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of salt stress response genes
of NAC transcription factors
in Ipomoea pes-caprae

Yiren Su †, Yang Liu †, Shizhuo Xiao, Yuan Wang, Yitong Deng,
Lukuan Zhao, Yao Wang, Donglan Zhao, Xibin Dai,
Zhilin Zhou and Qinghe Cao*

Jiangsu Xuzhou Sweetpotato Research Center/Sweetpotato Research Institute, Chinese Academy of
Agricultural Sciences, Xuzhou, China
Adverse environmental stress is a major environmental factor threatening food

security, which is why improving plant stress resistance is essential for agricultural

productivity and environmental sustainability. The NAC (NAM, ATAF, and CUC)

transcription factors (TFs) play a dominant role in plant responses to abiotic and

biotic stresses, but they have been poorly studied in Ipomoea pes-caprae. In this

research, 12 NAC TFs, named IpNAC1–IpNAC12, were selected from transcriptome

data. The homologous evolution tree divided IpNACs into fourmajor categories, and

six IpNACs were linearly associated with Arabidopsis ANAC genes. From the gene

structures, protein domains, and promoter upstream regulatory elements, IpNACs

were shown to contain complete NAC-specific subdomains (A–E) and cis-acting

elements corresponding to different stress stimuli. We measured the expression

levels of the 12 IpNACs under abiotic stress (salt, heat, and drought) and hormone

treatment (abscisic acid, methyl jasmonate, and salicylic acid), and their transcription

levels differed. IpNAC5/8/10/12 were located in the nucleus through subcellular

localization, and the overexpressing transgenic Arabidopsis plants showed high

tolerance to salt stress. The cellular Na+ homeostasis content in the mature and

elongation zones of the four IpNAC transgenic sweetpotato roots showed an

obvious efflux phenomenon. These conclusions demonstrate that IpNAC5/8/10/

12 actively respond to abiotic stress, have significant roles in improving plant salt

tolerance, and are important salt tolerance candidate genes in I. pes-caprae and

sweetpotato. This study laid the foundation for further studies on the function of

IpNACs in response to abiotic stress. It provides options for improving the stress

resistance of sweetpotato using gene introgression from I. pes-caprae.

KEYWORDS

I. pes-caprae, NAC transcription factor, abiotic stress, expression analysis, salt-
tolerance, sweetpotato
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Introduction

Ipomoea pes-caprae (Linn.) R. Br. (Convolvulaceae 2n = 2x =

30) mainly grows on tropical and subtropical beaches (Miryeganeh

et al., 2003), and it has anti-inflammatory (Cristiane et al., 2017) and

antitumor effects (Manigauha et al., 2015), relieves gout (Akinniyi

et al., 2022), and has significant curative effects. Compared with other

crops, it has obvious biological characteristics, such as salt tolerance

(Liu et al., 2020), as well as drought (Suarez, 2011) and high

temperature resistance (Cheng et al., 2021). It is an important

medicinal and coastal sand fixation greening plant (Akinniyi et al,

2022). In the plant evolutionary process, variation in the natural

environment is one of the most important factors affecting plant

growth and development (Hawrot-Paw et al., 2016). To cope with

abiotic stress (drought, salt, and high temperature), plants have

formed a variety of complex and precise biological resistance

mechanisms (Li et al., 2021). In many stress signaling pathways,

transcription factors (TFs), as multi-functional proteins, play a crucial

role in plant defense mechanisms by controlling gene expression and

regulating the basic functions of plants (Falak et al., 2021; Hrmova

and Hussain, 2021).

NAC (NAM, ATAF, and CUC) proteins comprise a unique TF

family in plants (Wang et al., 2021). It has five highly conserved

subdomains A–E (Meng et al., 2018). Domains C and D are

responsible for binding to DNA (Du et al., 2020), domain A is

involved in the formation of functional dimers (Nakashima et al.,

2012), and domains B and E determine the functional diversity of

NAC genes (Puranik et al., 2012). With the development of

biotechnology, NAC TFs in different species have been identified,

including 117 in Arabidopsis thaliana (Ooka et al., 2003), 151 in

Oryza sativa (Nuruzzaman et al., 2010), and 152 in Nicotiana

tabacum (Rushton et al., 2008). As one of the largest transcription

families in plants, NAC TFs have many functions, such as in plant

secondary metabolism (Srivastava and Sahoo, 2021), plant

development and senescence (Gong et al., 2020), and hormone

regulation (Tao et al., 2022). In response to high salt, drought, and

high temperatures, NAC TFs play an important regulatory function

by activating or inhibiting the expression of target genes and

improving abiotic stress tolerance (Trishla and Kirti, 2021; Guo

et al., 2022). Ju et al. (2020) overexpressed VvNAC17 in

Arabidopsis, enhancing tolerance to salt, osmotic, and freezing

stress and increasing ABA sensitivity. Li et al. (2021) suggested that

GmNAC06 could cause the accumulation of proline and glycine

betaine alleviate the effects of reactive oxygen species (ROS), and

maintain the homeostasis of the Na+ ion. Therefore, GmNAC06
Abbreviations: IpNAC5/8/10/12: IpNAC5, IpNAC8, IpNAC10, and IpNAC1235S:

GFP-IpNAC5/IpNAC8/IpNAC10/IpNAC12: 35S: GFP-IpNAC5, 35S:GFP-

IpNAC8, 35S:GFP-IpNAC10, 35S:GFP-IpNAC12. GFP-IpNAC5/IpNAC8/

IpNAC10/IpNAC12: GFP-IpNAC5, GFP-IpNAC8, GFP-IpNAC10, and GFP-

IpNAC12 pHB-IpNAC5/IpNAC8/IpNAC10/IpNAC12-GFP: pHB-IpNAC5-GFP,

pHB-IpNAC8-GFP, pHB-IpNAC10-GFP, pHB-IpNAC12-GFP. pUBI.U4::

IpNAC5/IpNAC8/IpNAC10/IpNAC12-CaMV35S::DsRed: pUBI.U4::IpNAC5-

CaMV35S::DsRed, pUBI.U4::IpNAC8-CaMV35S::DsRed, pUBI.U4::IpNAC8-

CaMV35S::DsRed, pUBI.U4::IpNAC12-CaMV35S::DsRed. TR: positive transgenic

roots; AR, non-transgenic roots.
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overexpression in hairy roots led to significant salt tolerance in the

whole composite plant. Duan et al. (2017) verified that MfNACs

combine with the MtGlyl promoter to improve plant drought

tolerance by regulating glutathione back to the reduction state.

Although the NAC family has been widely studied, there have

been few reports about I. pes-caprae and its related species. Many

genes in wild relatives provide genetic resources for germplasm

improvement (Zhang et al., 2016). Ipomoea pes-caprae, as a wild

relative of sweetpotato, can be used as a model plant for studying the

salt tolerance mechanism of sweetpotato. China has abundant

sweetpotato resources, and its planting area and yield rank first in

the world (Kim et al., 2018). However, the increasing occurrence of

extreme temperatures, drought, and severe secondary salinization

seriously limits sweetpotato growth, development, and yield.

Sweetpotato is a salt-sensitive plant (Meng et al., 2020), and there

has been little research on its tolerance to salt. It is necessary to utilize

related gene resources in I. pes-caprae to improve the cultivated

sweetpotato. Therefore, screening wild relatives for salt-tolerance

genes to study salt tolerance mechanisms is particularly important

to breed new sweetpotato varieties adapted to salt stress and other

abiotic stressors. In our study, according to the transcriptome data, 12

I. pes-caprae IpNAC genes encoding NAC proteins were screened and

identified. Phylogenetic relationship, gene structure, and protein

domain analyses were carried out. Genetic expression profiles under

different abiotic stressors and hormone treatments were studied.

IpNAC5, IpNAC8, IpNAC10 and IpNAC12 were localized in the

nuclei. Through heterologous overexpression in Arabidopsis, the

plant phenotype in 180 mM NaCl treatment was observed, and Na+

flow in sweetpotato roots in mature and elongation zones was

measured under salt stress. IpNAC5/8/10/12 were preliminarily

verified to participate in resistance to abiotic stress, such as salt

stress. This study laid a foundation for utilizing I. pes-caprae genes to

improve sweetpotato stress resistance.
Materials and methods

Plant materials

The experimental materials—I. pes-caprae, ‘ZiShu8’, Nicotiana

tabacum, and Arabidopsis thaliana—were cultivated at the Xuzhou

SweetPotato Research Center, China. Nicotiana and Arabidopsis were

grown at 20–28 °C under a 16 h/8 h dark/light cycle with 50–60%

humidity and 500 µmol·m−2·s−1 light intensity. Ipomoea pes-caprae

was cultivated in Hoagland nutrient solution. After 3–5 weeks of

growth, 7–9 functional leaves and 8–12 cm roots were present, and I.

pes-caprae plants were transferred to soil mixed with fine sand and a

nutritional substance (3:1). Then, after 4–5 weeks, we selected plants

with similar growth characteristics for experiments.
Isolation of salt stress-responsive I. pes-
caprae IpNAC genes

The amount of expressed genes was obtained from transcriptome

data (Liu et al., 2020). Combined with the level of I. pes-caprae NAC

differentially expressed genes under salt stress, 12 TFs were
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preliminarily screened as research targets and named IpNAC1–12.

The IpNAC nucleotide sequence was converted into an amino acid

sequence by NCBI1. The physicochemical properties of the IpNAC1–

12 proteins, including the theoretical molecular weight (MW),

isoelectric point (pI), and hydrophobicity, were analyzed using the

Expasy ProtParam tool2. The full-length amino acid sequences of the

IpNAC and ANAC proteins were used to generate a phylogenetic tree

by deleting gaps and blanks. The unrooted neighbor-joining tree was

constructed after ClustalW alignment using MEGA (Tamura et al.,

2011). Bootstrap analysis was performed with 100 replicates to assess

the level of statistical support for each tree node (Hu et al., 2015).

EvoView was used for subsequent beautification.
Gene structure, protein domain, and
collinearity analyses of IpNAC genes

The MEME3 online tool was used to identify the protein domains

of the IpNAC, with the following parameters: site distribution = zero

or one occurrence per sequence, largest number of motifs = 10, and

optimummotif width of 6–50. Default settings were used for the other

parameters. The results were presented by GSDS 2.04. The gene

sequences of IpNACs were compared with the full-length sequences

by SnapGene 4.36 to determine the exon–intron structure and were

visualized using TBtools software. Collinearity between I. pes-caprae

(IpNACs) and A. thaliana (TAIR)5 (ANACs) was determined using

MCScanX (Wang et al., 2013), and the figures were generated using

Circos (Darzentas, 2010).
Cis-element analysis of promoter sequences

Most gene regulatory regions are located 2 kb upstream of the

translation start site. The IpNAC promoter sequences were obtained

from the I. pes-caprae genome database (unpublished). Then, the

PlantCARE6 online database was used to identify the cis-acting

elements of these promoters.
Plant hormone and abiotic stress treatments

We selected plants with similar growth rates for plant hormone and

abiotic stress treatments. Untreated plants were used as controls. The

leaves or adventitious roots were collected after 0, 3, 6, 12, 24, or 48 h of

treatment. Heat treatment was performed by transferring I. pes-caprae
1 https://www.ncbi.nlm.nih.gov/orffinder/

2 https://web.expasy.org/protparam/

3 http://meme.nbcr.ne/meme/

4 http://gsds.cbi.pku.edu.cn/

5 https://www.arabidopsis.org/index.jsp

6 http://bioinformatics.psb.ugent.be/webtools/plantcare/html/
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to a 45 °C climate box, and the roots were submerged in 20% PEG 6000

for 48 h for dehydration treatment. The leaves and adventitious roots

were harvested from the plants. The roots of I. pes-caprae were

submerged in a salt solution at three concentrations of 300, 600, and

900 mM NaCl, and adventitious roots were harvested. For hormone

treatment, adventitious roots were submerged in 0.1 mM abscisic acid

(ABA), 2 mM methyI jasmonate (MeJA), or 2 mM salicylic acid (SA)

for 0, 3, 6, 12, 24, or 48 h, and the adventitious roots were collected. The

roots were collected from three separate plants at each time point of

each treatment and combined to form one sample. All experiments

were performed independently and in triplicate. The collected samples

were immediately frozen in liquid nitrogen and stored at −80 °C.
RNA isolation and quantitative
real-time PCR

Following the manufacturer’s instructions, the FastPure Plant

Total RNA Isolation Kit (Vazyme, China) was used to isolate the total

RNA in the leaves and roots. The quality of the RNA was determined

using a NanoDrop2000c spectrophotometer (Thermo Fisher

Scientific, US), and total RNA integrity was identified by

electrophoresis on 1.0% agarose gel. The HiScript II 1st Strand

cDNA Synthesis kit (Vazyme, China) was used to obtain cDNA

from total RNA. Real-time quantitative PCR was carried out using

SYBR green (TOYOBO, Japan) on an ABI QuantStudio 6 Flex

(Thermo Fisher Scientific, US) with a final volume of 10 µL per

reaction. Each reaction mixture contained 5 µL SYBR Green Realtime

PCR Master Mix (TOYOBO, Japan), 0.4 µL forward primer (10 mM),

0.4 µL reverse primer (10 mM), 3.2 µL ddH2O, and 1 µL cDNA

template (diluted at 1:10). Specific primers for each gene are listed in

Supplementary Table S2. The cycling parameters were 95 °C for 1 min

and 40 cycles of 95 °C for 15 s, 60 °C for 15 s, and 72 °C for 45 s. The

Actin gene of I. pes-caprae was used as an internal control. Each

measurement was performed with three biological replicates. Data

were analyzed using the 2-DDCt method.
Construction of overexpression vectors

The coding DNA sequences of IpNAC1–12 were obtained from the

transcriptome datasets of I. pes-caprae. We designed the specific

primers (Supplementary Table S2). The Phanta Max Super-Fidelity

DNA Polymerase (Vazyme, China) (18 mL ddH2O; 25 mL 2 × Phanta

Max Buffer; dNTPMix (10 mM each); forward primer (10 mM); reverse

primer (10 mM); 1 mL Phanta Max Super-Fidelity DNA Polymerase; 1

mL cDNA) were used to amplify the IpNAC1–12 genes from the cDNA

of I. pes-caprae. The PCR parameters were set as follows: initial

denaturation at 95 °C for 3 min, 30 cycles of denaturation at 95 °C

for 15 s, annealing at 58 °C for 30 s, extension at 72 °C for 1 min 30 s,

and final extension at 72 °C for 10 min. The PCR products were

subcloned into the pHB-GFP vector with a Hind III restriction site to

form pHB-IpNAC1-12-GFP. pHB-IpNAC1-12-GFP and pHB (set as a

control) were transformed into Arabidopsis. In addition, using

pCAMBIA0390-DsRed as the backbone vector, the coding regions of

IpNAC1–12 were inserted into the pCAMBIA0390-DsRed expression

vector constructing pUBI.U4:: IpNAC1-12-CaMV35S::DsRed for
frontiersin.org
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Agrobacterium rhizogenes-mediated transformation. pCAMBIA0390-

DsRed was used as a control. Each experiment was conducted using

more than three biological replicates.
Subcellular localization of IpNAC5, IpNAC8,
IpNAC10, and IpNAC12 in tobacco

The 35S: GFP-IpNAC5/IpNAC8/IpNAC10/IpNAC12

plasmid were transformed into Agrobacterium tumefaciens strain

GV3101 for plant transformation. Transient expression in tobacco

leaves was determined according to a published method (Zhou

et al., 2018). After transformation, tobacco was kept in the

light room for 36 h before examination by fluorescence microscopy.

Then, the tobacco leaf epidermis was peeled to make a temporary

squash. After incubation with phosphate-buffered saline containing 40,

60-diamidino-2-phenylin dole (DAPI), the temporary squashes were

observed under a Leica Fluorescence Microscope at 10 × 20 (Leica

Microsystems, Wetzlar, GmbH). The image data were processed using

Adobe Photoshop (Mountain View, CA, USA). All transient expression

assays were repeated at least three times.
Salt stress treatment
of transgenic Arabidopsis

The recombinant vectors pHB-IpNAC5/IpNAC8/IpNAC10/

IpNAC12-GFP were transferred into Arabidopsis through the

Agrobacterium tumefaciens strain GV3101 using the floral dipping

method. After transformation, the T3 (third generation) seeds were

germinated on 1/2 MS medium with 50 mg L−1 hygromycin for

screening. Then, the WT and overexpressing transgenic seeds were

cultivated on 1/2 MS medium with 180 mMNaCl at 22 °C under 16 h

of daylight. After 10 d, the primary root length was measured and the

growth state was observed.
Agrobacterium rhizogenes-mediated
transformation

The pUBI.U4:: IpNAC5/IpNAC8/IpNAC10/IpNAC12-CaMV35S::

DsRed constructs were introduced into A. rhizogenes strain K599.

ZiShu 8 with the same growth state was selected for Agrobacterium

infection according to the published method (Yu et al., 2020).

Subsequently, the transformed plants were transferred into the soil

under a high-humidity (28 °C/65%) environment. After three weeks,

the positive plants were selected through the portable fluorescent lamp

instrument, immersed in hydroponic solution for 3 d, and

then collected.
Cellular Na+ homeostasis
flux measurements

The WT and IpNAC5/8/10/12 transgenic sweetpotato were

cultured in 150 mM NaCl solution for 24 h. First, 3–4 cm of intact
Frontiers in Plant Science 04
root tips were collected and fixed in a buffer solution for 30 min.

Then, Na+ flux in the root elongation zone was recorded for 5 min.

The root mature zone was measured for another 5 min. Each group

had five replicates.
Statistical analysis

The data are presented as the mean ± standard deviation of the

mean (SD), and statistically significant differences were assessed using

Dunnett’s test at p < 0.05 as the point of minimal statistical

significance in all analyses.
Results

Identification and analysis of salt
stress-responsive IpNAC genes

We identified 12 NAC genes in I. pes-caprae, named IpNAC1–12.

We found that IpNAC1–12 had high homology with Arabidopsis,

sweetpotato, and their wild species. IpNAC2 is one of the reported

genes, and NAC1 was screened from the cDNA library of I. pes-

caprae, but its function was not clear. We verified that IpNACs

contained a complete ORF. Analysis of the physicochemical

properties revealed amino acid lengths of IpNACs ranging from

242 to 344. The molecular weight varied from 27.58 to 39.21 KDa,

and the pI ranged from 5.24 to 8.52. Except for IpNAC2, IpNAC3,

and IpNAC6, IpNAC proteins were weakly acidic and were predicted

to be located in the nucleus (Supplementary Table S1). IpNAC

proteins contain NAC family characteristic subdomains (A–E)

(Figure 1; Supplementary Figure S1).
Syntenic relations, phylogenetic analysis,
and classification of IpNAC and ANAC genes

To investigate the taxonomic and phylogenetic relationships of

IpNACs, we used the model plant Arabidopsis to analyze the potential

function of the IpNAC protein. Using MEGA-X software, we

performed phylogenetic analysis of the IpNAC and ANAC proteins

(without duplicated and erroneous sequences) to establish an

unrooted phylogenetic tree (Figure 2A). The NAC proteins were

classified into nine subfamilies. IpNACs were divided into ONAC22

(including IpNAC1, IpNAC3, IpNAC5, and IpNAC7), ATAF

(including IpNAC2, IpNAC6, IpNAC8, IpNAC10, and IpNAC12),

OsNAC7 (including IpNAC11), and NAM (including IpNAC4 and

IpNAC9). To obtain more information about IpNAC genes, we

identified syntenic relationships between IpNACs and ANACs and

found six pairs of syntenic NAC genes between I. pes-caprae and

Arabidopsis (Figure 2B). Interestingly, one IpNAC gene (IpNAC6) and

one ANAC gene (ANAC072) were associated with three or two

syntenic blocks, respectively. At the same time, other IpNAC genes

have a close relationship with ANAC genes, indicating that their

functions may be similar.
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Motif distribution, gene structures,
and regulatory elements of IpNAC genes

Motifs are key functional units. The IpNAC motif components

were analyzed using MEME online software. All IpNAC proteins

contained the NAC family characteristic subdomains (A–E), named

motif1/2/3/4/5, located at positions 0–210. Except for IpNAC1/4/7/9,
Frontiers in Plant Science 05
other protein sequences had more than five motifs, with a maximum

of eight. The 12 IpNACs had three exons, separated by two introns

(Figure 1), forming a highly conserved gene structure. The

untranslated region (UTR) lengths differed significantly, indicating

a difference in the efficiency of IpNAC gene expression. TFs regulate

gene function by binding cis-acting elements to the promoter. The

PLACE Online website was used to analyze the 2 kb upstream region
FIGURE 1

Analysis of the conserved motifs and gene structures of Ipomoea pes-caprae IpNAC genes. The conservative motif distribution and homologous tree of
IpNACs are located on the left side, which is expressed by a color box. The black scale lines represent the relative protein length. The gene structure is on
the right side, the exon and intron are represented by a yellow rectangle and black line, respectively, and the untranslated region (UTR) is represented by a
green rectangle. Gene size can be expressed by the scale.
A B

FIGURE 2

Comparative analysis of Ipomoea pes-caprae IpNACs and Arabidopsis ANAC genes. (A) Phylogenetic tree of IpNAC and ANAC proteins. The full-length
amino acid sequences of the IpNAC proteins were used to construct the phylogenetic tree with MEGA X through 100 bootstrap tests and the Poisson model
method. The number at the node indicates the bootstrap value. The nine subfamilies, namely ONAC22, NAP, ANAC063, ANAC001, NAC3, NAM, OsNAC7,
NAC2, and ATAF, were set in different colors as the background. IpNACs are represented by red pentagons, and ANACs are represented by blue triangles.
(AtNAC=ANAC). (B) Collinearity analysis of NAC genes in I pes-caprae and Arabidopsis. The chromosomes of I pes-caprae and Arabidopsis are expressed in
different colors, and the positions of IpNAC and ANAC genes in chromosomes are marked. The purple curve represents the collinear region of ANAC genes,
the brown curve represents the collinear region of IpNAC genes, and the blue curve represents the collinear region of ANACs and IpNACs.
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of the transcription start site of IpNACs, and a series of stress response

elements were found (Figure 3). A cis-acting element involved in

drought-inducibility (MBIS) was found in three IpNAC genes, an

enhancer-like element involved in anoxic specific inducibility cis-

acting element (GC-motif) was detected in four IpNAC genes, and a

defense and stress response cis-acting element (TC-rich) was detected

in five IpNAC genes. Anaerobic induction cis-acting regulatory

elements (AREs) were identified in 11 IpNAC genes. Interestingly,

there were five IpNAC genes with low-temperature responsive cis-

acting elements (LTRs). Many hormone-responsive elements were

found in the IpNAC promoter sequence. GA responsive elements

were found in three IpNAC genes. SA responsive elements were found

in four IpNAC genes. IAA responsive elements were found in 11

IpNAC genes, and ABA responsive elements were found in 12 IpNAC

genes. This indicates that plant hormones play a central role in the

regulation of the salt stress response.
Frontiers in Plant Science 06
IpNAC genes expression under salt stress

Ipomoea pes-caprae is a highly salt-tolerant crop, and the expression

pattern of IpNACs was determined after treatment with different

concentrations of NaCl solution. Among the 12 genes, there were

significant differences (Figure 4). Compared with 600 and 900 mM

NaCl solutions, IpNACgenes treatedwith300mMNaCl solutionhad the

highest response to salt induction. Interestingly, IpNAC10 showed the

strongest significance after different salt solution treatments and

maintained a high mRNA level (>2000-fold) at 6 and 24 h treatment

periods. IpNAC11was upregulated significantly, reaching themaximum

change (47-fold) at 3 h, and returned to baseline over time. In contrast,

IpNAC2 reachedmaximumexpressionat48h (6-fold), and the trendwas

downregulated and only slightly upregulated throughout the treatment

period. IpNAC5, IpNAC8, and IpNAC12 expression were induced 19–

300-fold at 6 h. The expressions of IpNAC3, IpNAC6, and IpNAC9 were
FIGURE 3

Cis-elements in the 2 kb upstream promoter of Ipomoea pes-caprae IpNACs. The homologous tree of the IpNAC genes is located on the left, and the
number at the node indicates the bootstrap value. Symbols of different colors and shapes mark the relative positions of different elements, and the black
scale line represents the relative protein length.
FIGURE 4

The expression level of IpNAC genes under different salt treatments. The roots were soaked in 300, 600, and 900 mM NaCl solutions and collected at
different time points (0, 3, 6, 12, 24, and 48 h). The expression of IpNAC genes under salt treatment was detected by quantitative real-time PCR. Non-
stressed plants (0 h) were used as a control, and each experiment was conducted with three biological replicates and three technical replicates. The
mean values and SD were obtained from the experiment. The p-values were evaluated using Student’s t-test. Asterisks indicate the level of significance,
**p < 0.01 and *0.01 < p < 0.05. Transcript levels at 0 h were set as 1.
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increased 15–300-fold at 12 h, and those of IpNAC4 and IpNAC7

expression reached 25–130-fold at 24 h. Under 600 mM NaCl

treatment, the 12 genes were not strongly induced at 3 and 6 h.

IpNAC1 and IpNAC2 were upregulated after 12 h (16–19-fold) and

remained stable or were downregulated in the early stage. The induction

level of IpNAC5, IpNAC8, IpNAC11, and IpNAC12 increased 10- to 60-

fold (24 h) and were upregulated steadily throughout the period. The

expressions of IpNAC3, IpNAC4, IpNAC6, IpNAC7, and IpNAC9

reached 15- to 280-fold (48 h). Interestingly, IpNAC6, IpNAC7, and

IpNAC9wereupregulated,but the trendwashigh–low–high.The IpNAC

genes were generally downregulated after 900 mM NaCl solution

treatment, and IpNAC2, IpNAC3, IpNAC4, IpNAC6, IpNAC7,

IpNAC8, IpNAC9, IpNAC11, and IpNAC12 reached the maximum

significance level at 48 h, among which IpNAC2, IpNAC3, and

IpNAC4 were downregulated (3–24 h), and IpNAC5 and IpNAC10

maintained a high induction at 6 h. Interestingly, IpNAC1 did not

respond to 900 mMNaCl solution treatment.
IpNAC genes expression under heat
and drought stress

Ipomoea pes-caprae is a high temperature- and drought-tolerant crop.

The expression level ofmost IpNAC genes was increased under heat stress

(45 °C) and drought stress (20% PEG 6000), but the change in the

expression level under drought stress was more obvious than that under

high temperature stress (Figure 5). Under a high temperature (45 °C), the

IpNAC5 induction level was the highest (451-fold), followed by that of

IpNAC1, IpNAC2, IpNAC3, and IpNAC9, which reached the highest

significant expression (10–90-fold) at 24 h. However, the maximum

induction of IpNAC4, IpNAC6, IpNAC7, IpNAC8, IpNAC9, IpNAC10,

IpNAC11, and IpNAC12 was less than 10-fold. Interestingly, all IpNAC

genes were strongly induced at 24 h under heat stress. Most IpNAC genes
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were near or below the baseline at 3–24 h and near the baseline at 48 h.

Under drought stress, IpNAC12 reached a maximum induction at 48 h

(442-fold), followed by IpNAC1, IpNAC2, IpNAC3, IpNAC5, IpNAC8,

IpNAC9, and IpNAC11, reachingamaximumat12h(1–80-fold). IpNAC4,

IpNAC6, and IpNAC10 increased 10- to 300-fold at 3 and 48 h. However,

the expression trends of IpNAC2 and IpNAC3 after high temperature and

drought stress were consistent (Figure 5). In addition, comparedwith high

temperature stress, IpNAC2 and IpNAC3 were less responsive to drought

stress.Under the samestress, IpNAC6and IpNAC10 showedsimilar trends

but were less responsive to high temperature stress.
IpNAC genes expression under different
hormone stressors

In response to internal and external stress, plant hormones (abscisic

acid [ABA], salicylic acid [SA], and methyl jasmonate [MeJA]) play an

important role in the stress signal network. We studied the relationship

between the transcriptional levels of the 12 IpNAC genes under different

plant hormones (Figure 6). Gene expression of IpNAC4, IpNAC6,

IpNAC7, IpNAC9, IpNAC10, IpNAC11, and IpNAC12 after ABA

treatment increased throughout the treatment period, and most genes

were rapidly upregulated 5- to 500-fold at 24 and 48 h, while IpNAC10

quickly reached477-foldat6h. Similarly, the induction levelsof IpNAC1,

IpNAC2, IpNAC3, IpNAC5, and IpNAC8 reachedmaximumsignificance

(4–60-fold) at 12–24 h, and the early response was weak or

downregulated. Under SA stress, IpNAC1, IpNAC8, and IpNAC12

were significantly upregulated throughout the treatment period. The

induced expression of IpNAC12 reached 2064-fold at 48 h. IpNAC2,

IpNAC3, IpNAC4, IpNAC5, IpNAC6, IpNAC7, IpNAC9, IpNAC10, and

IpNAC11weremainlyupregulated (2–500-fold) at6–24h, andexcept for

the highest induction time, the induction times were close to baseline or

downregulated. Based on the results of the MeJA treatment, the
FIGURE 5

The expression level of IpNAC genes under heat (45 °C) and 20% PEG 6000 solution stress treatments. The roots were soaked in 20% PEG 6000
solutions and collected at different time points (0, 3, 6, 12, 24, and 48 h). Non-stressed plants (0 h) were used as a control, and each experiment was
conducted with three biological replicates and three technical replicates. The mean values and SD were obtained from the experiment. The p-values
were evaluated using Student’s t-test. Asterisks indicate the level of significance, **p < 0.01 and *0.01 < p < 0.05. Transcript levels at 0 h were set as 1.
frontiersin.org

https://doi.org/10.3389/fpls.2023.1119282
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Su et al. 10.3389/fpls.2023.1119282
transcript level of IpNAC9 reached a peak of 241-fold at 48 h. IpNAC4,

IpNAC6, IpNAC7, IpNAC8, IpNAC11, and IpNAC12 also maintained a

high level (5–150-fold) throughout the period.Most trends continuously

increased from 3 to 24 h and steadily decreased from 24 to 48 h. In

contrast, IpNAC1, IpNAC2, IpNAC3, IpNAC5, and IpNAC10 were

downregulated (2–60-fold) in different periods (3–12 h). At the same

time, IpNAC5 did not respond toMeJA induction and was not sensitive

throughout the period (Figure 6).
IpNAC5/8/10/12 localized in the nuclei

DNA- and TF-specific binding is involved in transcriptional

regulation activities, and most TFs with substantial functions are located

in the cell nucleus. We screened four candidate salt-tolerance genes and

performed subcellular localization for IpNAC5/8/10/12 in vivo (Figure 7).

The positions of IpNAC5/8/10/12 in plant cells were detected by GFP

markers under the control of the CaMV 35S promoter. In the transient

expression of GFP-IpNAC5/IpNAC8/IpNAC10/IpNAC12 in tobacco

mesophyll protoplasts, the GFP signal was located in the nucleus and

mixed with nuclear marker dye DAPI (Figure 7). However, GFP was

located in the nucleus of tobacco mesophyll cytoplasm when tobacco

mesophyll protoplasts carrying GFP alone were used as controls. These

results suggest that GFP-IpNAC5, GFP-IpNAC8, GFP-IpNAC10, and

GFP-IpNAC12 are located in the nucleus (Figure 7), which is consistent

with the results presented in Table 1.
IpNAC5/8/10/12 improved salt tolerance in
transgenic Arabidopsis

Heterologous overexpression in Arabidopsis is a useful technique

for verifying gene function. The physiological phenotypes of the WT
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and transgenic Arabidopsis on 1/2 MS were similar (Figure 8A). At

180 mM NaCl, the root length of transgenic plants was longer than

that of WT plants (Figures 8B, C). Arabidopsis overexpressing

IpNAC5/8/10/12 was highly salt tolerant at the post-germination

stages. Among these, plants overexpressing IpNAC5 and IpNAC10

showed excellent characteristics.
Na+ homeostasis in IpNAC5/8/10/12-
overexpressing SweetPotato roots

To determine whether IpNAC5/8/10/12 affect root Na+

homeostasis, we carried out root transgenics and obtained many

complete transgenic roots (Figure 9). The target genes showed higher

expression in the positive transgenic roots (TR) than in the non-

transgenic roots (AR) (Figures 9B, D, F, H). The salt-induced Na+

fluxes in the elongation and maturation zones of AR and TR were

measured using the noninvasive microtest technique (NMT) after

24 h of NaCl stress (150 mM). Na+ efflux in the elongation and

mature regions of AR and TR differed (Figure 10, Figure 11). Among

the four genes, the Na+ efflux of the IpNAC10-overexpressing plant

TR was more obvious than that of AR. The average Na+ efflux rates in

the two root zones of TR were 3.2- and 6.7-fold that of AR,

respectively (Figures 11A, B). Interestingly, the Na+ efflux of TR in

the IpNAC5-overexpressing plant was 3.3-fold that of AR in the

elongation zone, but there was no significant difference in the mature

zone (Figures 10A, B). The average Na+ efflux rate of TR in IpNAC8

was 1.8-fold that of AR in the mature zone (Figures 10C, D). The

average Na+ efflux rate of TR in IpNAC12 was 2.2-fold that of AR in

the elongation zone (Figures 11C, D). These results indicate that

IpNAC5/8/10/12 overexpression probably activated the ion channel

and increased the root Na+ ion efflux efficiency.
FIGURE 6

The expression level of IpNAC genes in the plant hormone treatment. The roots were soaked in 0.1 mM abscisic acid (ABA), 2 mM salicylic acid (SA)
solution, or 2 mM jasmonic acid (JA) solution, and the roots were collected at different time points. Non-stressed plants (0 h) were used as a control, and
each experiment was conducted with three biological replicates and three technical replicates. The mean values and standard deviation (SD) were
obtained from the experiment. The p-values were evaluated using Student’s t-test. Asterisks indicate the level of significance, **p < 0.01 and *0.01 < p <
0.05. Transcript levels at 0 h were set as 1.
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Discussion

The influence of extreme weather is aggravating. Enhancing crop

tolerance to respond tovarious abiotic stressors is essential for improving

agricultural production efficiency. Ipomoea pes-caprae, a wild relative of

sweetpotato, has significant biological characteristics in saline–alkali

tolerance (Liu et al., 2020) and resistance to high temperature, drought

(Suarez, 2011), andother abiotic stressors (Zhanget al., 2018).Compared

with sweetpotato, I. pes-caprae has a smaller genome and is an excellent

model for studying the functionof sweetpotatogenes.NACproteins are a

vital part of the signal transduction network and play an important

regulatory role in plant responses to various stressors (Meng et al., 2022).

However, NAC TF-related research reports mainly focus on model

plants, and there are few reports on I.pes-caprae.Here, 12 salt-responsive

IpNAC genes were isolated. The number of IpNAC genes was less than

that of ANAC genes (Table 1). One reason may be that the genome of I.

pes-caprae is small, and there were no large-scale repetitive events in the

early stages of plant evolution. In Arabidopsis, a model plant, functional

verification is clear (Ooka et al., 2003). Based on the classification of the

phylogenetic tree of IpNAC and ANAC proteins, IpNACs were divided

into four subfamilies (Figure 2A). IpNAC4 and IpNAC9 proteins may

belong to the NAM subfamily. NAM are involved in flower formation

(Hendelman et al., 2013) and leaf senescence (Wang et al., 2022).

IpNAC2, IpNAC6, IpNAC8, IpNAC10, and IpNAC12 were assigned
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to ATAF (Figure 2A). The ATAF subfamily has many transcriptional

activators or inhibitors that are crucial in plant stress resistance and

hormone synthesis (Peng and Neff, 2021), indicating that IpNAC2,

IpNAC8, and IpNAC12 may have similar roles. Among them, the

IpNAC2 protein is NAC1, and its function is unknown. Based on

other plants, NAC1 significantly contributes to increasing resistance to

stress (You et al., 2014). The OsNAC7 subfamily contains only

IpNAC11, which plays a major role in the response to abiotic stress

and the regulation of plant growth (Wang et al., 2021). The ONAC22

subfamily significantly reduces the water loss rate and the transpiration

rate to reduce drought stress (Peng et al., 2022). In addition, this

subfamily improves salt tolerance by adjusting root length (Hong et al.,

2016). As shown in Figure 8, the IpNAC5 transgenic rootswere relatively

long. Collinearity analysis can describe the positional relationships of

genes, as well as evolutionary and functional connections on

chromosomes. Six IpNAC genes had a collinear relationship with

ANACs (Figure 2B). Among them, IpNAC6 had a collinear

relationship with three ANAC genes (AT1G52880, AT3G15500,

AT4G27410) and had many important regulatory functions. In

addition, AT4G27410 had a collinear relationship with IpNAC6 and

IpNAC10. At4G27410 encodes a dehydration-induced NAC

transcription factor and acts as a transcriptional activator in the ABA-

mediated dehydration response (Fujita et al., 2004). IpNAC6 and

IpNAC10 may enable stress resistance through ABA hormone
FIGURE 7

Subcellular localization of IpNAC5/8/10/12 in tobacco cells. IpNAC5/8/10/12-GFP and PHB-GFP were transiently expressed in tobacco. GFP fluorescence
was observed 2 d after infection by 10 × 20-fold laser scanning. Photos were taken under bright and dark light for the detection of green fluorescent
protein (GFP), diamino-2-phenylindole (DAPI), and binding (merging). Bars = 30 mm.
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regulation. Figure 2 shows that most of the IpNAC genes have a close

relationship with ANAC genes, indicating that their functions may be

similar. The structure of the gene and the number of amino acid motifs

play important roles. The 12 IpNAC proteins contained five NAC-

specific motifs (A–E), indicating that IpNACs are highly conserved

(Figure1).Through themultiple sequence alignmentof IpNACproteins,

theBandEdomainshadobviousdifferences,whichmaybean important

reason for gene function diversification (Supplementary Figure S1). The

UTR and intron–exon constitute the gene structure and, ultimately,

throughbiological rules, performbiological functions. IpNAC2, IpNAC6,

and IpNAC7 lack an UTR, which indicates that the response expression

may be slow (Srivastava et al., 2018) (Figure 1). Cis-acting elements are

important molecular switches that work together with stress-inducible

regulatory factors (Chanwala et al., 2022). The IpNAC promoter

sequence contained some abiotic stress response elements and many

hormone-responsive elements (Figure 3). This indicates that plant

hormones play a central role in the regulation of the abiotic stress

response. Different stress factors directly or indirectly affect gene

expression levels. According to the gene expression level, we inferred

that most of the IpNAC genes responded to induction under different

stress treatments. Compared with different salt solutions, under the 300

mM NaCl solution, the treated IpNACs had the strongest ability to

respond to the induction, followed by the 600 mM NaCl solution

(Figure 4). With the increase in salinity, the time of the maximum

gene expression level was delayed. The IpNAC gene expression level after

900 mM NaCl treatment was generally near the baseline or even
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downregulated. We speculate that the salt concentration may be too

high, and that the plant reduces most of the biological reactions to

maintain cell survival. In particular, IpNAC10 showed the highest

induction level under different salt solutions. Moreover, IpNAC10 was

the strongest inducer of the ABA response (about 500-fold) among

IpNACs (Figure 6) and was also highly responsive to drought stress

(about 150-fold) (Figure 5). This finding is similar to the results of

previous study (Fujita et al., 2004). Plant root cells can absorb water only

when their water potential is lower than the surroundingmediumwater

potential (Erlandsson, 1979).We speculated that, because of the high salt

solution content, the osmotic potential increases,whichmakes it difficult

for plants to absorb water, leading to the high expression of IpNAC10,

and its subsequent functionsneed further research.The characteristics of

IpNAC8 and IpNAC12 were consistent with ATAF (Figure 2).Wu et al.

(2009) found that ATAF1was significantly induced by high salinity and

ABA, which enhanced the drought resistance of plants. Whether the

function of the IpNAC8 and IpNAC12 genes is similar to that of ATAF1

needs investigation. IpNAC8 and IpNAC12 were significantly higher

under salt stress (about 25-fold and 300-fold, respectively) (Figure 4).

Among the 12 genes, IpNAC12 was the most strongly induced after

drought stress (~500-fold) andSAstress (~2000-fold), but the expression

level under high temperature treatment showed low sensitivity

(Figure 5). At the same time, IpNAC8 significantly responded to ABA

(~200-fold) and MeJA stress (~150-fold). We speculate that IpNAC10

and IpNAC8 accomplish stress signal transduction not only through the

ABApathwaybut also through theSAandMeJAstressmechanisms.Asa
TABLE 1 The information of screened salt stress-responsive Ipomoea pes-caprae IpNAC genes in this study.

Name Gene IDa Gene
location

Gene
Length
(bp)

Length
(amino acids)

MW
(kDa)

Isoelectric
point (pI)

Subcellular
localization

Subject
annotation Subject ID

IpNAC1 evm.TU.chr_0.2780
49282875-
49285709

2834 269 30.93 5.94 Nucleus NAC90-like XP_031122657.1

IpNAC2 evm.TU.chr_12.1900
38917645-
38918836

1191 242 27.58 8.47 Nucleus NAC1 AQZ36520.1

IpNAC3 evm.TU.chr_13.2033
41182054-
41184312

2258 261 29.35 8.29 Nucleus NAC90-like XP_019155111.1

IpNAC4 evm.TU.chr_13.2342
44337647-
44339364

1717 330 36.92 6.01 Nucleus NAC87-like XP_031126261.1

IpNAC5 evm.TU.chr_13.3468
52859128-
52861073

1945 339 38.22 6.54 Nucleus NAC35-like XP_019165208.1

IpNAC6 evm.TU.chr_14.1132
8670217 -
8671417

1200 338 37.79 8.52 Nucleus
NAC-JA2L-
like

XP_031105753.1

IpNAC7 evm.TU.chr_14.925
6747525-
6749005

1480 251 28.16 6.39 Nucleus NAC90-like XP_031105272.1

IpNAC8 evm.TU.chr_3.63
316246-
317956

1710 295 34.23 6.54 Nucleus NAC2-like XP_019200440.1

IpNAC9 evm.TU.chr_5.3656
67821086-
67822648

1562 301 34.07 5.24 Nucleus NAC92-like XP_019185498.1

IpNAC10 evm.TU.chr_7.235
39755974-
39764569

8595 325 35.85 6.61 Nucleus NAC72-like XP_019183034.1

IpNAC11 evm.TU.chr_7.3373
61134772-
61138708

3936 344 39.21 6.33 Nucleus NAC30-like XP_031115981.1

IpNAC12 evm.TU.chr_7.684
4951286-
4952714

1428 283 32.1 6.39 Nucleus NAC32-like XP_031117584.1
MW, molecular weight; pI, isoelectric point.
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FIGURE 8

Transgenic plants overexpressing IpNAC5/8/10/12 had improved root length under salt stress. (A-C) Comparisons of the root length between wild type
(WT) and transgenic Arabidopsis thaliana plants grown on 1/2 MS + 180 mM NaCl for 10 d. Data are the means ± SE of three independent biological
experiments. OE-5 is an IpNAC5-overexpressing plant, OE-8 is an IpNAC8-overexpressing plant, OE-10 is an IpNAC10-overexpressing plant, and OE-12
is an IpNAC12-overexpressing plant. The p-values were evaluated using Student’s t-test. Asterisks indicate the level of significance, The meaning of the
symbol “*” is the level of significance, *0.01 < p < 0.05, between the WT and transgenic plants.
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FIGURE 9

Preparation of IpNAC5/8/10/12 transgenic sweetpotato roots. (A, C, E, G) DsRed fluorescence diagram of transgenic sweetpotato root. TR: positive
transgenic roots; AR: non-transgenic roots. (B, D, F, H) Relative expression levels of IpNAC5/8/10/12 in TR and AR. Asterisks indicate the level of
significance, **p < 0.01. Gene levels of AR were used as a reference and set as 1.
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FIGURE 11

Na+ flux determination in IpNAC10/12-overexpressing sweetpotato roots. (A, C) The steady-state Na+ fluxes in the AR and TR, including the elongation
and mature zones, after 24 h of NaCl treatment (150 mM). The standard errors of the means are represented by the bars. (B, D) Mean net Na+ efflux rates
in (A, C), respectively. Asterisks indicate the level of significance between the AR and TR groups at **p < 0.01.
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FIGURE 10

Na+ flux determination in IpNAC5/8-overexpressing sweetpotato roots. (A, C) The steady-state Na+ fluxes in the AR and TR, including the elongation and
mature zones, after 24 h of NaCl treatment (150 mM). The standard errors of the means are represented by the bars. (B, D) Mean net Na+ efflux rates in
(A, C), respectively. Asterisks indicate the level of significance between the AR and TR groups at **p < 0.01.
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subtropical coastal plant, a high temperature is an essential element for I.

pes-caprae.Under inductionat45 °C, IpNAC5had thehighest expression

(~500-fold). IpNAC5 shared a relatively high homologywithANAC036

(Figure 2A). Kato et al. (2010) suggested that ANAC036 is induced by

osmotic stress and salt stress. In terms of natural factors, salt and high

temperature are inseparable. As a result, we speculated that high

temperatures accelerated the evapotranspiration rate and increased the

loss ofwater, leading the IpNAC5 gene to be highly expressed in response

to stress. Therefore, based on this analysis, we speculate that IpNAC5/8/

10/12 are important candidate genes for stress response. Further

biological proof is necessary. Hence, we performed subcellular

localization of IpNAC5, IpNAC8, IpNAC10 and IpNAC12 and found

that they were located in the nucleus (Figure 7). Heterologous

overexpression in Arabidopsis verified the gene function. We obtained

transgenic seeds by overexpressing IpNAC5/8/10/12 in Arabidopsis. T3

homozygous seeds were selected for the salt tolerance test. There was no

significant difference between transgenic plants andWT plants in the no-

salt medium (Figure 8A). Upon 180 mMNaCl stress, the root length and

plant growth status of transgenic plants were greater than those of WT

plants (Figure 8B). Compared with other IpNAC5/8/10/12 genes, IpNAC5

and IpNAC10 had the strongest salt tolerance in the post-germination

stages of Arabidopsis. Cellular Na+ homeostasis and metabolic processes

significantly affect plant salt tolerance (Zhang et al., 2017). By measuring

Na+homeostasis in the transgenic sweetpotato roots,we found that theTR

of IpNAC10 had obvious Na+ efflux in the mature and elongation zones

compared with AR (Figure 11A). Interestingly, TR of IpNAC5 and

IpNAC12 showed 3.3- and 2.2-fold more Na+ efflux in the elongation

zone than AR, while there was no significant difference in the maturation

zone (Figure 10A, Figure 11C). Similarly, the TR of IpNAC8 showed

significant Na+ efflux in themature region compared to AR (Figure 10C).

These results indicate that IpNAC5/8/10/12 are highly responsive and

protective in sweetpotato, resisting salt stress through Na+ ion channels,

and were activated, leading to Na+ efflux in different regions of the

sweetpotato roots.

Using I. pes-caprae as a basis, we utilized biotechnology to explore

salt tolerance genes to provide relevant genetic resources and strategies

for the genetic improvement of sweetpotato. At the same time, it is

important to analyze the molecular regulatory mechanism of salt

tolerance in I. pes-caprae to further plant adaptation to extreme climates.
Conclusion

In this study, by combining transcriptome data with bioinformatics

analysis, we identified 12 IpNAC genes in I. pes-caprae. Evolutionary

collinearity, gene structure, and promoter cis-acting elements of IpNACs

were analyzed.Different responses under a variety of abiotic and hormone

stressors indicate that IpNACgenes are controlledbyavarietyof regulatory

mechanisms. IpNAC5/8/10/12were screened as candidate genes. IpNAC5,

IpNAC8, IpNAC10andIpNAC12 localized in thenucleus. Inaddition, the

root length and growth status of transgenic Arabidopsis under salt stress

and the Na+ ion content in sweetpotato roots showed that IpNAC5,

IpNAC8, IpNAC10 and IpNAC12 significantly enhanced plant salt

tolerance. This study lays the foundation for further studies on the

function of IpNACs under stress in I. pes-caprae. The candidate genes

maycontribute to the functional characterizationof salt tolerancegenes for
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breeding abiotic stress-resistant varieties of sweetpotato or other species.

Taken together, these results provide new insights into the molecular

response of I. pes-caprae and sweetpotato to salt stress.
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