011; Mu et al., 2015; Sitch et al., 2015; Biederman et al.,

2017; Verduzco et al., 2018). Precipitation and temperature

changes may have profound effects on the carbon cycle (Wang

et al., 2021).

In summary, even though scholars have conducted a great deal

of research on the NEP of terrestrial ecosystems in different regions,

the regions involved are still limited and the conclusions are

different. Even within the same region, taking China as an

example, when the time scale is different, the results are different.

Therefore, research on the NEP of terrestrial ecosystems requires

further discussion. Regarding the study of the changing trend of the

NEP of terrestrial ecosystems, the conclusions also have large
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https://doi.org/10.3389/fpls.2023.1120064
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Huang et al. 10.3389/fpls.2023.1120064
differences and need to be discussed. Regarding the impact

mechanisms of the changes in the NEP of terrestrial ecosystems,

existing studies have mostly focused on the impacts of climate

change. However, changes in vegetation and the concentration of

CO2 are also important factors driving the changes in the NEP, but

limited research has been conducted on this relationship. China is

located in the middle and high-latitude regions of the Northern

Hemisphere, covers a vast area, spans multiple climatic zones, and is

characterized by complex and diverse ecological and environmental

conditions (Tao et al., 2007). It is a key region for studying the

global terrestrial carbon cycle (Liu et al., 2013a).

The main objectives of this study were 1) to use daily

meteorological data and NDVI data to drive the C-FIX model to

simulate the spatial and temporal variations in the NEP of the

terrestrial ecosystems in China from 2000 to 2019, 2) to reveal the

factors influencing the NEP changes in the terrestrial ecosystems in

China by setting up control experiments, and 3) to provide a

scientific basis for revealing the changes in the NEP and their

influencing factors in the terrestrial ecosystems in China. Our

research also provides evidence for the study of global greenhouse

gas concentrations and global climate change.
2 Materials and methods

2.1 Data sources and processing

The parameters driving the C-FIX model mainly include the

NDVI, daily average temperature, daily average radiation, and

atmospheric CO2 concentration. The data acquisition process was

as follows.

2.1.1 Normalized difference vegetation index
The NDVI data used in this study was obtained from the

MOD13A3 product, which has a spatial resolution of 1 km×1 km,

one image per month, and a total of 12 images throughout the year,

and every 35 consecutive images can cover China (row numbers:

h23–h29, column numbers: v03–v08). The NDVI data used in this
Frontiers in Plant Science 03
study were from January 2000 to December 2019, with a total of

8400 images. The data were downloaded from the official National

Aeronautics and Space Administration (NASA) website (https://

ladsweb.nascom.nasa.gov/data/search.html). A total of 240 monthly

NDVI products from 2000 to 2019 were finally processed using the

ERDAS9.1 software to conduct the format conversion, image

merging, and projection conversion. MODIS data for January

2000 was unavailable, so the NDVI data for January 2001

was replaced.
2.1.2 Daily average temperature data
The daily average temperature data used in our analysis were

derived from the daily dataset (V3.0) of Chinese national ground

meteorological stations, which contains daily observations of basic

meteorological elements at 2474 stations in China (Figure 1A),

including basic, reference, and general meteorological stations,

since January 1951. The dataset was produced under strict quality

control, the concerns and errors found during the detection were

generally verified and corrected manually, and similar “ missing

data” phenomena caused by digital omissions were also corrected.

In this study, the daily average temperature data in this dataset were

selected for use, and the time scale was from 2000 to 2019.

Considering the completeness of the data and the accuracy of the

results, after eliminating the stations with poor continuity, the

average temperature data from 2257 meteorological stations were

finally selected for use in the calculations. Spatial interpolation was

performed using ArcGIS and the gradient inverse distance square

method (GIDS) (Lin et al., 2002), and the spatial resolution was kept

consistent with the NDVI data.
2.1.3 Incoming daily global radiation
Since there were relatively few meteorological stations with

ground radiation observations in China, this study estimated the

incoming daily radiation by the daily sunshine hours. The daily

sunshine hours data used were derived from the daily dataset (V3.0)

of Chinese national ground meteorological stations.
A B

FIGURE 1

Spatial distribution of meteorological stations (A), vegetation types and spatial distribution of ChinaFLUX station (B) in China.
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Sg,d = (as + bs
n
N
)Ra (1)

Sg,d : Incoming daily global radiation (MJ/m2/day); n : Actual

sunshine hours (h); N : Maximum possible sunshine hours; Ra :

Clear sky solar radiation (MJ/m2/day); as=0.25 ; bs=0.50

(Jones, 1992).

The daily Ra can be estimated from the solar constant, the

magnetic declination of the Sun, and the position of the day in the

year.

Ra =
24(60)
p

Gscdr½ws sin (f) sin (d ) + cos (f) cos (d ) sin (ws)� (2)

dr = 1 + 0:033 cos (
2p
365

J) (3)

d = 0:408 sin (
2p
365

J − 1:39) (4)

ws = arccos½− tan (f) tan (d )� (5)

N =
24
p

ws (6)

where: Gsc : Solar constant (0.082); dr : Relative distance between

sun and earth; ws : Sunrise and sunset angle (rad); f : latitude (rad);

d : Solar magnetic declination angle (rad); J: Day order [1-365/366]

January 1 takes the day order of 1 (Yan et al., 2016). The calculated

Sg,dwas spatially interpolated using ArcGIS software with the

inverse distance square method (IDS) (Lin et al., 2002), and the

spatial resolution was kept consistent with the NDVI data.
2.1.4 Atmospheric CO2 concentration data
CO2 is a fundamental substance for photosynthesis in

vegetation, and an increase in the atmospheric CO2 concentration

will inevitably affect the photosynthetic outcome of vegetation.

Moreover, atmospheric CO2 concentration data are one of the

parameters driving the C-FIX model. In this study, the global
Frontiers in Plant Science 04
monthly atmospheric CO2 mixture concentrations measured

during 2000–2019 and reported in the Copenhagen conference

proceedings were selected and downloaded from http://

co2now.org/.

2.1.5 Land use/cover data
The global land cover data from the Climate Change Initiative-

Land Cover (CCI-LC) dataset developed by European Space Agency

(ESA), which has a high precision and long time series, were

adopted. The data format is TIFF, the coordinate system is

WGS1984, and the spatial resolution is 300 m. The land use/

cover data for 2000, 2005, 2010, and 2015 were downloaded from

the official website of the ESA (http://maps.elie.ucl.ac.be/CCI/

viewer/index.php). The data for China’s regional land use/cover

in 2000, 2005, 2010, and 2015 were obtained by cutting them with

the Chinese area vectorization layer. According to the land use/

cover classification system developed by the Food and Agriculture

Organization of the United Nations, this product divides the land

use types into 22 categories and 36 subcategories. To maintain

better data consistency, based on the United States Geological

Survey’s (USGS) classification system, the land cover types of the

entire country were reclassified into 11 types: evergreen coniferous

forest, evergreen broad-leaved forest, deciduous coniferous forest,

deciduous broad-leaved forest, mixed forest, shrubland, grassland,

agriculture, savanna, sparse vegetation and other (Figure 1B).
2.2 C-FIX model introduction

The C-FIX model is a light energy utilization model based on

Monteith’s theory (Veroustraete, 1994), which enables the

simulation of three fundamental carbon cycle components (the

gross primary productivity (GPP), net primary productivity (NPP),

and NEP) estimated at regional and global scales. In recent years,

many scholars have used the C-FIX model to simulate the GPP,

NPP, and NEP, and have achieved good simulation results (Lu et al.,

2005; Zhang et al., 2011; Yan et al., 2016). For each pixel, daily GPP,
TABLE 1 Description of parameters in the C-FIX model.

Parameter Significance Value Unit

p(Tatm) Normalized temperature dependency factor [0,1] (Wang, 1996) [-]

CO2fert Normalized CO2 fertilization factor (Veroustraete, 1994) [-]

ϵ Radiation Use Efficiency (RUE) gC/MJ

C Climatic efficiency (McCree, 1972) 0.48 [-]

Sg,d Incoming daily global radiation MJ/m2/d

Ad Autotrophic respiratory fraction (Goward and Dye, 1987) [-]

Rh,d Heterotrophic respiration (Maisongrande et al., 1995) gC/m2/d

fAPAR Fraction of absorbed Photosynthetically Active Radiation (PAR) (Asrar et al., 1984)
fron
ϵ of (8) was assigned by different land use types in Table 3.
[-] Indicates that there is no unit.
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NPP, and NEP were estimated according to Eq. (7) to Eq. (14).

Table 1 and Table 2 list the parameters of the C-Fix model

(Veroustraete et al., 2002).

GPPd = p(Tatm)� CO2fert � ϵ� fAPAR� c� Sg,d (7)

NPPd = GPPd � (1 − Ad) (8)

NEPd = NPPd − Rh,d (9)

p(Tatm) =
e
(C1−

DHa,p
Rg ·T

)

1 + e
(
DS·T−DHd,p

Rg ·T
)

(10)
Frontiers in Plant Science 05
CO2fert =
½CO2� − ½O2�

2t

½CO2�ref − ½O2�
2t

Km(1 +
½O2�
K0

) + ½CO2�ref

Km(1 +
½O2�
K0

) + ½CO2�
(11)

fAPAR = 1:1638� NDVI − 0:1426 (12)

Ad = (7:825 + 1:145Ta)=100 (13)

Rh,d = ks,y :Q
Ta=10
10 (14)

The affinity coefficients Km and K0 show a temperature

dependence according to an Arrhenius relationship:

Km = Ae(−Ea=RgT) (15)
TABLE 2 List of the parameters used in the Eq. (10) to Eq. (14) (Veroustraete et al., 2002).

Parameter Significance Value Unit

C1 Constant 21.77

△Ha,p Activation energy 52750 J/mol

DS Entropy of the denaturation equilibrium of CO2 704.98 J/K/mol

Rg Gas constant 8.31 J/K/mol

T Air temperature K

Ta Air temperature °C

△Hd,p Deactivation energy 211000 J/mol

t CO2/O2 specificity ratio

[CO2] CO2 concentration in the mesophyll tissue of leaves ppmv

[O2] O2 concentration in the mesophyll tissue of leaves 20.9 ppmv

[CO2]
ref CO2 concentration in the atmosphere 285 ppmv

Km Affinity constant for CO2 of Rubisco [%CO2]

K0 Inhibition constant for O2 [%O2]

NDVI Normalized difference vegetation index

ks,y Heterotrophic respiratory rate coefficient gC/m2/d

Q10 The relative increase of the respiratory flux 1.5

for a 10K increase in temperature Ta
front
TABLE 3 Radiation Use Efficiency (ϵ) of vegetation in different land use types (Zhang et al., 2018).

Land use types Ɛ(gC/MJ) Land use types Ɛ(gC/MJ)

Evergreen coniferous forest 1.01 Shrubland 0.83

Evergreen broad-leaved forest 1.26 Grassland 0.61

Deciduous coniferous forest 1.10 Agriculture 0.60

Deciduous broad-leaved forest 1.04 Savanna 0.77

Mixed forest 1.12 Sparse vegetation 0.39

Others 0.39
iersin.org
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if: Ta ≥ 15°C then Ea1 = 59.4 kJ/mol and A1 = 2.419×1013

or if Ta< 15 °C then Ea2 = 109.6 kJ/mol and A2 = 1.976×1022

The inhibition constant K0 for O2 is calculated according to Eq.

(16), where A0 = 8240 and Ea0 = 13.9135 kJ/mol.

t = At e
(−Eat=RgT) (16)

Wherein, At = 7.87×10-5 and Eat = -42.8969 kJ/mol.

ks,y =
o
365

d=1

GPPd
by

o
365

d=1

p(Tatm)d

(17)

The parameter by is the mean annual calibration coefficient of

soil heterotrophic respiration, and the value is 1.0.

The specific simulation process was as follows. The 300 m land

use/cover data layers for 2000, 2005, 2010, and 2015 were used to

present the annual land use/cover data layers for 2000–2004, 2005–

2009, 2010–2014, and 2015–2019, respectively. According to the

land use/cover data, the radiation use efficiency (ϵ) layer for 2000–
2019. For each pixel, the daily average temperature, daily sunshine

hours, ϵ, and the concentration of CO2 and NDVI were adopted to

drive the C-FIX model, and the daily raster layer of the GPP, NPP,

and NEP was obtained. The monthly and yearly average values were

subsequently calculated via numerical integration of the flux

functions over the number of days in the considered assessment

period, mostly 1 year. When NEP>0, the terrestrial ecosystem is a

carbon sink and vice versa.
2.3 Controlled experiment method

To reveal the causes of the carbon source/sink effects in China’s

terrestrial ecosystems, we analyzed the effects of vegetation changes,

climate changes (temperature and radiation), and atmospheric CO2

changes on the NEP of China’s terrestrial ecosystems and their

contribution rates. In this study, the controlled experiment method

was applied, that is, the different driving factors were controlled to

simulate the difference between the NEP under the actual scenario

and under the controlled terrestrial ecosystems, which was defined

as the effect of the controlling factor on the carbon source/

sink (Table 4).

Taking the analysis of the impact of the vegetation changes on

the NEP as an example, controlled experiment 1 is described in

Table 4. The temperature, radiation, and atmospheric CO2

concentration remained unchanged, and only the NDVI was
Frontiers in Plant Science 06
changed. To avoid the effect of anomalous years, we used the 5-

year average values. The average temperature, radiation, and CO2

concentration from 2015–2019 and the average NDVI from 2000–

2004 were used to drive the C-FIX model to simulate the NEP of the

vegetation, which was considered to be the simulated value of the

NEP under the controlled experiment. The average temperature,

radiation, CO2 concentration, and average NDVI during 2015–2019

were used to drive the C-FIX model to simulate the NEP, which was

considered to be the actual value. The simulated value was

subtracted from the actual value, and the difference was the NEP

caused by the vegetation change.

Dvariation = NEPactual-NEPsimulated (18)

Where: Dvariation is the NEP change caused by the vegetation

change, NEPsimulated is the simulated NEP value, and NEPactual is the

actual NEP value.
2.4 Trend analysis method

A univariate linear regression equation of the GPP, NPP, and

NEP (y) and the corresponding time (x) was established:

y = ax + b  (i = 1, 2,…, n) (19)

where a is the linear regression coefficient indicating the rate of

change in the GPP, NPP, and NEP. A positive or negative value of a

indicates that the GPP, NPP, and NEP are increasing or decreasing

over time, respectively.

The kappa coefficient is generally used to determine the degree

of agreement or accuracy between two images, and its calculation

formula is (Cohen, 1960):

k =
p0 − pe
1 − pe

(20)

Among them, P0 is the sum of the number of samples correctly

classified in each category divided by the total number of samples,

which is the overall classification accuracy. Assume that the

numbers of real samples in each category are a1, a2,…, ac, and

that the predicted numbers of samples in each category are b1, b2,…,

bc, and that the total number of samples is n. Then:

Pe =
a1 � b1 + a2 � b2 +… + ac � bc

n� n
(21)

The kappa coefficient calculation results are -1–1, but usually,

the kappa falls between 0 and 1, which can be divided into five

groups to indicate the different levels of consistency: 0.0–0.20, very
TABLE 4 Controlled experiments.

Controlled experiments Input parameters for the Simulated value Input parameters for the Actual value

Experiment 1 (controlled NDVI) Ta, Sg,d, [CO2] (2015-2019); NDVI (2000-2004) Ta, Sg,d, [CO2], NDVI (2015-2019)

Experiment 2 (controlled Ta, Sg,d) [CO2], NDVI (2015-2019); Ta, Sg,d (2000-2004) Ta, Sg,d, [CO2], NDVI (2015-2019)

Experiment 3 (controlled [CO2]) NDVI, Ta, Sg,d (2015-2019); [CO2] (2000-2004) Ta, Sg,d, [CO2], NDVI (2015-2019)
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low consistency; 0.21–0.40, general consistency; 0.41–0.60,

moderate consistency; 0.61–0.80, high consistency; and 0.81–1

almost identical (Stehman, 1996).
2.5 Statistical analysis

The error analysis of simulated data was conducted by

comparison with the measurements. The mean error, root mean

square error (RMSE), and correlation coefficient (R) was used, and

calculated as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
no

n

i=1
(xi − yi)

2

s
(22)

where xi represents the simulated data; yi indicates the actual

data; x is the average value of the interpolated data; y is the average

value of the measured data, and n represents the number of

the sample.
3 Results and analysis

3.1 Verification of C-FIX model
simulation results

In order to verify the simulation accuracy of the C-FIX model

more precisely, the GPP, NPP, and NEP were verified.

Verification of GPP: The monthly measured GPP data were

obtained from eight stations in the China Terrestrial Ecosystem

Flux Observation and Research Network (ChinaFLUX), among

which four were forest stations (CBS, QYZ, DHS, and XSBN),

three were grassland stations (DX, NMG, and HB), and one was a

cultivated land station (YC). When selecting the verification points,
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the locations of the verification points were taken into account, that

is, they covered the four directions of China, and the vegetation

types at the verification points were considered, including forest,

grassland, and agriculture. Finally, the monthly measured GPP data

for stations CBS, QYZ, DX, YC, and NMG from 2004 to 2010 were

selected for verification. According to the latitude and longitude of

each observation station, the monthly simulated GPP values of the

grid from 2004 to 2010 were extracted, and the accuracy of the

simulated values was verified using the trend comparison (Figure

2A) and the scatter plot (Figure 2B). The R2 between the simulated

values and measured values at the five stations are 0.92, 0.68, 0.59,

0.56, and 0.78, and they all passed the 0.01 probability level test,

indicating that the trends of the simulated and measured values are

basically the same. The RMSE of the five stations is 31.71 gC/m2/m,

9.71 gC/m2/m, 1.65 gC/m2/m, 0.59 gC/m2/m, and 102.55 gC/m2/m,

indicating that stations CBS, QYZ, DX, and NMG are within 10% of

the measured value, and station YC is greater than 10%. Thus, the

simulations for stations CBS, QYZ, DX, and NMG have a higher

accuracy, and the simulation for station YC has a slightly poorer

accuracy. In summary, the C-FIX model can simulate the terrestrial

ecosystem GPP well. Specifically, the vegetation ecosystem GPP

simulation accuracy is higher for the forest and grassland (Figure 2).

Verification of NPP: The research results of the annual mean

NPP of the terrestrial ecosystems in China in recent years are

further summarized in Table 5. It can be seen that the models used

include the BEPS, C-FIX, GEOPRO, M-SDGVM, CASA, MuSyQ-

NPP, LPJ-DGVM, and the annual average NPP is between 1.92 and

4.37 PgC/y (Table 5). A numerical comparison could not be

conducted due to the different time scales of the simulations.

However, the simulated values of the BEPS, GEOPRO, MuSyQ-

NPP, and LPJ-DGVM are relatively low, while those of the C-FIX

and M-SDGVM are slightly higher. The CASA simulation results

show that the average annual NPP of the regional terrestrial

ecosystem in China was 3.38–4.35 PgC/y from 1981 to 2008,
A

B

FIGURE 2

Verification of the GPP (unit: gC/month) (A) trend comparison (B) the scatter plot of simulated GPP and observations.
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2.25–2.62 PgC/y from 2001 to 2010, and 2.93 PgC/y in 2015,

indicating inter-annual fluctuations. Based on the simulation

results of the C-FIX model, the average annual NPP of the

regional terrestrial ecosystem in China from 2000 to 2019 was

3.34 PgC/y. Compared with previous studies, our simulation results

are less than the maximum value and greater than the minimum

value, i.e., within a reasonable range. The simulation results

presented in this study are credible.

Verification of NEP: Figure 3 presents a comparison of our C-

FIX model simulation results for the terrestrial ecosystem NEP in

China and the results of previous studies. The results of different

studies differ greatly. The simulation results of the CEVSA2, BEPS,

TEC, IBIS, GOSAT, and other models are small, while the NEP

values observed using vorticity correlation measurement methods

are high. In summary, different researchers have applied different

time scales, different model parameters, and different driving data

sources, resulting in different results. The results of the previous

studies show that the NEP in the terrestrial ecosystems in China was

0.07–1.89 PgC; however, in this study, the NEP values of the

terrestrial ecosystems in China during 2000–2019 were calculated

to be 0.6–1.38 PgC. The calculated results are within the NEP

thresholds of previous studies, further demonstrating the accuracy

of our results.
3.2 Temporal and spatial variation
characteristics of carbon sources/
sinks in China’s terrestrial ecosystems
from 2000 to 2019

3.2.1 Temporal patterns and change
characteristics of the GPP, NPP, and NEP

The mean GPP, NPP, and NEP values of the regional terrestrial

ecosystems in China from 2000 to 2019 were 4.75 PgC, 3.34 PgC,

and 1.08 PgC, respectively. Figure 4 shows the temporal variations

in the GPP, NPP, and NEP in China’s regional terrestrial

ecosystems during 2000–2019. It shows that all three exhibited
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increasing trends with annual coefficients of variation of 7.86%,

7.72%, and 24.45%, respectively, indicating that the interannual

variations in the GPP and NPP in China’s regional terrestrial

ecosystems were small. The rates of increase of the GPP, NPP,

and NEP of the regional terrestrial ecosystems in China from 2000

to 2019 were 0.86 PgC/10 y, 0.86 PgC/10 y, and 0.83 PgC/10 y,

respectively (Figure 4), and the equations passed the 0.01

probability level test (R2 critical value of 0.608). Furthermore,

Figure 4 shows that the terrestrial ecosystems in China remained

a carbon sink during 2000–2019, and their carbon sink capacity

increased significantly. Analysis of the variance of the annual mean

NEP of the terrestrial ecosystems in China during 2015–2019 and

2000–2005 revealed that there was a significant difference between

these two periods at the 0.01 level, further confirming that the NEP

of China’s regional terrestrial ecosystems changed significantly

during 2000–2019.

3.2.2 Spatial patterns and change characteristics
of the GPP, NPP, and NEP

Figure 5 shows the spatial patterns of the GPP, NPP, and NEP

of the terrestrial ecosystems in China from 2000 to 2019. Figure 5A

showed that the GPP, NPP, and NEP of the terrestrial ecosystems in

China during 2000–2019. Taking the line along the Daxinganling-

Yin Mountain-Helan Mountain-Hengduan as the boundary, the

values were significantly higher in the eastern part than in the

western part. Most of the high-value annual average GPP areas had

values of >1750 gC/m2, while the low-value areas in the west had

values of<500 gC/m2, and the values in the central and northeastern

regions were basically within 750–1500 gC/m2. Most of the high-

value annual average NPP areas had values of >1500 gC/m2, while

the low-value areas in the west had values of<250 gC/m2, and the

values in the central and northeastern regions were basically within

500–1250 gC/m2 (Figure 5B). Most of the high-value annual

average NEP areas in the southeastern region had values of >1000

gC/m2, while the low-value areas in the west had values of<-500 gC/

m2, and the values in the central and northeastern regions were

basically within 0–750 gC/m2 (Figure 5C).
TABLE 5 Summary of studies on NPP in China.

Methods Study periods NPP ranges (PgC/y) References

BEPS model 2001 2.24 Feng et al. (2007)

C-FIX model 2003 4.37 Chen et al. (2007)

GEOPRO model 2000-2004 2.42-2.84 Gao and Liu (2008)

M-SDGVM 1981-2000 3.30 Mao et al. (2010)

CASA model 1981-2008 3.38-4.35 Chen et al. (2011)

BEPS model 2000-2010 2.63-2.84 Liu et al. (2013b)

CASA model 2001-2010 2.25-2.62 Pei et al. (2013)

CASA model 2015 2.928 Li et al. (2018)

MuSyQ-NPP 1982-2012 1.92-2.73 Wang et al. (2019)

LPJ-DGVM model 1961-2016 2.8-3.1 Huang et al. (2019)

C-FIX model 2000-2019 3.34 This study
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Figure 6 shows the spatial variation characteristics of the annual

average GPP, NPP, and NEP of the terrestrial ecosystems in China

from 2000 to 2019. The spatial changes in the GPP, NPP, and NEP

were consistent, and their rates of change were high in the south and

east and low in the north and west. Their rates of change were all

dominated by significantly increasing trends (Figures 6A–C). The

areas with significant increases in the GPP, NPP, and NEP of the

terrestrial ecosystems accounted for 50.51%, 50.67%, and 45.85% of

the total area of the country, respectively, and the areas with high

values of significant increase were mainly located in the central and

southwestern regions. The areas with significant decreases in the

GPP, NPP, and NEP of the terrestrial ecosystems accounted for

18.23%, 18.51%, and 36.01% of the total area of the country,

respectively, and the areas with significant decreases were mainly

sporadically distributed in eastern and northwestern China. The

carbon sink capacity in central and southwestern China

continuously increased, while in eastern China and some parts of

northwestern China, the carbon sink capacity decreased even

though these areas were carbon sink areas.

3.3 Analysis of influencing factors of NEP
changes in terrestrial ecosystems in China
from 2000 to 2019

Three sets of controlled experiments were conducted to investigate

the factors influencing the NEP changes in the terrestrial ecosystems in

China. The results showed that vegetation changes and CO2
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concentration changes caused the increase in the NEP of the

terrestrial ecosystems in China from 2000 to 2019. However, climate

change caused the decrease in the NEP. Vegetation changes caused the

largest increase in the NEP in the terrestrial ecosystems in China (0.49

PgC), which was 2.3 times the increase in the NEP caused by changes

in the CO2 concentration (Table 6). The effect of climate change on the

NEP was 26.53% and 61.90% that of the effects of the changes in the

vegetation and CO2 concentration on the NEP. Assuming that the

absolute value of the NEP caused by each factor was 100%, the change

in the NEP caused by vegetation changes accounted for 85.96%, while

those caused by climate change and changes in the atmospheric CO2

concentration accounted for -22.80% and 36.84%, respectively,

implying that the vegetation changes were the main cause of the

increase in the carbon absorption in the terrestrial ecosystems in China.

The spatial patterns of the controlled experiment results show that

the vegetation changes increased the NEP of the terrestrial ecosystems

in 61.53% of the entire country, and the high-value areas were located

in the Daxinganling-Taihang Mountains-Qinling area and southern

China. The vegetation changes only caused a decrease in the NEP of the

terrestrial ecosystems in 16.96% of the total area, mainly in Hulunbeier,

Inner Mongolia, and parts of eastern China (Figure 7A). Climate

change caused an increase in the NEP of the terrestrial ecosystems in

14.89% of the total area, mainly in Yunnan Province in southwestern

China, while it caused a decrease in the NEP in 63.60% of the terrestrial

ecosystems, mainly in northeastern, central, and eastern China

(Figure 7B). The changes in the CO2 concentration caused an

increase in the NEP in 73.82% of the regional terrestrial ecosystems

in China, and the high-value areas were located in southeastern China;

changes in the CO2 concentration caused a decrease in the NEP in only

4.67% of the region, mainly sporadically distributed in northwestern

China and the Qinghai-Tibetan Plateau (Figure 7C).

Based on the spatial distribution characteristics, the CO2

concentration changes, vegetation changes, and climate change

caused increases or decreases in the NEP of the terrestrial

ecosystems in some regions. Therefore, the factors causing the

changes in the NEP of the terrestrial ecosystems in the different

administrative regions of China were revealed through the control

experiments (Table 7). The vegetation changes were the main factor

causing the changes in the NEP of the terrestrial ecosystems in

northeastern, northern, eastern, central, southern, northwestern,

and southwestern China. The proportion of the provinces and cities

in which the NEP of the terrestrial ecosystems was affected by

vegetation was 93.97%, mainly in Heilongjiang Province, the Inner
FIGURE 4

Changes in the GPP, NPP, and NEP in China from 2000 to 2019.
FIGURE 3

Verification of the NEP.
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FIGURE 6

Spatial variations in the (A) GPP, (B) NPP, and (C) NEP in China from 2000 to 2019.
FIGURE 5

Spatial distributions of the (A) GPP, (B) NPP, and (C) NEP in China from 2000 to 2019.
TABLE 6 Results of controlled experiments (TgC=1012 gC).

Controlled experiment Simulated value Actual value Dvariation

Experiment 1 (controlled NDVI) 0.83 1.32 0.49

Experiment 2 (controlled Ta, Sg,d) 1.45 1.32 -0.13

Experiment 3 v(controlled [CO2]) 1.11 1.32 0.21
F
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DThe NEP change caused by the vegetation/climate/atmospheric CO2 change.
FIGURE 7

Spatial distribution of the NEP changes based on the controlled trials: (A) vegetation changes; (B) climate change; and (C) CO2 density changes.
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Mongolia Autonomous Region, Guangxi Province, Shaanxi

Province, Yunnan Province, and Sichuan Province. Jiangsu

Province and Taiwan Province were affected by the changes in

CO2 concentration, accounting for 6.06%.
4 Discussions

(1) In this study, the spatial and temporal patterns and change

characteristics of the NEP of the terrestrial ecosystems in China

during 2000–2019 were analyzed based on simulations of the GPP,

NPP, and NEP of the terrestrial ecosystems conducted using the C-

FIX model of light energy utilization, and the factors influencing the

changes in the NEP of the terrestrial ecosystems in China were

further analyzed. The results of this study not only provide and

update basic data on carbon stocks in regional terrestrial ecosystems

in China but also provide a basis for quantitative analysis of the

carbon stock changes in terrestrial ecosystems in China.

(2) Some scholars have studied the ratio of the NPP to the GPP.

For example, Zhang et al. (2009) used MODIS data for 2000–2003

to calculate the ratio of the NPP to the GPP of global terrestrial

ecosystems and obtained a value of 0.52. Wang (2012) reported that

the annual average ratio of the NPP to the GPP for the terrestrial

ecosystems in east Asia during 1949–2008 was 0.604 based on the

atmospheric-vegetation interaction model version 2 (AVIM2).

Scholars have also calculated the ratio of the NPP to the GPP for

the forest system. Landsberg et al. (2020) used the forest grow

model 3-PG to analyze the ratio of the NPP to the GPP at more than

200 forest stations. Their results revealed that the range of the values

was mostly 0.4–0.6. Waring et al. (1998) reported that the ratio of

the NPP to the GPP of forest ecosystems was between 0.22 and 0.79.

By comparing the NPP/GPP ratios of different regions simulated

using the C-FIX model, Song et al. (2021) determined that the NPP/

GPP ratio of terrestrial ecosystems in the Gannan region of China in

2019 was 0.77. It can be seen that due to the different data resources

and different simulation methods used, the results of the NPP/GPP

ratios of different ecosystems are different, with values of basically
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between 0.22 and 0.79. In this study, the annual average NPP/GPP

ratio of China’s terrestrial ecosystems from 2000 to 2019 calculated

using the C-FIX model was 0.70. Based on a comprehensive

comparison, the NPP/GPP ratio simulated using the C-FIX model

is high, but it is within a reasonable range. According to the test

results of this study, the GPP simulated using the C-FIX model is

slightly lower, while the NPP is slightly higher, which is the reason

why the NPP/GPP ratio is high.

(3) The C-FIX model is a light energy utilization model, and its

Radiation Use Efficiency (ϵ) is an important parameter for

constraining the accuracy of the model (Yuan et al., 2014). Its

value is influenced not only by the vegetation type but also by the

uniformity of the vegetation cover, and there are differences in the ϵ
values of different vegetation types (Yan et al., 2016). Thus far, while

most scholars have used the C-FIX model to simulate the GPP,

NPP, and NEP of terrestrial ecosystems, the radiation use efficiency

(ϵ) of vegetation has been set as a constant, i.e., the differences in the

radiation use efficiencies of different types of vegetation were not

considered. For example, in previous studies, when simulating the

GPP, NPP, and NEP in the ecosystems in China (Chen et al., 2007),

western China (Lu et al., 2005), the Gannan region of China (Song

et al., 2021), and other places, the ϵ value was set as 1.1 gC/MJ.

However, as the accuracy of the simulation has improved in recent

years, some scholars noticed the difference in the ϵ values of

different types of vegetation. When Yan et al. (2016) used the C-

FIX model to simulate the GPP, NPP, and NEP of a terrestrial

ecosystem, they divided the vegetation types in the region into six

types (i.e., cultivated land, grassland, closed forest, shrub, open

forest, and other forests), and the ϵ value was set according to the

vegetation type. Based on the vegetation types in China and

referring to the results of previous research, in this study, the

vegetation types were divided into 11 types with different ϵ values
(Table 3). In order to compare the two different assignments, the

difference between the simulation results of the two scenarios was

further assessed. When the radiation use efficiency of all of the

vegetation was assigned a constant value (ϵ=1.1), the simulated total

annual GPP of the terrestrial ecosystem in China during 2000–2019

was 6.76 PgC. In contrast, when the ϵ was assigned according to the
A B

FIGURE 8

Spatial distribution of the NEP under different radiation use efficiencies: (A) ϵ=1.1; (B) ϵ (Table 2).
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TABLE 7 NEP changes in each administrative region in China under the control of the experimental situation (TgC).

g Administrative NDVI CO2 Climate Influencing

district change change change factors

Henan 11.73 6.27 -5.13 ▲

Hunan 20.13 10.88 -4.28 ▲

Hubei 18.04 8.76 -4.28 ▲

Guangxi 36.3 15.84 -16.47 ▲

Guangdong 18.23 10.59 12.95 ▲

Hainan 4.26 2.56 -3.14 ▲

Hong Kong -0.02 0.003 -0.01 ▲

Shanxi 30.45 8.85 0.2 ▲

Gansu 20.57 4.15 -1.78 ▲

Ningxia 3.72 0.57 -0.55 ▲

Qinghai 7.81 1.54 -1.66 ▲

Xinjiang 12.78 4.18 -6.49 ▲

Yunnan 62.2 22.59 4.06 ▲

Sichuan 39.32 13.46 1.03 ▲

Guizhou 23.41 9.23 -2.37 ▲

Chongqing 11.05 3.93 -1.62 ▲

Tibet 13.42 6.05 0.35 ▲
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Administrative NDVI CO2 Climate Influencin

district change change change factors

Heilongjiang 27.23 14.49 -9.45 ▲

Liaoning 8.5 4.67 -2.78 ▲

Jilin 10.22 6.15 -1.8 ▲

Beijing 1.52 0.61 -0.08 ▲

Tianjin 0.3 0.23 -0.25 ▲

Hebei 11.55 5.36 -3.14 ▲

Shaanxi 21.83 5.09 -0.54 ▲

Inner Mongolia 30.38 14.27 -12.38 ▲

Shandong 6.3 3.92 -4.22 ▲

Jiangsu 0.15 2.4 -2.04 •

Anhui 8.37 5.32 -3.64 ▲

Shanghai -0.2 0.08 -0.13 ▲

Zhejiang 7.82 4.9 -5.44 ▲

Jiangxi 14.8 8.9 -10.25 ▲

Taiwan 2.74 2.82 -1.34 •

Fujian 12.38 8.11 -9.94 ▲

No data for Macao; ▲: NDVI; ■, Climate; •, CO2.
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vegetation types, the GPP was 4.75 PgC. It can be seen that there is a

difference between the two results. When the ϵ value is assigned as a

constant, the simulation result is high, and the difference between

the two is 2.01 PgC. The spatial distributions of the simulated total

annual GPP of the terrestrial ecosystems in China during 2000–

2019 obtained using the two methods are shown in Figure 8.

Through this comparison, it can be seen that when ϵ is assigned

according to the vegetation type, the spatial differentiation of the

GPP is significantly improved. Therefore, assigning different

radiation use efficiency values to the different vegetation types

makes the simulated values more accurate and the spatial

differentiation clearer.

(4) Until now, although researchers have simulated the carbon

source/sink changes in terrestrial ecosystems in different regions in

China and abroad, few studies have analyzed the influencing factors

of these changes. Studies of the factors influencing NEP changes

have mainly focused on climate change, and the results are different.

For example, Cao et al. (2003) analyzed climate change and the

changes in the NEP of the terrestrial ecosystem in China from 1981

to 1998 and reported that climate change weakened the terrestrial

ecosystem’s carbon sink capacity. He et al. (2019) reported that the

carbon sink capacity in China increased from 2000 to 2010, and this

shift was mainly influenced by the enhanced summer monsoon,

with the climate effect accounting for 56.3%. Compared with

previous studies, this study not only focused on the impacts of
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climate change on the NEP but also revealed the impacts of

vegetation changes and CO2 concentration changes on the NEP.

The results of this study provide a reference for studying the NEP

mechanism in regional terrestrial ecosystems.

(5) In this study, by using the controlled experiment method, it

was concluded that the increase in the NEP in more than 90% of the

provinces in China was influenced by vegetation changes, among

which the NEP in Yunnan, the Inner Mongolia Autonomous

Region, and Shaanxi and Guangxi provinces was most

significantly influenced by the vegetation changes. To further

verify these results, we reviewed the white paper Twenty Years of

Returning Farmland to Grassland in China (1999–2019) and found

that 515 million acres of cropland were returned to forest and

grassland in China in the past 20 years, of which the increase in

forest land was 502 million acres, and data on vegetation changes in

the major provinces in China were obtained (Table 8). As can be

seen from Table 8, in Yunnan Province, the Inner Mongolia

Autonomous Region, Shaanxi Province, and the Guangxi Zhuang

Autonomous Region 107.5 million acres have been afforested since

1999, accounting for 21.41% of the total reforestation area in China.

We conclude that the reforestation area in these four provinces

accounted for 20% of the total reforestation area in China, and the

woodland area increased significantly (Table 8). Moreover, the four

administrative regions of Yunnan Province, the Inner Mongolia

Autonomous Region, Shaanxi Province, and the Guangxi Zhuang

Autonomous Region also experienced the largest changes in the

terrestrial carbon sink capacity due to vegetation changes,

exhibiting good consistency. This also indicates that the research

results of this study are consistent with reality.

Based on the NDVI data for China downloaded from the

MODIS website, we calculated the rate of change of the NDVI in

China from 2000 to 2019 (Figure 9). The results show that the

NDVI increased in 64.66% of China. This further confirms that the

state of the surface vegetation in China improved from 2000 to

2019, and these vegetation changes were the main factor leading to

the maintenance of the carbon sinks in the regional terrestrial

ecosystems in China and the significant increase in the carbon

sink capacity.

(6) In this study, during image data processing, when layer

overlay, cropping, and raster calculation were performed, more

complicated data processing and calculation processes such as

projection conversion, graphic correction, vector data and raster

data conversion, boundary alignment, and spatial statistics were

required. The mapping process also involved the conversion of the
TABLE 8 Afforestation area in Yunnan Province, Inner Mongolia Autonomous Region, Shaanxi Province, and Guangxi Province (10,000 mu).

Administrative district Reforestation
area

Area of farmland to
forest

Reforestation area of
barren hills

Forestation of closed
hills

Yunnan Province (2000-2015) 1813.93 533.10 1060.33 220.50

Inner Mongolia Autonomous Region
(2000-2013)

4261.00 1383.00 2547.00 331.00

Shaanxi Province (2000-2018) 3694.50 1867.50 1932.70 239.50

Guangxi Zhuang Autonomous Region
(2001-2018)

1536.70 402.00 975.70 159.00
FIGURE 9

Spatial variations in the NDVI in China from 2000 to 2019.
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geographic coordinate system, all of which affected the accuracy of

the simulation results.

5 Conclusions
Fron
(1) The mean GPP, NPP, and NEP values of the regional

terrestrial ecosystems in China from 2000 to 2019 were 4.75

PgC, 3.34 PgC, and 1.08 PgC, respectively, exhibiting highly

significant increasing trends with rates of change of 0.86

PgC/10 y, 0.86 PgC/10 y, and 0.83 PgC/10 y, respectively.

The terrestrial ecosystems in China were maintained as

carbon sinks during 2000–2019, and their carbon sink

capacity increased significantly.

(2) The GPP, NPP, and NEP of China’s terrestrial ecosystems

during 2000–2019 exhibited high spatial variability, i.e.,

high in the south and east and low in the north and low

west. Take the Daxinganling-Yin Mountain-Helan

Mountain-Hengduan Mountains line as the boundary, the

values were significantly higher in the eastern part than in

the western part. The spatial change rates of the GPP, NPP,

and NEP mainly increased. The areas with significant

increases were distributed in central and southwestern

China, while the areas with significant decreases were

sporadically distributed in eastern and northwestern China.

(3) Vegetation changes and CO2 concentration changes caused

the increase in the NEP in the terrestrial ecosystems in China

during 2000–2019, while climate change had the opposite

effect, with contribution rates of 85.96%, 36.84%, and -22.80%,

respectively, indicating that vegetation changes were the main

reason for the increase in the carbon absorption in the

terrestrial ecosystems in China. The vegetation changes

increased terrestrial ecosystem NEP in 63.60% of China, and

the high-value areas were located in the Daxinganling-Taihang

Mountains-Qinling area and southern China.

(4) During 2000–2019, the carbon source/sink capacity of the

terrestrial ecosystems in more than 90% of the provinces and

cities was affected by vegetation changes, and the vegetation

changes led to an increase in the carbon sink capacity in 31

provinces and cities, except for Shanghai and Hong Kong. The

changes in the CO2 concentration led to an increase in the

carbon sink capacity in the entire country, while climate

change weakened the carbon sink capacity.
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