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Sesame production is severely affected by unexpected drought stress during

flowering stage. However, little is known about dynamic drought-responsive

mechanisms during anthesis in sesame, and no particular attention was given to

black sesame, the most common ingredient in East Asia traditional medicine.

Herein, we investigated drought-responsive mechanisms of two contrasting black

sesame cultivars (Jinhuangma, JHM, and Poyanghei, PYH) during anthesis.

Compared to PYH, JHM plants showed higher tolerance to drought stress

through the maintenance of biological membrane properties, high induction of

osmoprotectants’ biosynthesis and accumulation, and significant enhancement of

the activities of antioxidant enzymes. For instance, the drought stress induced a

significant increase in the content of soluble protein (SP), soluble sugar (SS), proline

(PRO), glutathione (GSH), as well as the activities of superoxide dismutase (SOD),

catalase (CAT), and peroxidase (POD) in leaves and roots of JHM plants compared

to PYH plants. RNA sequencing followed by differentially expressed genes (DEGs)

analysis revealed that more genes were significantly induced under drought in JHM

than in PYH plants. Functional enrichment analyses disclosed that several pathways

related to drought stress tolerance, such as photosynthesis, amino acids and fatty

acidmetabolisms, peroxisome, ascorbate and aldaratemetabolism, plant hormone

signal transduction, biosynthesis of secondary metabolites, and glutathione

metabolism, were highly stimulated in JHM than in PYH plants. Thirty-one (31)

key highly induced DEGs, including transcription factors and glutathione reductase

and ethylene biosynthetic genes, were identified as potential candidate genes for

improving black sesame drought stress tolerance. Our findings show that a strong

antioxidant system, biosynthesis and accumulation of osmoprotectants, TFs

(mainly ERFs and NACs), and phytohormones are essential for black sesame

drought tolerance. Moreover, they provide resources for functional genomic

studies toward molecular breeding of drought-tolerant black sesame varieties.

KEYWORDS

black sesame, drought stress, transcriptome, glutathione and ethylene biosynthesis,
antioxidant system, anthesis
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Introduction

Improving crops’ productivity and quality in the current situation

of climate change is challenging. In fact, unexpected abiotic and/or

biotic stresses occur during crop plants’ life cycles, causing considerable

losses in agriculture production. Among diverse abiotic stresses,

numerous studies have shown that drought is the most adverse one,

and it causes significant decreases in crop yields and quality traits

(Wang et al., 2011; Wang et al., 2019). Tomitigate the harmful effects of

drought, plants have evolved various physiological and molecular

mechanisms, such as induction of diverse family genes and

antioxidant defense systems, reinforcement or maintenance of

biological membranes’ structure and properties, and accumulation of

osmoprotectants (sugar, proteins, proline, and glutathione, GSH) in

cells (Chaves et al., 2003; El-Sharkawy, 2004; Najla et al., 2016; Sharma

et al., 2017; Mahmood; et al., 2020; Jia et al., 2021). Under drought

stress conditions, the expression patterns of numerous genes are altered

or induced to activate physiological and defense systems (Savoi et al.,

2016). The antioxidative mechanisms include enzymatic and non-

enzymatic reactions in plant cells and are mediated mainly by

peroxidases (POD), catalase (CAT), and superoxide dismutase (SOD)

(Impa et al., 2012; Li et al., 2013). It is demonstrated that GSH synthesis

and ethylene accumulation improve crop plants’ resistance to drought

(Khan et al., 2015). GSH is the predominant reducing thiol in plant

cells, and its reduced form plays critical functions in reactive oxygen

species (ROS) detoxification (Couto et al., 2016). Phytohormone

ethylene regulates several physiological processes, such as growth,

flowering, senescence, and stress responses (Ullah et al., 2018).

Sesame belongs to the superficial root plants and is primarily

cultivated in tropical and subtropical areas worldwide, where it is

exposed to intermittent droughts (Dossa et al., 2016; Arslan et al.,

2019; Liang et al., 2021). In 2019, the world’s total harvested area of

sesame was around 12.82 Mha, with only about 6.55 Mt of sesame

seeds, of which approximately 60% were from Asia (Faisal et al.,

2016). Although the sesame plant is tolerant to drought stress

compared to other oilseed crops, progressive or prolonged water

deprivation significantly affects its growth, development, yield

components (reduction of the number of capsules per plant, grains

per capsule, and 1000-grain weight), and quality (Bahrami et al., 2012;

Dissanayake et al., 2019; Sepideh et al., 2019). Among sesame seeds of

different colors, black seeds have higher demand and are priceless,

especially in East Asia, where they represent a key ingredient in

traditional medicine (Dossa et al., 2018; Wang et al., 2018). They

possess various physiological properties, including high antioxidative,

anti-nitrosative, anti-obesity, and protective effects against

metabolism illness (Panzella et al., 2012; Jin et al., 2014; Ruslan

et al., 2018). Accordingly, it is of particular interest to investigate

stress-responsive mechanisms in black sesame to enhance its

productivity. Unfortunately, litter attention was given exclusively to

black sesame response to drought stress. Moreover, albeit some

studies were conducted on sesame response to drought stress

(Dossa et al., 2017; Dossa et al., 2020; Fang et al., 2022), knowledge

of drought-responsive mechanisms in sesame plant is still limited and

more candidate genes are likely to be identified.

Anthesis is a developmental stage in the plant life cycle. Studies in

many plant species, including maize (Turc and Tardieu, 2018),

legumes (Fang et al., 2009), and Arabidopsis thaliana (Nevyl and
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Battaglia, 2021), have shown that water deficit during flowering stages

is the most dangerous, causing significantly lost in crop production.

Due to climate change occasioning alteration of soi ls ’

physicochemical properties and growing conditions, drought stress

of different intensities often accompanies the whole flowering stage of

sesame plants. Hence, we need to analyze physiological responses and

dynamic transcriptome profiling of black sesame genotypes to

drought stress occurring during flowering periods. A deeper

investigation and understanding of drought-induced physiological

and molecular mechanisms, together with the identification of

candidate genes underlying drought tolerance in black sesame is a

key step to developing high-yielding and drought-tolerant varieties.

In the present study, we analyzed the drought-responsive

mechanisms of two black sesame cultivars widely cultivated and

used in China. We examined morphological changes and

investigated diverse physiological parameters, including the content

of chlorophyll, MDA, soluble sugar, soluble protein, free proline, and

glutathione, and the enzymatic activity of SOD, POD, and CAT at

different time points of induced drought stress during anthesis both in

leaves and roots. Based on the contrasting physiological responses of

the two cultivars to the induced drought, we carried out a comparative

dynamic transcriptome analysis and revealed DEGs and differently

induced pathways. In addition, we examined the expression patterns

of glutathione reductase and ethylene biosynthetic genes and

identified potential candidate genes for drought tolerance

improvement in (black) sesame. The results were further validated

through quantitative reverse transcription-polymerase chain reaction

(RT-qPCR) analysis. Our findings provide an overview of drought

tolerance mechanisms in black sesame and fundamental resources for

genomic studies to dissect the regulation network of drought stress

in sesame.
Materials and methods

Plant materials and drought
stress conditions

Two black sesame cultivars, Jinhuangma (JHM) and Poyanghei

(PYH), widely cultivated and used in China were assessed in this

study. They were provided by the Key Laboratory of Crop Physiology,

Ecology, and Genetic Breeding, Ministry of Education, College of

Agronomy, Jiangxi Agricultural University (Nanchang, Jiangxi

province, China). These varieties were selected based on their

cultivation history and performance in fields under various

environmental conditions. In fact, our group screened hundreds of

sesame plant materials via field experiments and selected these two

native varieties to clarify the mechanisms underlying black sesame

tolerance to drought stress. The cultivar JHM was relatively tolerant

to drought, while PYH was sensitive and possessed a high per plant

yield in the north of Jiangxi province.

The experimentation was performed in a greenhouse at Jiangxi

Agricultural University in 2020. Seeds of the two cultivars were sown

float tray until the two true-leave stages. Then, they were transferred

into plastic pots (Diameter×Height: 19×27 cm) containing 7.5 kg of

soil. To better control water status, the soil water content was

measured using a soil moisture probe, 20 cm long (probes inserted
frontiersin.org
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vertically into the pots). All the sesame seedlings were watered

normally (soil watered daily to 25 ± 5%) until they reached the

flowering period (85 days after germination). Thereafter, the drought

stress was imposed on other treatments by keeping the soil moisture

content at the level of 10 ± 5% for three (T1), five (T2), and seven days

(T3), which stand for mild, moderate, and severe drought stress,

respectively. Each treatment was composed of twenty individual

plants. Middle leaf and root samples from drought stress were

sampled at the end of each treatment for physiological analyses.

Prior to the induction of the drought stress (the starting day), middle

leaves and roots were sampled to constitute control samples (CK) in

order to investigate changes in a dynamic manner. Other root

samples were prepared for RNA sequence. All the samples were

immediately frozen in liquid nitrogen and stored at -80 °C until use.

Each sample was analyzed in triplicate.
Physiological analysis

The chlorophyll content of leaves was determined using the SPAD

meter as described previously (Naus et al., 2010; Ling et al., 2011). MDA

content was measured via the thiobarbituric acid method (Castrejón

and Yatsimirsky, 1997). The activity of SOD and CAT was assayed

following the method described by Garcıá-Triana (Garcıá-Triana et al.,

2010) and Zhao and Shi (Zhao and Shi, 2009), respectively. POD

activity was measured as described in a previous report (Wang et al.,

2014). Free proline content was determined based on the

spectrophotometric method described by Vieira (Vieira et al., 2010).

Soluble sugar content was determined using the anthranone reagent

(Bodelón et al., 2010). Finally, soluble protein content was measured by

the coomassie brilliant blue G-250 (Lowry et al., 1951).
RNA sequencing and data assembly

Total RNA from root samples was extracted using the Trizol

reagent kit (Invitrogen, Carlsbad, CA, USA) according to the

manufacturer’s protocol. RNA quality was assessed on an Agilent

2100 Bioanalyzer and checked using RNase-free agarose gel

electrophoresis. Next, each sample RNA was PCR amplified and

sequenced using the Illumina Novaseq6000 Sequencing System by

Gene Denovo Biotechnology Co. (Guangzhou, China). To get high-

quality clean reads, reads were further filtered by fastp (Chen et al.,

2018). The mapped reads of each sample were assembled with

StringTie v1.3.1 in a reference-based approach (Pertea et al., 2015;

Pertea et al., 2016). For each transcript an FPKM value was calculated

to quantify its expression abundance and variations using RSEM

software (Dewey and Bo, 2011). Principal component analysis (PCA)

was performed in R using the “prcomp” package.
Differentially expressed genes and
enrichment analysis

The DESseq2 software (Love et al., 2014) was used to detect DEGs

between two different groups with the criteria of false discovery rate

(FDR) below 0.05 and absolute fold change ≥ 2. The HISAT2 program
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(Kim et al., 2015) was used to align the clean reads to the sesame

reference genome (“S_indicum_v1.0”, https://www.ncbi.nlm.nih.gov/

data-hub/taxonomy/4182/) and to obtain information regarding

genomic loci and characteristics unique to the sequenced samples.

GO (Genes Ontology, http://geneontology.org/), and KEGG (Kyoto

Encyclopedia of Genes and Genomes, http://www.genome.jp/kegg/

kaas) enrichment analysis for the DEGs were performed using GO seq

and KOBAS (2.0) software, respectively. According to the GO

annotation result, the DEGs were mapped to GO terms in the Gene

Ontology database, and significant enrichment terms were detected at

the threshold P-value <0.05. Similarly, KEGG pathways were assigned

to the assembled sequences using the online KEGG Automatic

annotation server and enrichment analysis.
RT-qPCR

We isolated total RNA from each root sample and synthesized

first-strand cDNAs following the reported methods byWei et al. (Wei

et al., 2019). Real-time quantitative PCR (RT-qPCR) was carried out

in CFX96 (BioRad) with the SYBR Green Perfect mix (TaKaRa,

Dalian, China). All samples were analyzed in triplicates. Relative

expression levels of each gene were computed using the 2–DDCT

method (Livak and Schmittgen, 2001). The sesame gene b-actin
(ncbi_105159390) was used to normalize the genes’ expression

levels (Li et al., 2017; Su et al., 2022). The primers were designed

with Primer5 and are listed in Table S1.
Data analyses

Statistical analyses of all traits were conducted using SPSS 17.0

software, and the data are presented as the mean ± SD of three

replicates. The standard error is shown as an estimate of variability,

and Duncan’s multiple test was used to determine statistical

differences at P < 0.05.
Results

Morphological and physiological responses
of the two sesame cultivars to drought-
induced stress during anthesis

To access the drought-responsive mechanisms of JHM and PYH

during anthesis, we investigated morphological and physiological

changes after three (T1), five (T2), and seven (T3) days of stress

induction. Morphological observations showed that the drought

stress caused symptoms of yellowing, drooping, and wilting of

leaves of plants of both cultivars (Figure S1). However, compared to

PYH plants, JHM plants were less affected at T3 (Figures S1C–F),

indicating they have suffered less damage from drought stress. The

yellowing symptom is generally caused by a decrease in chlorophyll

content of plants exposed to drought stress (Bhargava and Sawant,

2012; SeyedYahya and Hamideh, 2016; Gurumurthy et al., 2019).

Supportively, leaves chlorophyll content analysis revealed a significant

decrease in chlorophyll content of the two cultivars (Figure S2). For
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instance, after five days of stress exposure, the leaf chlorophyll content

of JHM and PYH plants exhibited a decrease of 23.75% (from 39.87 to

30.40 SPAD) and 30.78% (from 41.80 to 28.93 SPAD), respectively.

As drought stress promotes the synthesis of oxidants, we analyzed

the malondialdehyde (MDA) content and the activity of antioxidative

enzymes superoxide dismutase (SOD), peroxidase (POD), and

catalase (CAT) in leaves and roots of the two cultivars at the

different time points (Figures 1, S3). The MDA content of the

leaves and roots of the two cultivars was significantly increased

along with the drought stress duration (Figures 1A, S3A).

Compared to JHM, the MDA content of PYH was significantly

higher, indicating that the degree of membrane lipid peroxidation

was more severe in PYH plants. The activity of SOD in roots and

leaves of the two sesame cultivars significantly increased up to T2 and

then decreased, while POD and CAT activities were increased along

with the stress duration (Figures 1B-D, Figures S3 B–D). It is worth

noting that the activity of antioxidant enzymes in JHM under drought

stress conditions was significantly higher than in PYH, implying that

JHM had a stronger enzymatic defense system than PYH. For

instance, the activities of SOD, POD, and CAT in the leaf of

JHM reached a maximum value of 166.10, 44.4, and 257.4 u/g FW

(fresh weight), respectively, under the drought stress conditions

compared to 119.5, 37.7, and 182.9 u/g FW, respectively, in PYH

(Figures 1B–D).

We further assayed the content of osmolytes, including soluble sugar

(SS), soluble protein (SP), free proline (PRO), and glutathione (GSH) in

the leaf and root of the two sesame cultivars under the drought stress

conditions at the different time points. Except for the roots’ SS content,

both the osmolytes showed a significant increase of content in leaves and

roots at T1 and T2 and then decreased at T3 (Figure 2), suggesting that

prolonged drought stress of more than a week might severely affect

sesame productivity. As expected, the increase in osmolytes contents in

JHM was more considerable than in PYH (Figure 2).
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Transcriptome profiles of JHM and PYH
plants under drought stress during anthesis

To get more insights into the drought-responsive mechanisms in

JHM and PYH plants, roots samples of CK, T1, T2, and T3 from the

two sesame cultivars in three biological replicates, were subjected to

RNA sequencing via the Illumina sequencing platform. The summary

of the transcriptomics data is presented in Table S2. The total clean

reads generated varied from 38.01 to 55.45 million. The unique

mapping reads matching the sesame reference genome ranged from

77.71 to 93.48% and 78.76 to 93.94% for JHM and PYH, respectively.

Correlation analysis showed strong positive correlations between

samples within the same group, indicating high reproducibility

between the biological replicates (Figures S4A). We performed the

principal component analysis (PCA) to differentiate between the

groups. The results showed that the transcriptome of JHM and

PYH roots was very different and changed according to the drought

stress severity (Figure 3). There were 22674 genes (including 1142

novel genes) in all samples (Table S3). The total sequenced genes from

all samples accounted for 94.45% of the sesame reference genome

(Table S3). Reads alignment analysis showed that over 75% of the

genes are located in exonic regions (Figure S5).
Dynamic transcriptome changes in JHM and
PYH plants along with drought stress
severity during anthesis

To uncover drought-induced changes in transcriptional levels in

the two cultivars during anthesis, we carried out differentially

expressed genes (DEGs) analysis along with the drought duration.

In total, we identified 24,037 DEGs, including 13,951 and 10,086 up-

and down-regulated genes in JHM, respectively. Meanwhile, 23,604
A B

DC

FIGURE 1

Antioxidation status in leaves of JHM and PYH plants under drought stress during anthesis. (A) Malondialdehyde content; (B) Superoxide dismutase
activity; (C) Peroxidase activity; (D) Catalase activity. CK, T1, T2, and T3 indicate plants were stressed for 0, 3, 5, and 7 days, respectively. The different
lowercase letters indicate significant differences at the P<0.05 probability level.
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DEGs, including 12,586 and 11,018 up- and down-regulated genes,

respectively, were identified in PYH. In both cultivars, the number of

up-regulated DEGs showed similar patterns of increasing and then

decreasing from T2 (Figure 4A). In contrast, the number of down-

regulated DEGs increased along with the drought stress duration. We

searched for genes that were significantly affected at all time points in

JHM and PYH. We detected 3,881 and 3,409 overlapped DEGs at the

different time points in JHM and PYH, respectively (Figures 4B, C).

We performed GO and KEGG analyses to unveil molecular

mechanisms involving the DEGs. The most GO terms that involve

DEGs at early (T1) and moderate (T2) drought stress during anthesis

in JHM included RNA modification, organic substance metabolic
Frontiers in Plant Science 05
process, and ribonucleoprotein complex biogenesis (Figure S6A). At

T3, the main GO terms that involve DEGs in JHM were hormone-

mediated signaling pathway, regulation of meristem development,

response to hormones, response to stimulus, signal transduction, and

developmental growth. While in PYH, the most identified GO terms

were stomatal movement, response to water deprivation, proteolysis,

RNA modification, anion transport, and acetyl-CoA metabolic

process at early and moderate drought stages, and response to

water deprivation, ethylene metabolic process, anion transport, and

steroid biosynthesis process at T3 (Figure S6C). Noteworthily, GO

term related to the stomatal movement was identified only in PYH at

the early drought stage and included four DEGs, ncbi_105159372
A B

D E

C

FIGURE 3

DEGs between JHM and PYH and their underlying metabolic processes. (A). Venn diagram among DEGs between JHM and PYH. (B) and (C). Venn
diagram showing highly induced DEGs at all time points during the drought stress in JHM and PYH plants, respectively. (D). Significant enriched GO
terms of DEGs between JHM and PYH. (E). Significant induced pathways that involve DEGs between JHM and PYH.
A B D

E F G H

C

FIGURE 2

Variation in the content of osmolytes in JHM and PYH plants under drought stress conditions during anthesis. (A–D). Leaf soluble sugar (SS), soluble
protein (SP), free proline (PRO), and glutathione (GSH) contents, respectively. (E–H). Their respective roots. CK, T1, T2, and T3 indicate plants were
stressed for 0, 3, 5, and 7 days, respectively. The different lowercase letters indicate significant differences at the P<0.05 probability level.
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(PLDDELTA), ncbi_105162005 (AHK5), ncbi_105162425(CAS), and

ncbi_105174436 (HSC-2).

The KEGG analysis revealed that several pathways related to

plants’ drought stress tolerance mechanisms were significantly

induced in JHM compared to PYH (Figures S6B–D). For instance,

at T3, the DEGs in JHM were mainly assigned to photosynthesis -

antenna proteins, biosynthesis of amino acids, fatty acid metabolism,

peroxisome, lysine degradation, ascorbate and aldarate metabolism,

pyruvate metabolism, plant hormone signal transduction, tryptophan

metabolism, biosynthesis of secondary metabolites, and glutathione

metabolism (Figure S6B). In contrast, in PYH, the most significant

pathways at the same time were plant hormone signal transduction,

MAPK signaling pathway, carbon metabolism, biosynthesis of amino

acids, and arachidonic and alpha-linolenic acids metabolism

(Figure S6D).
DEGs between JHM and PYH plants and
potential candidate genes for drought stress
tolerance improvement in sesame

A total of 5,453 DEGs, including 505 common (up- or down-

regulated), were identified between JHM and PYH (Figures 4A, 3A).

GO analysis revealed that at T2 and T3, most DEGs between JHM and

PYH plants were related to vacuolar transport, chemical homeostasis,

response to abiotic stimulus, response to oxidative stress, and secondary

metabolites biosynthesis processes (Figure 3D). Meanwhile, the most

induced pathways between JHM and PYH plants were photosynthesis,

carotenoid biosynthesis, and biosynthesis of secondary metabolites

(Figure 3E). Flavonoid biosynthesis and starch and sucrose

metabolism were specifically significantly induced at T3.
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Interestingly, the DEGs enriched in photosynthesis were 2.0- to 7.9-

fold more highly induced in JHM than in PYH.

In order to identify potential candidate genes for targeted

improvement of drought stress tolerance in sesame, we constructed

Venn diagrams among the up- and down-regulated DEGs between

JHM and PYH. There were 54 and 42 DEGs significantly induced in

JHM and PYH, respectively, at the four-time points (Figures 3B, C). It

is worth noting that the expression of 11 up- and 11 down-regulated

genes between JHM and PYH were highly affected (|FPKM| >10

during at least one-time point) along with the drought treatments.

Thus, we selected these genes as potential candidate genes for future

studies aiming to enhance drought stress tolerance in sesame

(Table S4).
Expression of glutathione and ethylene
biosynthetic genes

Glutathione and ethylene play critical roles in plants’ tolerance to

abiotic stresses. Glutathione reductase (GR) catalyzes to maintain

cellular levels of reduced glutathione, which is essential for reactive

oxygen species control (Couto et al., 2016). We then examined the

expression of genes involved in the glutathione and ethylene

biosynthesis pathway (Figure 5A), including At3g24170 (GR,

glutathione reductase, ncbi_105158649), S-adenosylmethionine-

dependent methyltransferase (LAMT, ncbi_105155206), 1-

aminocyclopropane-1-carboxylate synthase (ACS1, ncbi_105164055),

and 1-aminocyclopropane-1-carboxylate oxidase 1 (ACO1,

ncbi_105161839). As shown in Figure 5B, the sesame GR was up-

regulated along with the drought stress duration in both JHM and PYH

plants. However, it was slightly more induced in JHM plants than in
A

B C

FIGURE 4

Differentially expressed genes (DEGs) along with the drought treatments in JHM and PYH plants. (A). Number of up- and down-regulated genes at
different time points in plants of the two cultivars. (B, C). Venn diagram among DEGs at different time points in JHM and PYH, respectively.
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PYH plants. The expression of LAMT was also induced by the drought

stress in the two cultivars. ACS1 was mainly induced at T3, while ACO1

at T1 (Figure 5B). At T3, the expression levels of the four genes were

1.0- to 8.1-fold highly induced in JHM plants than in PYH plants.
Expression of transcription factors
involved in drought stress regulation
in JHM and PYH plants

We screened the expressed genes and found that the most expressed

transcription factor families at all time points of the drought stress in JHM
Frontiers in Plant Science 07
plants were ERF (20%), followed by NAC (15%), MYB (10%), GeBP

(10%), C3H (10%), and bHLH (10%) (Figure 6A).Meanwhile, NAC (20%),

C3H (15%), MYB (10%), bZIP (10%), and bHLH (10%) were the most

expressed TFs in PYH plants (Figure 6B). We then filtered out the top

expressed TFs in the two cultivars under the drought condition for future

studies (Figure 6C). In JHM, the top expressed TFs included ERF091

(ncbi_105175644), LAF1 (ncbi_105160487), JUB1 (ncbi_105175173),

NAC100 (ncbi_105157091), and MYB4 (ncbi_105176094). These genes

are known to be essential for plant survival from abiotic stresses. For

example, JUB1 is involved in variousmetabolic processes, such as trehalose,

proline, hyperosmotic, and flavonoid biosynthetic processes (Alshareef

et al., 2019; Chen et al., 2021).
A

B

C

FIGURE 6

Overview of the expressed TF family genes in JHM and PYH plants under drought stress conditions. (A, B) Percentage of TF family genes that were
expressed in JHM and PYH plants, respectively. (C) Top expressed TF family genes in JHM and PYH plants. Values represent the fold changes in gene
expression. The red and the green color indicate up- and down-regulated genes, respectively.
A

B

FIGURE 5

Expression patterns of glutathione and ethylene biosynthetic genes in JHM and PYH plants. (A) A diagram of glutathione and ethylene biosynthesis.
(B) Expression patterns of glutathione reductase (GR) and ethylene biosynthetic genes in JHM and PYH plants under drought stress conditions.
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RT-qPCR validation

To validate the RNA-seq data, we selected seven genes for RT-

qPCR analysis. As shown in Figure 7, the expression patterns of the

selected genes via the RT-qPCR and RNA-seq were consistent (R2 =

0.85), confirming the reliability of our results.
Discussion

Drought tolerance of crop plants involves complex and various

physiological and molecular mechanisms that are not yet well

understood (Schulz et al., 2020). In this study, we investigated the

physiological and transcriptional responses of two black sesame

cultivars to induced drought stress during anthesis. Although the

drought tolerance capacity of plants of the two cultivars was very

different, the drought-responsive mechanisms recorded were similar.

The plants of both cultivars reacted to the induced drought by up- or

down-regulating a set of genes, mainly by activating hormone and

antioxidant-related genes. Accordingly, the activity of antioxidant
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enzymes POD, SOD, and CAT was significantly increased in both

plants to curb the drought-induced accumulation of ROS. Under

drought stress, electron transport chains in plant cells are devastated,

giving rise to excessive ROS that causes oxidative stress, which in turn

damages biological membranes and alters developmental processes

(Labudda and Azam, 2014; Meng et al., 2014). Numerous other

mechanisms, such as enhancement of the root system, reducing the

stomatal aperture, and accumulation of different osmotic adjustment

substances, are initiated by plants to cope with drought stress (Farooq

et al., 2009; Kaur and Asthir, 2017). We observed an increase in the

content of key osmoprotectants, including free proline, soluble sugar,

soluble protein, and glutathione, in the roots and leaves of plants of the

two cultivars under the induced drought stress. The accumulation of

organic osmolytes in order to maintain cells’ homeostasis is a well-known

mechanism by plants to resist drought stress (Bai et al., 2019). Similar

mechanisms have been reported in sesame (Fazeli et al., 2007;

Kadkhodaie et al., 2014; Dossa et al., 2017). Besides, it is demonstrated

that plants initiate a series of TFs phosphorylation/dephosphorylation

under stress to enable them to bind cis-elements of stress-related genes

and enhance stress tolerance (Sardar-Ali et al., 2018; Baillo et al., 2019).
A

B

FIGURE 7

RT-qPCR validation of the expression levels of seven selected genes. (A) Expression patterns of each selected gene via RNA-seq and RT-qPCR. (B) Linear
correlation analysis of RNA-seq and RT-qPCR data.
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TFs coordinate the expression levels of target genes to help plants

maintain a particular phenotype (Feng et al., 2018). In sesame,

previous studies mainly on white sesame revealed that ERF, MYB,

bHLH, and WRKY family genes are the most induced by abiotic

stresses (Dossa et al., 2019). Herein, we found that the most induced

TFs in the two black sesame cultivars during the drought stress were ERF

and NAC family genes. These results show that the different colored

sesame response to drought is slightly different, and genotype may

determine the ability of a sesame cultivar to resist or be susceptible to

drought stress.

Compared to PYH, JHM plants showed higher tolerance to the

induced drought stress. As shown in the GO analysis results, plants of

PYH closed their stomata at the early drought stage, while plants of JHM

maintained their photosynthetic activities up to the severe drought stage.

Closing of stomata under water deficit suppresses transpiration and blocks

CO2 exchanges, leading to a reduction of photosynthesis and alteration of

developmental processes (Ullah et al., 2022). Through the analysis of JHM

plants’ adaptation mechanisms to the induced drought stress, it could be

inferred that stimulating a high number of genes, especially genes involved

in ROS scavenging, hormone, and glutathione-related genes, and

promoting the accumulation of organic osmolytes might be efficient

strategies to improve black sesame drought tolerance. Osmoprotectants

with high lipophilicity increase the turgor pressure and trigger water uptake

from soil under abiotic stress (SeyedYahya and Hamideh, 2016; Blum,

2017). Furthermore, glutathione metabolism and ethylene formation are

essential for plants’ resistance to abiotic stress (Bhargava and Sawant, 2012;

Huang et al., 2019; Khan et al., 2015). In wheat, the up-regulation of

ethylene biosynthetic genes ACO, ACS1, and ACS2 conferred better

tolerance to water deficit (Luo et al., 2021).

The integration of results from the physiological and transcriptomic

analyses highlights the importance of a strong antioxidant system,

osmoprotectants’ biosynthesis and accumulation, TFs, and

phytohormones (ethylene biosynthetic pathway) for drought tolerance

in black sesame. Key genes in these pathways might be investigated to

deepen our understanding of black sesame drought response and provide

resources for sesame improvement. Although the JHM exhibited higher

tolerance to drought, plants of the two black sesame cultivars showed a

decrease in the number of expressed genes, antioxidative processes, and

the content of osmolytes after seven days of drought treatment during

anthesis. These results indicate that progressive or prolonged drought of

more than a week may significantly affect black sesame productivity and

quality. In addition, they show that more interest should be given to

sesame plants’ drought tolerance improvement. Numerous candidate

genes for drought and other abiotic stress tolerance in sesame have been

identified (Dossa et al., 2020; Dossa et al., 2021; Su et al., 2022). However,

functional genomics studies are lacking to enable the molecular breeding

of drought-tolerant sesame varieties. In this study, we selected 31

potential candidate genes for black sesame drought resistance

improvement. They included five TF family genes (ERF091, LAF1,

JUB1, NAC100, and MYB4) with the highest FPKM values in the JHM

plants. These genes might govern the higher tolerance capability of JHM

plants to the induced drought stress. Therefore, great efforts are then to be

made to functionally characterize these genes and dissect the regulatory

networks of drought response in sesame.
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Conclusion

In summary, this study provides insights into the drought-

responsive mechanisms of black sesame during anthesis by

assessing dynamic physiological and transcriptional changes in two

sesame cultivars (JHM and PYH). Compared to PYH, JHM plants

exhibited high tolerance to the induced drought stress. We found that

increased tolerance to drought stress in black sesame is associated

with significant induction of key pathways and genes involved in

plants’ abiotic stress response. Principally, genes that are involved in

hormone signaling processes, glutathione and ethylene biosynthesis,

photosynthesis, reactive oxygen species metabolic processes,

biosynthesis of osmoprotectants, and secondary metabolites

biosynthesis. These genes mediated efficient osmotic adjustment,

ROS scavenging, and maintenance of biological membranes’

stability and cellular processes in JHM plants under induced

drought stress during anthesis. Both the drought-responsive

mechanisms decreased in plants of the two cultivars after seven

days of drought treatments, indicating that prolonged drought

stress of more than a week might severely affect sesame production.

We identified 31 potential candidate genes for drought stress

tolerance improvement in black sesame. Our results represent

fundamental resources for further studies towards the dissection of

the regulatory networks of drought stress response in sesame and

molecular breeding of drought-tolerant varieties.
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